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Abstract—The popularity of mobile robots in factories,
warehouses, and hospitals has raised safety concerns about
human–machine collisions, particularly in nonline-of-sight
(NLoS) scenarios such as corners. Developing a robot capa-
ble of locating and tracking humans behind the corners will
greatly mitigate risk. However, most of them cannot work
in complex environments or require a costly infrastructure.
This article introduces a solution that uses the reflected and
diffracted millimeter wave (mmWave) radio signals to detect
and locate targets behind the corner. Central to this solution
is a localization convolutional neural network (L-CNN), which
takes the angle-delay heatmap of the mmWave sensor as
input and infers the potential target position. Furthermore,
a Kalman filter is applied after L-CNN to improve the accuracy
and robustness of estimated locations. A red-green-blue-
depth (RGB-D) camera is attached to the mmWave sensor
as the annotation system to provide accurate position labels.
The results of the experimental evaluation demonstrate that our data-driven approach can achieve remarkable position-
ing accuracy at the 10-cm level without extensive infrastructure. In particular, the approach effectively mitigates the
adverse effects of diffraction and multibounce phenomena, making the system more resilient.

Index Terms— Angle-delay estimation, convolutional neural network (CNN), cross-modal training, frequency-
modulated continuous-wave (FMCW) radar, indoor positioning, nonline-of-sight (NLoS) tracking, robotics.
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I. INTRODUCTION

THE recent development in artificial intelligence (AI) and
robotics applications has prominently positioned these

technologies in logistics, manufacturing, and healthcare [1],
[2], [3]. In these domains, AI-assisted robots execute essential
tasks, from managing bulky items in warehouses to delivering
medicines in mixed human environments. Central to these
tasks is the capability of robots to navigate and interact safely
within its environment. This navigation primarily relies on
advanced sensor and signal processing systems that help
robots detect obstacles and prevent collisions in various
indoor scenarios. Leveraging cameras and light detection and
ranging (LiDAR) [4] systems, robots can have accurate and
high-resolution perceptions of their surrounding spaces and
line-of-sight (LoS) obstacles. However, when it comes to
nonline-of-sight (NLoS) situations, such as detecting a person
behind a corner, traditional sensing methods are less effective.
Sensors relying on visible light or lasers are constrained
in NLoS conditions because light or laser signals cannot
penetrate or sufficiently reflect around typical obstacles.
This limitation increases the risk of collisions, particularly in
scenarios with limited response times. Given these challenges,
it is important to develop innovative solutions for robots to
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detect and track personnel behind corners before entering the
range of visual sensors.

Optical and radio sensors are mainstream approaches to
enhancing the response duration of robots for collision pre-
vention. Optical sensors can detect NLoS targets by capturing
shadows [5], [6], and disentangling scattered light information
to reconstruct spatial images [7], [8], [9]. However, in intricate
indoor settings, these optical techniques encounter sensitivity
challenges. For example, the performance of optical sensors
can degrade significantly due to factors like varying lighting
conditions, occlusions, and reflective surfaces. In contrast,
sensors using radio signals exhibit advantages like multipath
propagation [10], [11], [12], [13], [14], [15] and penetration
capabilities [16], [17], making them more suited for NLoS
target detection and tracking. Nevertheless, the requirements
for their application are higher: the need for prior corner
geometry knowledge, complexities in managing multibounce
and diffraction propagation, and the trade-off between pen-
etration capability and position estimation resolution. For
instance, radars operating at high carrier frequency and wider
bandwidth usually offer finer range resolution, thus, more
position estimation accuracy, however, they have less capa-
bility to penetrate obstacles due to the short wavelength.
A detailed literature review of state-of-the-art methods is given
in Section II.

In this article, we propose an innovative system to accu-
rately infer and track target locations using millimeter wave
(mmWave) beat frequency signal. Our approach integrates a
classic direction-finding method with advanced deep learn-
ing techniques, specifically a convolutional neural network
(CNN) [18], to enhance detection capabilities. Additionally,
a Kalman filter is added to further rectify the CNN inference
results. This combination is inspired by studies [19], [20]. Our
system consists of two main components: the mmWave sensor
and the annotator. The mmWave sensor captures and processes
raw radio frequency (RF) data, while the annotator utilizes red-
green-blue-depth (RGB-D) cameras to provide precise location
labels. The major contributions in our design are listed as
follows.

1) Effectiveness in Complex Environments: Our system
demonstrates robust performance in complex indoor
environments characterized by elevators, doors, and
walls with varied materials. It not only outperforms prior
models that commonly fail under such conditions but
also ensures consistent operational reliability.

2) Privacy Enhancement: We limit the use of the RGB-D
camera strictly to the training phase. After training,
the absence of the camera in the operational phase
guarantees the privacy of system.

