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Abstract—We consider an uplink pilot allocation scheme for
cell-free massive multiple-input multiple output (mMIMO) net-
works based on channel charting (CC). The channel chart,
intended to act as a proxy of the user equipment (UE) physical
locations, is created in an offline phase, with prior knowledge
of the channel covariances among all access points (APs), for a
certain number of offline UEs. In an online phase, the active
UEs are placed on the chart based only on partial covariance
information, restricted to their serving AP sets. Pilot allocation is
based on the CC locations of the active UEs. For that, distance-
based clustering is considered, where each cluster exhausts all
pilots. Additionally, we consider a weighted graph coloring
(WGC) approach, where the weighted edge between two UEs
reflects the similarity of their channels. We evaluate the channel
estimation quality of the CC based framework, and compare it
to that when using the UE physical locations. The results are
contrasted with a benchmark method, considering knowledge
of the channel covariances among all APs for the active UEs.
Furthermore, we evaluate the computational complexity of the
studied approaches. Numerical results show that the CC frame-
work performs similarly to using the UE physical locations.

Index Terms—Pilot allocation, cell-free massive MIMO, chan-
nel charting, channel estimation, channel covariance, weighted
graph coloring.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (mMIMO)
is a promising technology aimed at providing uniform service
for all users [1]. These networks aim to alleviate one of
the limiting factors of cellular systems: poor performance
at the cell-edges due to strong inter-cell interference. This
is achieved by serving users from access points (APs) dis-
tributed geographically in an area, exploiting macro-diversity.
Aiming at solving scalability issues [2], user-centric cell-free
mMIMO [3] is based on defining overlapping sets of serving
APs for each user.

To reap the benefits brought forth by mMIMO, accurate
acquisition of channel state information (CSI) at the APs is
needed. This may be achieved by having UEs transmit pilot
signals during a training phase. Due to the limited duration of
the training phase, the number of orthogonal pilot sequences
is generally much lower than the number of UEs. Therefore,
channel estimation is hindered by pilot reuse. To reduce
the effects of pilot contamination, intelligent pilot allocation
frameworks are needed, with better performance than simple
random assignment.

Numerous pilot allocation schemes for cell-free mMIMO
have been considered in the literature. In [1], pilots are
assigned with a greedy algorithm that iteratively updates the
pilot assigned to the UE with lowest rate. Other algorithms
rely on UE physical locations; in [4], after clustering the UEs,
pilots are assigned based on the distance between each UE
and a cluster centroid. In [5], pilot reuse is forbidden inside a
ring around each UE. Orthogonal pilots are allocated to each
UE cluster in [6]–[8]. Graph coloring has been considered for
allocating pilots in cell-free mMIMO networks. A framework
where the graph weights are based on large-scale parameters
is considered in [9], using an algorithm based on spectral
clustering. In [10], a heuristic max-cut solution is proposed. A
greedy coloring algorithm is used in [11], with an unweighted
graph based on the intersection between UE serving AP sets.

Channel charting (CC) [12] exploits spatial information em-
bedded in slowly-varying channel characteristics to construct a
channel chart of UEs in an unsupervised manner. CC locations
may be used as proxies of the UE physical locations, since CC
aims to preserve the physical geometry of the UEs, while also
preserving their neighborhood relations.

In [13], CC is used to allocate pilots in a single-cell
mMIMO system. The approach is extended to a multi-cell
network in [14], in both cases considering full information
of CSI across all cells. In [15], we consider pilot allocation
based on CC for a multi-cell MIMO system, where a CC is
constructed from merging the individual base-station points-
of-view. A greedy coloring algorithm is considered, where the
weights are treated differently, depending on whether they are
in the same or in different cells.

In this paper we provide an uplink pilot allocation frame-
work for user-centric cell-free MIMO systems where CC
locations are used as a proxy of physical locations of UEs.
In an offline phase, a CC is constructed based on full channel
covariance information of sample UEs at multiple APs. In an
online phase, pilot allocation is performed for a population of
active users based on channel covariance information only at
the serving APs.

