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Abstract

Monte-Carlo Tree Search (MCTS) is a class of methods for solving complex decision-
making problems through the synergy of Monte-Carlo planning and Reinforcement Learn-
ing (RL). The highly combinatorial nature of the problems commonly addressed by MCTS
requires the use of efficient exploration strategies for navigating the planning tree and
quickly convergent value backup methods. These crucial problems are particularly evident
in recent advances that combine MCTS with deep neural networks for function approx-
imation. In this work, we propose two methods for improving the convergence rate and
exploration based on a newly introduced backup operator and entropy regularization. We
provide strong theoretical guarantees to bound convergence rate, approximation error, and
regret of our methods. Moreover, we introduce a mathematical framework based on the
use of the α-divergence for backup and exploration in MCTS. We show that this theoretical
formulation unifies different approaches, including our newly introduced ones, under the
same mathematical framework, allowing to obtain different methods by simply changing
the value of α. In practice, our unified perspective offers a flexible way to balance between
exploration and exploitation by tuning the single α parameter according to the problem at
hand. We validate our methods through a rigorous empirical study from basic toy problems
to the complex Atari games, and including both MDP and POMDP problems.

———————
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1. Introduction

Monte-Carlo Tree Search (MCTS) is an effective method that combines a random sampling
strategy with tree search to determine the optimal decision for on-the-fly planning tasks.
MCTS has yielded impressive results in Go (Silver et al., 2016) (AlphaGo), Chess (Silver
et al., 2017a) (AlphaZero), or video games (Osband et al., 2016), and it has been fur-
ther exploited successfully in motion planning (Nguyen et al., 2017; Sukkar et al., 2019),
autonomous car driving (Volpi et al., 2017; Chen et al., 2020), and autonomous robotic
assembly tasks (Funk et al., 2021). Many of the MCTS successes (Silver et al., 2016,
2017a,b) rely on coupling MCTS with neural networks trained using Reinforcement Learn-
ing (RL) (Sutton and Barto, 1998) methods such as Deep Q-Learning (Mnih et al., 2015), to
speed up learning of large scale problems. Despite AlphaGo and AlphaZero achieving state-
of-the-art performance in games with high branching factor-like Go (Silver et al., 2016) and
Chess (Silver et al., 2017a), both methods suffer from poor sample efficiency, mostly due to
the inefficiency of the average reward backup operator (Coulom, 2006), which is well-known
for the issue of underestimating the optimum, and due to the polynomial convergence rate
of UCT (Kocsis et al., 2006) or PUCT (Xiao et al., 2019). These issues pose the open
research problem of finding effective backup operators and efficient exploration strategies
in the tree search.

In this paper, we answer this open research problem by proposing two principal ap-
proaches. First, we introduce a novel backup operator based on a power mean (Bullen,
2013) that, through the tuning of a single coefficient, computes a value between the average
reward and the maximum one. This allows for balancing between the negatively biased es-
timate of the average reward, and the positively biased estimate of the maximum reward; in
practice, this translates to balancing between a safe but slow update, and a greedy but mis-
leading one. We propose a variant of UCT based on the power mean operator, which we call
Power-UCT. We theoretically prove the convergence of Power-UCT, based on the consider-
ation that the algorithm converges for all values between the range computed by the power
mean. We empirically evaluate Power-UCT w.r.t. UCT, POMCP Silver and Veness (2010)
which is a well known POMDP variant of UCT, and the MENTS algorithm (Xiao et al.,
2019) in classic MDP and POMDP benchmarks. Remarkably, we show how Power-UCT
outperforms the baselines in terms of quality and speed of learning.