3) Easy Deployment: Our method is a data-driven
approach. The training stage of our system does
not require the measurement of floor plan and prior
knowledge of electromagnetic information of the
environment that are required in many other RF-based
indoor localization. The lightweight inference stage of
our method indicates a low deployment threshold for
scenarios where low-power processors are used.

The article is organized as follows. Section II presents
related works and explores existing research on the topic.

Section III focuses on radar signal modeling and target
positioning, providing detailed explanations. Section IV
explains experimental devices and the methodology adopted.
Section V discusses the positioning results obtained from the
experiments. Finally, Section VI concludes the article and
discusses future work.

II. RELATED WORKS

The studies on perceiving targets behind corners can be
broadly categorized into two main genres: optical methods and
RF-based methods.

A. Optical Methods
In recent years, there has been a surge in the development

of novel optical methods for sensing objects around corners.
The ShadowCam algorithm, introduced in [5], distinguishes
between “dynamic” and “static” shadows created by obstacles
through registered image sequences. This classification helps
identify dynamic obstacles or subtle changes in illumination.
However, the dependence of the algorithm on additional
infrastructure, such as AprilTags, is a notable limitation.
An improvement is proposed in [6], where the system transi-
tions to utilizing visual odometry methods for image sequence
registration. Despite this enhancement, the approach still has
limitations, including the need for close camera proximity
to the corner and the requirement for the light source to
be positioned well behind individuals to create discernible
shadows. It is worth noting that both of these shadow-based
techniques primarily serve the purpose of detecting the pres-
ence of individuals around the corner and do not offer precise
object localization.

Certain methods focus on the detection of scattered light
from these objects to locate objects behind the corner. While
reflected light carries valuable scene information, it often
undergoes mixing due to diffuse reflections before reaching
the image sensor. To overcome this problem, the study detailed
in [7] uses a combination of ultra-short pulsed signals and
computational reconstruction algorithms to disentangle image
information for NLoS localization. However, this approach
comes with a high cost, primarily due to the need of the
ultra-short pulsed laser and a streak camera as illumina-
tor and receiver, respectively. To reduce infrastructure costs,
researchers proposed several methods based on conventional
laser systems [8], [9] to obtain NLoS location information.
The approach described in [8] takes advantage of the spatial
variation of indirect reflections under varying illumination
conditions to image occluded objects. The work in [9] employs
spectral estimation theory to establish a noise model for
NLoS correlography and subsequently develops a speckle
correlation-based technique to recover occluded objects. Both
methods are computationally expensive due to the requirement
of a large training set.

Digital refocusing algorithms [21] have been leveraged to
allow cameras form images through foreground occlusions.
Although this technology has gained impressive perfor-
mance [22] through deep learning, it is only suitable for
perceiving through sparse obstacles, such as fences or
vegetation.
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Although optical methods have shown promise for indoor
localization, accurately locating people around corners in
complex indoor environments remains a challenging task.
Many optical-based methods require controlled illumination
conditions, which can be difficult to meet in indoor
environments. Additionally, the use of cameras in optical
solutions raises privacy concerns, since they capture image
data, which could be vulnerable to compromise if accessed
by unauthorized entities through hacking or other means.

B. RF-Based Methods
Compared to optical methods, RF-based methods offer

advantages such as improved robustness in indoor environ-
ments and fewer concerns about privacy leakage. Studies such
as [10], [11], [12], [13], [14], [15], use indirect path signals,
commonly known as bounced signals, to locate individuals
behind corners. The authors [10], [11], [12], [13], [14], [15]
universally adopt ray tracing to address the limitations posed
by obstructed or heavily attenuated direct path signals.
By tracing indirect RF paths and using the known geometric
information of the environment, these approaches success-
fully determine the positions of individuals behind corners.
However, these multipath exploitation methods require accu-
rate geometry information for ray tracing models, and their
performance can be affected by variations in wall materials,
reflectivity, and floor layout, especially in complex indoor
environments. Furthermore, these methods usually do not
consider the existing factors. For example, the work in [12]
overlooks multiple-bounce signals, while the research in [10]
and [11] neglects to account for diffraction effects.

On the other hand, some work [16], [17] demonstrated the
possibility of using direct path signals from the targets. These
approaches typically start by disentangling the direct path from
the indirect paths and then using the direct path information for
target localization. For example, Chuo et al. [16] introduces a
neural network based timing interpolation technique, which
enables an efficient distinction between indirect and direct
paths. In [17], they employ the discrete inverse Fourier trans-
form method to effectively separate the direct path signals
from the indirect path signals. However, these methods are not
well-suited for corner situations due to issues like blockage
or severe signal attenuation when signals traverse multiple
walls, as evidenced by prior research [10], [12], [15], [23],
[24], [25]. Studies such as [26], [27], [28] have demonstrated
the feasibility of applying neural networks in mmWave radar
data for target tracking in indoor LoS scenarios. It is worth
noting that the mmWave signal is capable of penetrating the
obstacle for the detection and tracking of NloS objects in [27].
However, the only limitation of a 3 mm occlusion is that it
may not realistically represent typical indoor NLoS scenarios.