The remainder of this paper is organized as follows: In
Section II, the system model and channel estimation are
presented. In Section III, the CC framework is explained. In
Section IV, pilot allocation methods are discussed. Simulation
results are presented and discussed in Section V. Finally,



conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a cell-free mMIMO system, consisting of T
APs, each with an L-element uniform linear array (ULA).
There are U active UEs in the network. Each user is served
by a set of APs, following the user-centric principle [3]. The
serving set of user u is denoted as Au. To simplify, we assume
that all users are served by the same number of APs, i.e.,
|Au| = S, ∀u ∈ {1, . . . , U}. The channel between user m and
the serving set of user u is denoted as h

(Au)
m . The channel of

UE u at its serving set is denoted as hu = h
(Au)
u ∈ CLS . The

corresponding covariance matrix is

Ru = E
[
huh

H
u

]
, (1)

where the expectation is over small-scale fading.
The covariance matrix containing the covariances between

all pairs of APs is denoted, for user u, as Qu ∈ CTL×TL. The
covariance matrix of user m at the serving set of UE u is

Q(Au)
m = E

[
h(Au)
m h(Au)H

m

]
, (2)

and therefore, Ru = Q
(Au)
u .

A. Channel Estimation

During the training phase, U active UEs simultaneously
transmit their pre-assigned pilot sequences. The pilot codebook
is Φ = [ϕ1, . . . ,ϕτ ] ∈ Cτ×τ . The pilots are mutually
orthogonal, i.e., ϕH

i ϕj = τδij , where δij is the Kronecker
delta function. The received signal at the serving AP set of
user u is

YAu =

τ∑
ρ=1

Y
(ρ)
Au

+N , (3)

where N ∈ CLS×τ is receiver additive white Gaussian noise,
and Y

(ρ)
Au

is the component corresponding to pilot ρ. The
received signal corresponding to the pilot assigned to user u
is

Y
(πu)
Au

=
√
p

∑
j∈Ju

h
(Au)
j

ϕT
πu

, (4)

where p is the pilot transmit power, πu is the index of the
pilot assigned to UE u, and Ju is the set of UEs with the
same pilot as UE u.

The received pilot signal for UE u, after pilot correlation
and power normalization, is found as

yu = YAu
ϕ*

πu
= hu +

∑
j∈Ju\u

h
(Au)
j + n . (5)

Its covariance matrix is given as

Ψu =
∑
j∈Ju

Q
(Au)
j +

σ2
n

τp
I , (6)

where σ2
n is the noise power. Considering a linear minimum

mean square error (LMMSE) estimator, the channel estimate
for UE u is found as

ĥu = RuΨ
−1
u yu . (7)

The global normalized mean square error (NMSE) of the
channel estimates is then

NMSE =
1

U

U∑
u=1

∥∥∥hu − ĥu

∥∥∥2
∥hu∥2

,

=
1

U

U∑
u=1

Tr
(
Ru(I−Ψ−1

u Ru)
)

Tr (Ru)
. (8)

B. Channel Charting
CC [12] is an unsupervised learning framework aiming to

learn the low-dimensional geometry embedded in the high-
dimensional radio geometry captured in the CSI, while locally
preserving the geometry of the UE true locations. Channel
covariance matrices capture large-scale spatial geometry of
the UEs, and can therefore be used to generate the high-
dimensional feature space. Pairwise covariance matrix dis-
tances are used to construct a dissimilarity matrix among
UEs, and the CC is obtained after applying a dimensionality
reduction technique on the feature space.

To obtain a CC that retains the high-dimensional radio
geometry, suitable features need to be extracted from the
CSI. A feature dissimilarity between two UEs shall convey
information about the physical distance between them.