Second, we provide a theory of the use of convex regularization in MCTS, which has
proven to be an efficient solution for driving exploration and stabilizing learning in RL (Schul-
man et al., 2015, 2017a; Haarnoja et al., 2018; Buesing et al., 2020). In particular, we show
how a regularized objective function in MCTS can be seen as an instance of the Legendre-
Fenchel transform, similar to previous findings on the use of duality in RL (Mensch and
Blondel, 2018; Geist et al., 2019; Nachum and Dai, 2020a) and game theory (Shalev-Shwartz
and Singer, 2006; Pavel, 2007). Establishing our theoretical framework, we derive the first
regret analysis of regularized MCTS, and prove that a generic convex regularizer guarantees
an exponential convergence rate to the solution of the regularized objective function, which
improves on the polynomial rate of PUCT. These results provide a theoretical ground for
the use of arbitrary entropy-based regularizers in MCTS until now limited to maximum
entropy (Xiao et al., 2019), among which we specifically study the relative entropy of policy
updates, drawing on similarities with trust-region and proximal methods in RL (Schul-
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man et al., 2015, 2017b), and the Tsallis entropy, used for enforcing the learning of sparse
policies (Lee et al., 2018). Moreover, we provide an empirical analysis of a toy problem in-
troduced in Xiao et al. (2019) to evince the practical consequences of our theoretical results
for each regularizer. We empirically evaluate the proposed operators in AlphaGo on several
Atari games, confirming the benefit of convex regularization in MCTS, and in particular,
the superiority of Tsallis entropy w.r.t. other regularizers.

Finally, we provide a theory of the use of α-divergence in MCTS for backup and ex-
ploration. Remarkably, we show that our theoretical framework unifies our two proposed
methods Power-UCT (Dam et al., 2019) and entropy regularization (Dam et al., 2021),
that can be obtained for particular choices of the value of α. In the general case where α
is considered a real number greater than 0, we show that tuning α directly influences the
navigation and backup phases of the tree search, providing a unique powerful mathematical
formulation to effectively balance between exploration and exploitation in MCTS.

2. Related Work

We want to improve the efficiency and performance of MCTS by addressing the two crucial
problems of value backup and exploration. Our contribution follows on from a plethora of
previous works that we briefly summarize in the following.

Backup operators. To improve upon the UCT algorithm in MCTS, Khandelwal et al.
(2016) formalize and analyze different on-policy and off-policy complex backup approaches
for MCTS planning based on techniques in the RL literature. Khandelwal et al. (2016)
propose four complex backup strategies: MCTS(λ), MaxMCTS(λ), MCTSγ , MaxMCTSγ ,
and report that MaxMCTS(λ) and MaxMCTSγ perform better than UCT for certain pa-
rameter setups. Vodopivec et al. (2017) propose an approach called SARSA-UCT, which
performs the dynamic programming backups using SARSA (Rummery, 1995). Both Khan-
delwal et al. (2016) and Vodopivec et al. (2017) directly borrow value backup ideas from
RL in order to estimate the value at each tree node. However, they do not provide any
proof of convergence. The recently introduced MENTS algorithm (Xiao et al., 2019), uses
softmax backup operator at each node in combination with an entropy-based exploration
policy, and shows a better convergence rate w.r.t. UCT.

Exploration. Entropy regularization is a common tool for controlling exploration in
RL and has led to several successful methods (Schulman et al., 2015; Haarnoja et al., 2018;
Schulman et al., 2017a; Mnih et al., 2016). Typically specific forms of entropy are utilized
such as maximum entropy (Haarnoja et al., 2018) or relative entropy (Schulman et al.,
2015). This approach is an instance of the more generic duality framework, commonly
used in convex optimization theory. Duality has been extensively studied in game the-
ory (Shalev-Shwartz and Singer, 2006; Pavel, 2007) and more recently in RL, for instance
considering mirror descent optimization (Montgomery and Levine, 2016; Mei et al., 2019),
drawing the connection between MCTS and regularized policy optimization (Grill et al.,
2020), or formalizing the RL objective via Legendre-Rockafellar duality (Nachum and Dai,
2020a). Recently (Geist et al., 2019) introduced regularized Markov Decision Processes,
formalizing the RL objective with a generalized form of convex regularization, based on the
Legendre-Fenchel transform. Several works focus on modifying classical MCTS to improve
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exploration. For instance, Tesauro et al. (2012) propose a Bayesian version of UCT to
improve estimation of node values and uncertainties given limited experience.