Our data-driven mmWave corner sensor does not require
any prior knowledge about propagation effects. The model
is capable of learning RF signal propagation around corners,
eliminating the need for detailed layout information, unlike
the ray tracing approach. Furthermore, its superiority lies in
its adaptability to various factors that affect signal propagation,
such as elevators, walls of different materials, multiple bounce
scenarios, and diffraction.

III. SYSTEM COMPOSITION, TARGET
POSITIONING, AND TRACKING

Our system comprises two primary components: an
mmWave sensor and an annotation subsystem. The mmWave
sensor collects raw data, while the annotation subsystem
captures real-time subject location, both sent to the PC. After
preprocessing the I/Q samples and location data, the PC
trains a CNN model. The subsequent deep learning inference
and filtering on the PC enable precise behind-corner people
localization.

A. Signal Modeling of the Phased Array mmWave
Sensor

In this work, a phased array frequency-modulated
continuous-wave (FMCW) radar [29] is used as the mmWave
sensor. The FMCW chirp signal is transmitted over M anten-
nas and received by N antennas after propagation in the
complex environment. The transmitting and receiving antennas
are co-located, phase coherent, and linearly arranged with
half-wavelength spacing. This configuration adheres to the
principles of a uniform linear array (ULA) [30]. A single
FMCW chirp signal can be written as

z(t) = e j2π fct+π B
Td

t2
(1)

where fc denotes the carrier wave frequency, Td represents
the chirp signal ramp duration, and B is the FMCW sweep
bandwidth. Due to limitations of the hardware, only analog
beamforming (ABF) can be applied to transmitting antennas.
The transmitted signal after ABF is

st (t) =

M∑
m=1

am(θ)z(t). (2)

Here, M is the number of the transmitting elements, am is the
phase shift applied on the mth transmitting element

am(θ) = e− j 2π
λ (m−1)d sin(θ)

where λ is the wavelength, d = λ/2 denotes the array element
spacing, and θ is the steering direction (set to zero in this
article).

The hardware used in this work provides full digital
beamforming (DBF) capability on the receiving side. By the
principle of ULA, the received mmWave sensing signal sr (t)
is

sr (t) =

K∑
k=1

αkar (θk)st (t − τk) + w(t). (3)

Here, K indicates the number of signal paths. Parameters
αk , θk , τk represent the amplitude, angular position, and
delay of the kth arrival signal, respectively. The receiving
steering vector associated with the kth arrival signal, ar (θk),
is expressed as

ar (θk) =

[
1, e− j 2π

λ d sin(θk ), . . . , e− j 2π
λ (Nr −1)d sin(θk )

]T

where Nr denotes the number of the receiving array elements,
and (·)T is the transpose operator. The last term w(t) ∈ CNr
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Fig. 1. FMCW radar system. Upon mixing the received signal Rx with
the transmitted signal Tx in a radar system, a new signal referred to as
the beat signal is generated. This beat signal represents the difference
in frequency between signals Tx and Rx.

represents the receiver noise vector, which follows a Gaussian
distribution with a zero mean.

For the coherent FMCW radar used in this work, the
receiving signal sr (t) is deramped by the reference signal,
which is a tap-off from the transmitting signal z(t), to obtain
a beat signal (as illustrated in Fig. 1). The time domain beat
signal in the nr th receiving element is defined as

snr
r (t) =

K∑
k=1

αkant
r (θk)e

j2π
(

fcτk+
B

Td
τk t+ B

2Td
τ 2

k

)
+ w(t) (4)

where ant
r (θk) = e− j (2π/λ)(nr −1)d sin(θk ).

After the intermediate frequency (IF) filtering and analog-
to-digital conversion (ADC), the sampled time-domain beat
signal can be written in the discrete form

snr
r (i) =

K∑
k=1

αkant
r (θk)e

j2π
(

fcτk+
B

Td
τk

n
fs

+
B

2Td
τ 2

k

)
+ w(i) (5)

for i = 0, . . . , I , where fs denotes the sampling frequency and
the number of samples is I = Td fs . snr

r ∈ CI . After deramping
and ADC over multiple coherent receiving chains, the resulting
deramped FMCW radar signal can be organized into a radar
information matrix Sr = [(s1

r )
T, (s2

r )
T, . . . , (sNr

r )T
]
T

∈ CNr ×I

as shown in Fig. 2.
In Section III-B1, we describe the process of generating a

delay-angle heatmap from the deramped samples of a phased
array mmWave radar, subsequently employing this heatmap
for the precise positioning of human targets.