III. IMPUTATION FRAMEWORK

Due to the distributed nature of a cell-free mMIMO net-
work, having knowledge of UE channel covariances between
all pairs of APs might not be feasible. To that end, we consider
that, for the active UEs, the network has knowledge of the
channel covariances only at their serving APs. Having such
covariance information may be done, for instance, by having
a separate, and more limited pool of orthogonal pilots for
users joining the network. Additionally, an offline covariance
dataset is available with full covariance information, i.e., at all
APs. In this paper, full covariance indicates that the channel
covariances between all APs are known, whereas partial
covariance refers to them being available only between the
serving APs.

A. Channel Charting Imputation
The CC framework is illustrated in Fig. 1. It is divided in

two phases, namely the offline phase and the online phase.
In the offline phase, a CC is constructed from CSI features
obtained from full covariance matrices of N UEs. In the online
phase, the U active UEs are placed on the CC after applying an
OoS extension, based on covariance information at the serving
APs.

In the online phase, the active UEs are placed on the
CC, with covariance knowledge only at their serving sets of
APs. We consider the following methods for finding the CC
locations of OoS UEs:
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Fig. 1: The CC learning framework.

1) K nearest neighbors: First, the K nearest neighbors
(KNN) of each active UE are found among the offline UEs,
based on partial covariance information. Let Ku denote the
KNN set of user u, with |Ku| = K. It is found with the indices
corresponding to the K smallest values of d

(
Ru,Q

(Au)
n

)
, for

n = 1, . . . , N , where d indicates a covariance matrix distance
and N is the number of UEs on the offline dataset. The CC
locations of the online UEs are found by averaging those of
their offline KNN, as

ẑu =
1

K

∑
k∈Ku

zk . (9)

The following covariance matrix distances for finding the
KNN are considered:

• Euclidean distance:

dEuc(Ri,Rj) = ∥Ri −Rj∥F . (10)

• Log-Euclidean distance:

dLogEuc(Ri,Rj) = ∥ log(Ri)− log(Rj)∥F . (11)

• Correlation matrix distance (CMD):

dCMD(Ri,Rj) = 1− Tr (RiRj)

∥Ri∥F∥Rj∥F
. (12)

2) Neural networks: A framework consisting of several
neural networks (NNs) is constructed, with the aim of predict-
ing the CC locations of the OoS UEs, based on their partial
covariance matrices. In principle, the number of NNs is the
number of possible serving sets of APs, i.e.,

(
T
S

)
. The CC

location of online UE u is found as ẑu = f
(Au)
θ (Ru), where

f
(Au)
θ (·) is the NN function corresponding to the serving set

of user u, and parametrized by θ. The NNs are trained with
offline data, with covariance information from the point of
view of each set of serving APs. The NNs are trained to
minimize the MSE of the predicted CC locations.

B. Covariance Imputation

The full covariance matrix is estimated from the KNN based
on partial covariance, as the KNN are found with partial

covariance distances. For user u, its estimated full covariance
matrix is

Q̂u =
1

K

∑
j∈Ku

Qj . (13)

C. Weight Imputation

A similarity between two users can be predicted based on
the similarities of their respective KNN, using full information.
The weight between two online UEs i and j is predicted as

wi,j =
1

K2

∑
m∈Ki

∑
n∈Kj

wm,n . (14)

IV. PILOT ALLOCATION

We consider a centralized scheme to allocate pilots to all
active UEs.

A. Pilot Allocation Algorithms

After obtaining the CC locations of the active UEs, they can
be used as proxies of their physical locations. We consider the
following algorithms for allocating pilots:

1) Clustering: In this case, the UEs are clustered based
on their distance, forming clusters of τ users. All pilots
are randomly allocated to the UEs in each cluster. Pilot
contamination is eliminated within each cluster, but inter-
cluster pilot contamination is not controlled.

2) Weighted Graph Coloring: A weighted graph coloring
(WGC) approach is considered, where a weighted graph with
U vertices, representing the UEs, is created. The weighted
edge between two UEs represents the similarity of their
channels, i.e., the level of mutual pilot contamination if they
would be allocated the same pilot. A graph coloring algorithm,
considering a fixed number of colors, i.e., the number of pilots,
is applied.