B. Target Positioning
In LoS scenarios, mostly outdoor, the target position can be

derived from the angle and distance estimates of a single or
multiple radar node. This simple approach often fails in indoor
applications due to complicated multipath propagation.

While studies like [31] have demonstrated that multipath
components (MPCs) can enhance the accuracy of indoor
localization, challenges arise in intricate propagation envi-
ronments. Specifically, when occurrences such as multiple
bounces, diffractions, or penetrations are involved, localizing
and tracking the target become significantly more challenging.

Fig. 2. Left matrix is the FMCW radar information matrix. The right
matrix is the pseudospectrum generated by applying 2D-FFT algorithm
to the information matrix.

Fig. 3. mmWave phased array radar target positioning process includes
three steps: first, obtaining the range-angle spectrum heatmap from the
received radio signal after complex propagation; second, utilizing CNN
to infer the NLoS target location using the range-angle profile; and finally,
enhancing positioning accuracy through Kalman filtering.

To address these complexities, this article proposes a novel
approach: leveraging the CNN combined with the Kalman
filter, rooted in the preliminary delay-angle heatmap, to infer
the target position. The processing flow is shown in Fig. 3.
We recognize that integrating neural networks with Kalman
filters has been explored in existing literature [19], [20], [32].
However, our primary focus is on the first two steps in Fig. 3.
The integration is secondary to our main objective. Advanced
Kalman filter design may offer further enhancements, however,
is beyond the scope of our current work. Thus, we leave it as
a future work and use the basic Kalman filters in this article.

1) Preliminary Angle and Range Estimation: For the infor-
mation matrix Sr phased array FMCW radar, the samples on
each column and each row are called spatial and fast-time
samples, respectively. For the ULA subject to the far-field con-
dition, the changing rate between the adjacent spatial samples
is linearly proportional to the azimuth angle θ . The phase rotat-
ing rate can be represented by e− j (2π/λ)d sin(θ). Thus, peaks
on the Fourier spectrum of spatial samples indicate azimuth
angles of potential targets, or in other words, directions of
targets. For FMCW radar, peaks on the Fourier spectrum of
fast-time samples (beat signal) indicate the distances of poten-
tial targets [33]. Therefore, the most straightforward approach
to estimate angle and range is searching the peak(s) on the
pseudorange-angle spectrum. This spectrum is obtained via
taking two-dimension fast Fourier transformation (2D-FFT) of
the information matrix, Sr , as depicted in Fig. 2

Sr (φnr , fi ) =

Nr −1∑
nr =0

I−1∑
fi =0

Sr (nr , i)e
−2π j

(
φnr
Nr

nr +
fi
I i

)
(6)

where i and nr are the fast-time and spatial sample indexes,
and fi and φnr are the frequency and spatial-frequency sample
indexes. The frequency fi has a linear relationship with
the signal propagation distance. The spatial frequency φnr

indicates the direction of arrival. In the simple LoS scenario,



38106 IEEE SENSORS JOURNAL, VOL. 24, NO. 22, 15 NOVEMBER 2024

Fig. 4. 2D-FFT spectrum (NLoS) for range and angle estimation. Note
that due to the complex environment and multipath propagation in the
NLoS scenario, there are more than one peak in the 2D-FFT spectrum.

the peaks on the 2-D pseudospectrum Sr , which can also be
called range-angle heatmap, directly represent the direction
and distance of the target. However, in NLoS scenarios, the
presence of diffraction, penetration, and multiple reflections
makes it difficult to derive the target position directly from
the range-angle heatmap. An example of the angle-range
estimation is shown in Fig. 4.

2) Deep Learning Inference of Preliminary Estimation: As
discussed above, the strongest peak on the range-angle
heatmap Xr may not directly indicate the position of a
person in NLoS scenarios due to complex signal propagation.
To address this issue, a localization CNN (L-CNN) is used
to predict the location of the person. Compared to common
CNN applications, our L-CNN solves a regression problem
rather than a classification problem. The input data of L-CNN
consist of radar range-angle heatmaps, whereas the annotation
(or ground truth) labels are obtained from RGB-D-based data.
The L-CNN (shown in Fig. 5), inspired from [34], comprises
five convolutional layers. To avoid overfitting and to improve
convergence, each convolutional layer is followed by activa-
tion function and batch normalization. Rectified linear units
(ReLU) are used as activation layers. Additionally, to enhance
the learning of abstract features and reduce the sensitivity to
small input variations and noise, a maximum-pooling layer
is included after the last convolutional layer. Furthermore,
max-pooling downsampling reduces the number of learning
parameters in the following layers. Two fully connected layers
are then applied to capitalize on the information extracted
from the features. Using range-angle heat maps as input to
deep learning inference, the predicted position of the target
can be obtained. Mean square error (MSE) serves as the loss
function in the model training process, and a comprehensive
explanation of this training procedure will be provided in
Section IV-D. Using range-angle heatmaps as input for deep
learning inference, the predicted position of the target (x, y)