The above mentioned algorithms are compared with a ran-
dom pilot allocation as a baseline, where each user is assigned
one pilot at random. Intelligent pilot allocation algorithms,
where pilots are allocated by taking into account certain pilot
contamination measures, shall give better channel estimation
performance than this baseline.

B. Weight Matrix

We consider a greedy algorithm to solve the graph coloring
problem associated with pilot allocation. Different ways of
finding the weights between two UEs are evaluated. The
weight matrices considered are as follows:

1) Distance based: The weights are chosen as

wi,j = exp

(
−∥ℓi − ℓj∥2

t

)
(1− δij) , (15)

where ℓ are either physical or CC locations, and t > 0 is a
normalizing factor.

2) Serving AP set covariance prediction: The weight be-
tween two UEs is related to the average of the covariance
matrix distances with respect to the serving sets of APs of



both UEs. If the two serving sets are different, the path-loss
ratio is also taken into account, as

wi,j =
1

2
(1− δij)

×

 Tr
(
RiQ̂

(Ai)
j

)
∥Ri∥F

∥∥∥Q̂(Ai)
j

∥∥∥
F

βα
ij +

Tr
(
RjQ̂

(Aj)
i

)
∥Rj∥F

∥∥∥Q̂(Aj)
i

∥∥∥
F

βα
ji

 ,

(16)

with

βmn =

{
1 Am = An

Tr(Q̂(Am)
n )

Tr(Rm) Am ̸= An

, (17)

and α > 0 being a tuning parameter.
3) Weight prediction: In this case, the weights between two

UEs are predicted based on the covariance distances of all pairs
of their corresponding KNN, as

wi,j=(1−δij)
1

2K2

×
∑

m∈Ki

∑
n∈Kj

 Tr
(
Q

(Am)
m Q

(Am)
n

)
∥∥∥Q(Am)

m

∥∥∥
F

∥∥∥Q(Am)
n

∥∥∥
F

Tr
(
Q

(Am)
n

)
Tr

(
Q

(Am)
m

)
α

+
Tr

(
Q

(An)
n Q

(An)
m

)
∥∥∥Q(An)

n

∥∥∥
F

∥∥∥Q(An)
m

∥∥∥
F

Tr
(
Q

(An)
m

)
Tr

(
Q

(An)
n

)
α

 ,

(18)
with α > 0.

4) Serving AP set intersection: The weight between two
UEs is proportional to the number of serving APs that they
share, as [11]

ϖi,j =
|Ai ∩ Aj |

S
(1− δij) , (19)

where | · | denotes set cardinality.
5) Scaling by serving AP intersection: This weights found

by any other method are scaled by the serving AP set inter-
section size, as

gi,j = ϖi,jwi,j . (20)

6) Path-loss ratio: We compare the above approaches with
this benchmark, where the weight between a pair of UEs
depends on the path-loss ratios at their respective AP serving
sets. This requires full information of the path-losses at all
APs for all UEs. Concretely, the weights are found as [9]

wi,j =
1

2
(1−δij)

Tr
(
Q

(Ai)
j

)
Tr

(
Q

(Ai)
i

)
α

+

Tr
(
Q

(Aj)
i

)
Tr

(
Q

(Aj)
j

)
α ,

(21)
with α > 0.