can be obtained.
3) Kalman Filter: During the deep learning inference phase,

the tentative position of the target is identified as (x, y). This
position, however, tends to be approximate since it solely relies
on individual time frames without considering sequential ones.
To enhance the accuracy of this position estimation, we apply
the Kalman filter [35] technique. This algorithm estimates

Fig. 5. L-CNN architecture comprises five convolutional layers, each fol-
lowed by activation function and batch normalization. The network also
includes a max-pooling layer and two fully connected layers. The input
data are the range-angle heatmap derived from 2D-FFT processing, and
the output of the network provides the predicted position of the target in
the form of (x, y).

a joint probability distribution over the variables for each
time frame, considering dynamic models. Consequently, the
estimations achieved with the Kalman filter, which takes into
account the temporal dynamics, are more accurate than those
omit such considerations.

We consider a discrete-time linear dynamical system and
model its behavior through a set of equations and matrices,
which we describe sequentially below. The state vector ωn
and observation vector ψn are represented as

ωn = Fωn−1 + qn (7)
ψn = Gωn + rn (8)

where F ∈ R4×4 is state transition matrix, G ∈ R2×4 is
observation matrix, qn ∈ R4×1 and rn ∈ R2×1 are system
and observation noise vectors, respectively.

1) The state vector ωn ∈ R4×1 represents the current state
of the system under estimation. This vector provides an
internal snapshot of the state of the system at a given
time

ωn = [ xn yn ẋn ẏn ]
T.

2) The observation vector ψn ∈ R2×1 is derived from
sensor readings or other data sources. In our case, this
vector encompasses the spatial position of the target as
determined by deep learning inference

ψn =
[

xn yn
]T

.

3) The state transition matrix F describes the evolution
of the system over time

F =


1 0 1t 0
0 1 0 1t
0 0 1 0
0 0 0 1

 (9)

where 1t is the time interval, aligning with the radar
frame interval 1/30 s in our case.

4) The observation matrix G describes the relationship
between the internal state of the system and the external
observations or measurements

G =

[
1 0 0 0
0 1 0 0

]
. (10)
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5) The system noise vector qn and observation noise
vector rn represent the inherent noise in the system
and observations, respectively. Their expectation and
covariances are

E{qn} = 0, Cov{qn} = Q (11)
E{rn} = 0, Cov{rn} = R (12)

where 0 is a zero vector. The values of the process noise
covariance matrix Q ∈ R4×4 are chosen based on prior
knowledge of the behavior of the system (in our case,
the noise is the unknown target acceleration); the values
of the observation noise covariance matrix R ∈ R2×2

are determined by characteristics of the measurement
sensors and their known or estimated noise properties.

Here, we choose the piecewise white noise model as the pro-
cess noise model, and the process noise covariance matrix Q
can be represented as

Q = σ 2
a



1t4

4
0

1t3

2
0

0
1t4

4
0

1t3

2
1t3

2
0 1t2 0

0
1t3

2
0 1t2


(13)

where σ 2
a is the expected variation in target acceleration. The

observability matrix of our system is

O =


G

GF
GF2

GF3

 . (14)

After substitutingthe values of matrixs G and F obtained
from (9) and (10), we find the rank of the observability
matrix is four, which indicates the system is fully observable.
Although the estimated velocities may not be very accurate,
the estimated positions have shown improvement when
employing a Kalman filter, considering our system as a
discrete-time linear dynamical system. The Kalman filter
operates in an iterative manner, refining the status of the
system, ω, based on the observation, ψ . This iterative process
consists of two core steps.

1) Prediction Step: We predict the state of the system based
on the previous state and the dynamic model of the
system. Formally, it is represented by

ω̂n|n−1 = Fω̂n−1|n−1 (15)

Un|n−1 = FUn−1|n−1FT
+ Q (16)

where ω̂n−1|n−1 ∈ R4×1 denotes the conditional expec-
tation of ωn−1 given the data ψ1:n−1 and similar for
the state covariance matrix Un−1|n−1 ∈ R4×4. They are
outcomes from the last measurement update.

2) Measurement Step: In this step, the estimated state is
revised based on new observations

Dn = Un|n−1GT
(

GUn|n−1GT
+ R

)−1
(17)

ω̂n|n = ω̂n|n−1 + Dn
(
ψn − Gω̂n|n−1

)
(18)

Un,n = Un|n−1 − Dn

(
GUn|n−1GT

+ R
)

DT
n (19)

where Dn ∈ R4×2 is the Kalman gain.
To start the iteration, we set initial states as

ω̂0|0 =
[
x0 y0 ẋ0 ẏ0

]T (20)

U0|0 =


σ 2

x 0 0 0
0 σ 2

y 0 0
0 0 σ 2

ẋ 0
0 0 0 σ 2

ẏ

 . (21)

Here, σ(·) represents the standard deviation of specific vari-
ables, and initial values such as x0 and y0 originate from the
first localization output of the CNN. By assuming the initial
velocity of the target is 0, we set ẋ0 and ẏ0 to 0. The result
of this process, ω̂n|n = [ x̂n ŷn ˆ̇xn ˆ̇yn ]

T, offers the esti-
mated location and velocity for every iteration. Utilizing the
processed data through the Kalman filter provides enhanced
accuracy in location determination compared to relying solely
on the unfiltered observations.

IV. EXPERIMENTAL SETUP

This section gives detailed information on the hardware sys-
tem design, experiment environment, procedure, data collec-
tion, preprocessing and annotation, and neural network model
training and tuning. The dataset, which includes the raw radar
data, ground truth, processed data, the trained L-CNN model,
and other related metadata, is open via IEEE Dataport [36].

A. Experimental Hardware and Setting
1) mmWave Sensor Subsystem: Our mmWave sen-

sor subsystem consists of a 3Tx-4Rx, 60 ∼ 64 GHz
FMCW mmWave radar (TI1, IWR6843ISK with TI1,
MMWAVEICBOOST) [37], and a raw data capture board
(TI1, DCA1000EVM). The firmware code is flashed into
mmWAVEICBOOST. After starting the radar module, the beat
frequency signal (shown in Fig. 1) will be recorded by the
IWR6843 and transmitted to DCA1000EVM via the high-
speed low-voltage differential signaling (LVDS) interface. The
captured beat frequency data are then imported to the host
PC over 1 Gb/s Ethernet for preprocessing. Fig. 6 shows
the architecture of the mmWave sensor subsystem. The radar
module provides 30 frames (2D-FFT spectrum obtained from
Section III-B1) per second. A radar configuration file is used
to configure the radar system. Some important radar setting
parameters (shown in Table I) are based on this.

2) Annotation Subsystem: The annotation system is based
on an Intel1 RealSense L515 RGB-D camera. The example
RGB and depth images are shown in Fig. 7. Object detection
is performed using the You Only Look Once (YOLO) v4
model [38] that is pretrained with the COCO dataset [39],

1Registered trademark.
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Fig. 6. Architecture of the mmWave sensor subsystem involves several
key components. The PC flashes firmware code to the mmWAVEIC-
BOOST carrier card and controls the recording process by sending
commands through the UART port. The antenna module records beat
signal data, which is subsequently transmitted to the data capture board
via an LVDS cable. Finally, the data are transported to the PC over an
Ethernet cable.

TABLE I
RADAR CONFIGURATION PARAMETERS

including various human targets. Thus, the YOLO v4 model
can be directly used on the RGB image in our project for
human target bounding box extraction without further training.
For depth perception of the target, an initial alignment of the
depth image with the RGB image is conducted. Once the target
is identified within the RGB image using YOLO, the pixel data
within the bounding box becomes accessible. Given that the
depth and RGB images are aligned, the 3-D coordinates of
the center of the bounding box [as shown in Fig. 7(a)] can be
determined using the intrinsic and extrinsic camera properties
combined with depth information. This location effectively
represents the position of the target in the real world. This
location information serves as ground truth labels for training
radio sensing data (range-angle heatmap). The camera captures
images at a consistent rate of 30 frames per second (fps).
However, the overall output fps of the annotation system vary
since the YOLO model may not always detect the target in
every frame. We will explain the strategy to handle this fact
in Section IV-C.

B. Experiment Scene
The experiment scene is shown in Fig. 8. The mmWave

sensor is placed along the wall to avoid the LoS between the
sensor and the target. A person walks randomly in the area

Fig. 7. (a) RGB and (b) aligned depth images. The depth image in (b)
has already been aligned to the RGB images in (a). YOLO operates on
RGB images, marking detected targets with bounding boxes. Then, the
3-D coordinates of the targets are calculated using the pixel and depth
information from the central point of the bounding box, along intrinsic
and extrinsic camera information.