V. SIMULATION RESULTS

We evaluate the pilot allocation performance in an NLoS
environment, specifically an Indoor Factory Sparse Low (InF-
SL) scenario of [16]. The simulation parameters are summa-

TABLE I: Simulation Parameters

Parameter Value Parameter Value

Center Freq. 3.5 GHz Num. of sub. 512

Scenario InF-SL Bandwidth 50 MHz

AP Height 1.5 m UE Height 1 m

AP Array 4 ULA UE Array 1

Num. of APs 24
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Fig. 2: (a) Physical locations of the offline UEs, and (b) their
CC locations.

rized in Table I. The environment layout consists of 24 APs
located on a 6× 4 grid with 20 m spacing, where 2000 UEs
are uniformly distributed in an area of 100 m × 60 m. The
basis of evaluation is synthetic channel data generated with the
QuaDRiGa simulator, considering large-scale and small-scale
effects including multi-path fading [17]. We adopt the val-
ues for delay spread, angle-of-arrival and angle-of-departure
distributions for the InF-SL scenario discussed in [16]. The
covariance matrices are computed with 25 time samples.

We consider N =1500 UEs for the offline phase and U =
200 UEs for the online phase. The results are averaged through
20 realizations; in the online phase 200 UEs, chosen randomly,
become active, from a larger set of 500 UEs.

For finding the KNN, the best distance, of the three consid-
ered, proved to be Log-Euclidean, ultimately yielding better
channel estimation quality. For conciseness, the presented
results, regarding the KNN cases, only consider Log-Euclidean
distance. For the NN case, the number of NNs to be trained
equals the number of possible serving AP sets. In this scenario,
with T = 24 and S = 4, this number is

(
24
4

)
= 10 626. Given

the impracticality and computational expense of training this
many NNs, a simplification has been considered. Concretely,
taking into account the fact that S = 4, a NN is constructed
for each 2×2 AP set in the network, only taking into account
adjacent APs. Thus, the number of NNs in the 6×4 network
is 5×3 = 15. If a UE is not served by any of the serving
sets considered, its CC location is predicted with the NN that
shares the most APs with the UE’s own serving set.

A. Channel Charting

The physical and CC locations of the offline UEs are
shown in Fig. 1. UEs are represented with the same color in



TABLE II: CC quality indicators of the offline UEs. TW and
CT are computed with a neighborhood of J = 20 points.

Measure TW CT KS
Value 0.999 0.999 0.043

both graphs. It is observed that the CC preserves the general
structure of the physical locations.

Trustworthiness (TW) and continuity (CT) are used to assess
the neighborhood preservation quality of the CC, ranging
from 0 to 1, where 1 indicates perfect perfect neighborhood
preservation. They are computed for a neighborhood of J
points. Kruskal’s stress (KS) determines the distance distortion
of the CC, with respect to the true physical locations. It
also ranges from 0 to 1, where 0 indicates no distance
distortion. Results in Table II show that the learned chart
keeps most of the neighborhood relations without introducing
false neighbors, and also keeps the distances without major
distortions. Therefore, the CC locations of the offline UEs are
good representations of their respective physical locations.

B. Channel Estimation

The channel estimation performance of the different pilot
allocation schemes is assessed from the estimation NMSE.
Fig. 3 depicts the NMSE with respect to the number of pilots,
for the previously described methods, except for the CC based
approaches. Predicting the weights directly or the covariance at
the serving sets of each pair of UEs has the same performance
as using the path-loss ratios, which requires full information.
WGC based on physical distance shows better performance
than clustering since, in the latter case, pilot contamination is
not mitigated between clusters. Using the fraction of common
serving APs as weight has relatively good performance for a
low number of pilots, but gives worse results than the rest
of the methods as the number of pilots increases. With a
relative large number of pilots, having information about the
similarities between users with distinct channels is important.
When setting the serving AP set intersection as weight, the
similarity for those users that do not share any AP is 0,
whereas in the other methods, it is set to a value that conveys
useful information for reducing pilot contamination.