Fig. 8. NLoS experimental layout. Radar emits signals at a 68◦ angle
toward the wall, collecting bounced radio signals. The subject moves in
undefined (random) trajectories within the area of interest. Elevator and
door introduce complicating factors.

Fig. 9. Data Diversity: this figure presents a histogram depicting the
distances from the corner to the target. It is important to note that the
exact location of the corner (origin) is where the camera is.

of interest, which is filled with green, yellow, and pink colors
in Fig. 8. In the experiment, 13 948 frames are recorded for
training. The variation of distances from the corner to the
target is illustrated as a histogram in Fig. 9. Furthermore,
a distinct test dataset was generated by having a different
individual, not present in either the training or validation
datasets, navigate the area in a zigzag pattern (the yellow curve
shown in Fig. 8).

C. Data Preparation
After applying the 2D-FFT to the beat signal data, we obtain

a series of range-angle heatmaps. These heatmaps are then
integrated with ground-truth labels to construct the training
dataset. This integration poses challenges due to two primary
issues.
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Fig. 10. Linear Interpolation: in the plot, green dots represent the
coordinates collected by the ground truth system, while red dots indicate
coordinates generated through linear interpolation. The origin corre-
sponds to the fixed camera location (exact position of the corner).

1) Temporal Mismatch: The sensor and annotation sub-
systems have different start and end recording times,
causing a misalignment in data duration.

2) Frame Discrepancy: Despite both subsystems operating
at the same frame rate, the annotation subsystem occa-
sionally misses frames, mainly when the YOLO model
fails to detect the target.

To address the first issue, we resolve this by clipping the
data to a common recording duration and discarding redundant
frames from the sensor system outside this period. With regard
to the second issue, under the assumption that velocity changes
of the target are negligible, we have implemented a solution
that involves the application of linear interpolation to the anno-
tation data. This approach is depicted in Fig. 10. Subsequently,
we align frames to ensure each heatmap correctly matches its
ground-truth label.

D. Model Tuning and Training
After processing, we obtain the training dataset consisting of

heatmaps paired with location labels and then proceed to train
the L-CNN model. The objective of training is to minimize the
difference (i.e., the loss) between the output of the network
and the provided location label. After establishing the neural
network structure (discussed in Section III-B2), the subse-
quent stage involves determining the hyperparameters. Some
important hyperparameters are listed in Table II. To avoid slow
convergence and local minima when using the small learning
rate, as well as divergence with large learning rates, a constant
learning rate is set to 2 × 10−4 after fine tuning. All the
other hyperparameters, such as number of epochs and size of
convolutional filters, are fine-tuned through exhaustive tests.
We split the dataset into a training set and a validation set in a
7:3 ratio. The stochastic gradient descent (SGD) is selected as
the optimizer. MSE is chosen as the loss function. Compared to
mean absolute error (MAE), MSE penalizes larger prediction
errors more severely.

To tune the process noise model in the Kalman filter,
we have conducted a grid search to find the optimal value

TABLE II
HYPERPARAMETERS FOR TRAINING

Fig. 11. Relationship between σ2
a and average Euclidean distance

error.

of σ 2
a . Our results have indicated that σ 2

a = 1.2 minimizes
the average Euclidean error of the filtered data. The relation-
ship between σ 2

a and the average Euclidean distance error is
illustrated in Fig. 11.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Angle and Range Estimation Result and Diffraction
Phenomenon

Using the 2D-FFT method discussed in Section III-B1,
we can obtain preliminary results for angle and range estima-
tion. These results, based on 2D-FFT, are depicted in Fig. 4.
However, it is important to note that these results should
be considered preliminary, as they only present information
regarding the angle and distance of the signal upon arrival
without considering any reflections that may occur when the
signal reflects off walls. If we extract all the peaks from the
range-angle heatmaps in the test dataset, the result can be
observed in Fig. 12.

Incorporating a ray tracing model or ray backpropagation
with this approach is not likely to yield satisfactory local-
ization accuracy, as the presence of peak points does not
consistently indicate the correct angle and distance. In particu-
lar, when the target is above 4 m, the arrival angle of the signal
remains consistently below 20◦. This indicates the diffraction
effects at that particular moment, and the bounced signal
weakened as a result of multiple bounces. The diffracted signal
is stronger than bounced signal, which leads to erroneous
predictions.

B. Results Based on Data Driven Methods
On the other hand, by using our data-driven solution, the

problems discussed above can be overcome because of its
powerful ability to handle complex data. Fig. 13 displays
the localization results obtained using mmWave radio mea-
surements and the trained L-CNN for both LoS and NLoS



38110 IEEE SENSORS JOURNAL, VOL. 24, NO. 22, 15 NOVEMBER 2024

Fig. 12. (a) is obtained by extracting peaks of 2D-FFT range-angle
heatmaps from test dataset. The peak is the strongest signal on the
range-angle map. Upon observing the figure, it becomes evident that
as the distance increases the predominant signal sources primarily fall
within the 20◦–40◦ range. It suggests there (bounded range) might be
diffraction phenomenon. Note the origin here is the radar instead of the
camera. (b) illustrates the diffraction phenomenon and where it might
happen (red area).

Fig. 13. Tracking results of (a) LoS scenario and (b) NLoS scenario
(shown in Fig. 8). Green dots refer to ground truth points from RGB-D
pixels, and red dots refer to the predicted results from the mmWave
radio data. The result of the Los scenario is better than the one of
the NLoS scenarios. It is reasonable as RF signals in LoS travel with
less interference than ones in NLoS. Note here the origin is the corner
(camera).

TABLE III
MAE OF LoS AND NLoS SCENARIOS

scenarios. Table III shows the MAE of the tests. From the
results, we can easily find that the result of the LoS scenario
is clearly superior to the NLoS scenario. Table III also shows
that the Kalman filter effectively improves the localization
accuracy in the NLoS scenario. The effect can also be observed
in Fig. 14.

In Table IV, we compare the accuracy of the our method
with related works. It is important to note that this comparison
may not be entirely fair, as the research studies used varied
error metrics and were conducted under different experimental
conditions. For better comparison, we have selectively pre-
sented only those works that utilize MAE and root mean
square error (RMSE) as their evaluation metrics. In addition,
the speed of the computation of each step is shown in
Table V, which indicates the potential for real-time operation
and embedded deployments.

Our training data have a fairly proper distribution. However,
after evaluating the accuracy of the model based on the

TABLE IV
ACCURACY COMPARISON OF RELATED WORKS

TABLE V
COMPUTATION SPEED FOR EACH STEP IN THE SYSTEM

TABLE VI
MAE FOR TEST DATA FROM DIFFERENT DISTANCES

Fig. 14. Comparison between with/without the Kalman filter. It is easy
to find that after the Kalman filter, the result is closer to the ground truth
(annotation). (a) NLoS without filters. (b) NLoS with Kalman filter.

distance from the Table VI, we notice that the prediction
performance degrades when the target is far from the sen-
sor. The reason is that the signal experiences more bounces
between the walls to reach a far target, and the pattern is
more difficult to determine. Additionally, as we mentioned
earlier, the diffraction phenomenon may also account for this.
However, the performance of the model is compromised when
the target is close to the wall on the right side. This situation
warrants a deeper investigation to uncover the underlying
reasons behind this observation.

As Doppler is an important radar output parameter besides
the angle and range, it is worth understanding the effect
of the Doppler in the localizing the NLoS target with the
mmWave radar. In this work, we also test our method by feed-
ing the L-CNN with combined range-Doppler and range-angle
maps during the training and inference. However, the track-
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ing performance using the combined input shows significant
degradation compared with the range-angle only input. The
potential reasons for the degradation are: 1) the complicated
geometry and propagation make the Doppler measurements in
this work barely represent the actual direction and velocity
of the target and 2) high-resolution Doppler measurement
relies on longer slow time processing duration. However, the
longer slow time duration introduces more ambiguity for the
time varying velocity, which is the case in our experiment.
Therefore, without proper processing, the Doppler measure-
ments in this work could only be used as an indication
of movement, rather than a complementary direction and
velocity measurement for interpretation target position. To take
advantage of Doppler to improve target tracking, a new neural
network architecture needs to be developed. In particular,
a neural network architecture that is able to represent the
sequential relation between the current and previous locations
will potentially make use of the Doppler measurement. The
design of the new neural network architecture will be within
the scope of our future work.

VI. CONCLUSION

In this article, we propose a novel system capable of
detecting and localizing targets behind corners, substantiated
by real-world experiments. Our approach employs mmWave
sensing for data capture and camera-based annotation, leading
to precise target localization. This framework demonstrates
potential for enhancing NLoS detection capabilities.

Our research represents progress toward a comprehensive
corner radar system, but reaching full-scale functionality
remains an objective for future work. At present, our system
is optimized for scenarios with a stationary radio source
and a single target. The next phase involves expanding the
capability of the system for collision prevention by accurately
detecting and tracking multiple targets simultaneously. We aim
to develop an advanced neural network that distinguishes
between different entities, integrated with a robust tracking
mechanism. Currently, this model has to be trained for every
different corner scenario, despite its lightweight training
requirements. Future enhancements will focus on generalizing
this solution to diverse environments. The ultimate goal is
to enable this system to identify targets regardless of radio
source location, radio orientation, corner geometry, and wall
composition.
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