Fig. 4 shows the channel estimation NMSE for the CC
based pilot allocation schemes. Additionally, the random pilot
allocation and the one based on path-loss ratios are shown. The
results are shown for both CC imputation approaches, namely
KNN and NN. Clustering methods are the ones showing the
worst performance in general. This is due to the fact that no
pilot contamination mitigation among clusters is considered.
Better channel estimation is achieved with the KNN approach
than with the NN approach. Training the NNs requires large
amounts of data samples. There is the possibility that the
amount of data used is not sufficient to learn accurate functions
that generalize well. Additionally, after the reduction of the
number of NNs considered, an important number of UEs
do not have a NN that considers their serving AP sets to
predict their CC locations. The approximation taken leads
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Fig. 3: Channel estimation NMSE for the pilot allocation
techniques described, excluding CC, as a function of the
number of pilots.
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Fig. 4: Channel estimation NMSE for the CC based pilot
allocation techniques, as a function of the number of pilots.

to a situation where the imputation of CC locations shows
better results when found with the KNN method, compared
to the NN. Scaling the graph weights between each pair
of UEs with their number of common serving APs gives
relatively good performance if few pilots are available. Once
the number of pilots grows, the channel estimation quality
does not see significant improvement. The approach based on
WGC based on KNN CC distances has very similar results
as the one considering physical distances, in Fig 3. This is a
consequence of the high quality of the CC, as described in the
previous section. Furthermore, the KNN based CC imputation
for OoS UEs is able to deliver CC locations conveying accurate
information about the UEs channels. Additionally, the distance
used for finding the KNN among the offline UEs is accurate
in providing the KNN sets that ultimately yield an NMSE
performance comparable to using the physical locations.

C. Computational Complexity

The computational complexity of the following methods is
evaluated and presented in Table III, for both KNN and NN
based schemes:

• OoS CC.
• Full covariance prediction.



TABLE III: Computational complexity analysis.

Method
KNN NN

Find distance Similarity matrix Input size Output size No. of networks

OoS CC (1 UE) N(SL)2 2 (SL)2 2
(
T
S

)
Full cov. pred. (1 UE) N(SL)2 3(TL)2 (SL)2 (TL)2

(
T
S

)
Weight pred. (2 UEs) 2N(SL)2 0 2(SL)2 1

(
T
S

)2
• Weight prediction.

For KNN, first the distance between each active UE and all
the offline UEs must be computed. The complexity of this
computation depends on the size of the offline dataset N and
the size of the covariance matrices. Once the KNN are found,
the feature is calculated by averaging the features of the KNN.
From that, a weighted graph is computed. In the case of OoS
CC and covariance prediction, the distances to N offline users
need to be computed. In the case of weight prediction, for each
weight the KNN of the two UEs involved is needed.

After the KNN are found from the previously calculated dis-
tances, and the corresponding averages have been computed,
the graph weights need to be computed. In the case of OoS
CC, for each pair of users the similarity is based on the 2-D CC
distances. In the case of covariance prediction, the similarity is
found from a covariance matrix distance, making it dependent
on the size of the matrices. Finally, for weight prediction, the
similarity is found after averaging, so there is no additional
step in the online phase to find the graph weights.

For the NN based approach, the inputs are covariance
matrices, and the outputs are either 2-D CC locations, full
covariance matrices, or scalar weights. In the case of OoS CC
and full covariance prediction, the number of NNs needed is
the number of possible AP sets. For weight prediction, each
pairwise similarity needs the covariance matrices of two UEs,
and the corresponding output is the similarity directly. Thus,
the number of NNs is the combination of all pairs of AP sets.

VI. CONCLUSIONS

In this paper, we have considered a pilot allocation scheme
for a user-centric cell-free massive MIMO network using
machine learning methods, based on greedy weighted graph
coloring, when covariance information is only available with
respect to a serving set of APs. This is accomplished using
KNN as well as NN imputation methods on an OoS dataset,
predicting either channel charting distance, covariance ma-
trix distance or direct similarity weight. This was achieved
successfully when a dataset with complete information was
already available. Simulation results have shown that chan-
nel charting based pilot allocation performs closely to pilot
allocation based on physical distance. In future work, the
NN performance may be improved by considering a larger
dataset. Additionally, the application of NN may be extended
to covariance and weight imputation.
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