α-divergence. The use of α-divergence in RL has been widely explored, particularly
by Belousov and Peters (2019), who proposed using it to measure the divergence in pol-
icy search. Their work generalizes relative entropy policy search to constrain policy up-
dates. Belousov and Peters (2019) studied a particular class of f -divergence, known as
α-divergence, which resulted in compatible policy update and value function improvement
in actor-critic methods. Another study by Lee et al. (2019) analyzed α-divergence as a
generalized Tsallis Entropy regularizer in MDP. By scaling the α parameter as an entropic
index, Lee et al. (2019) controlled the generalized Tsallis Entropy regularizer and derived
Shannon-Gibbs entropy and Tsallis Entropy as special cases.

3. Preliminaries

3.1 Markov Decision Process

In the context of Reinforcement Learning (RL), an agent’s goal is to determine how to
interact with the environment modeled as a Markov Decision Process (MDP), which is a
well-known mathematical framework for sequential decision-making. Our focus is on an
infinite-horizon discount MDP that can be represented as a 5-tuple M = ⟨S,A,R,P, γ⟩,
where S is the state space, A is the finite discrete action space with |A| representing the
number of actions, R : S × A × S → R is the reward function, P : S × A → S is the
probability distribution over the next state s′ given the current state s and action a, and
γ ∈ [0, 1) is the discount factor. A policy π ∈ Π : S → A is a probability distribution over
possible actions a given the current state s.

A policy π induces a Q value function: Qπ(s, a) ≜ E
[∑∞

k=0 γ
kri+k+1|si = s, ai = a, π

]
,

where ri+1 is the reward obtained after the i-th transition, respectively defining the value
function under the policy π as V π(s) ≜ maxa∈AQπ(s, a).

The Bellman operator under the policy π is defined as

TπQ(s, a) ≜
∑
s′

P(s′|s, a)

[
R(s, a, s′) + γ

∑
a′

π(a′|s′)Q(s′, a′)

]
, (1)

The goal is to find the optimal policy that satisfies the optimal Bellman equation (Bellman,
1954)

Q∗(s, a) ≜
∑
s′

P(s′|s, a)
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
, (2)

which is the fixed point of the optimal Bellman operator

T ∗Q(s, a) ≜
∑
s′

P(s′|s, a)
[
R(s, a, s′) + γmax

a′
Q(s′, a′)

]
. (3)

The optimal value function is defined V ∗(s) ≜ maxa∈AQ∗(s, a).
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3.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a tree search method for MDPs that combines Monte-
Carlo sampling, tree search, and multi-armed bandits to make optimal decisions efficiently.
The MCTS tree is composed of nodes and edges that represent visited states and actions
taken in each state, respectively. As shown in Figure 1, the algorithm consists of four main
steps:

1. Selection: where a tree-policy is used to traverse the tree from the root node to a
leaf node.

2. Expansion: where the new node is added to the tree according to the tree policy;

3. Simulation: where a Monte-Carlo rollout or a neural network is used to estimate the
value of the new node.

4. Backup: where the collected reward is used to update the action-values along the
path from the leaf node to the root node.

Selection Expansion Simulation Backup

V node Q node

Figure 1: Four basic steps of MCTS

Pseudocode of a general MCTS approach is shown in Algorithm 1. The tree-policy used
to select the action to execute in each node needs to balance the use of already known good
actions, and the visitation of unknown states.

3.3 Upper Confidence bound for Trees

In this section, we present the MCTS algorithm UCT (Upper Confidence bounds for
Trees) Kocsis et al. (2006), an extension of the well-known UCB1 Auer et al. (2002) multi-
armed bandit algorithm. UCB1 chooses the arm (action a) using

a = argmax
i∈{1...K}

Xi,Ti(n−1) + C

√
log n

Ti(n− 1)
. (4)

where Ti(n) =
∑n

t=1 1{t = i} is the number of times arm i is played up to time n. Xi,Ti(n−1)

denotes the average reward of arm i up to time n−1 and C =
√
2 is an exploration constant.

515



Dam, D’Eramo, Peters & Pajarinen

Algorithm 1: Pseudocode of General MCTS.

s, s′: states
a: action
r: reward
P(·|s, a): transition function
R(s, a, s′): reward function

R = Rollout(s, depth)
Use a random policy/behavior policy to collect
accumulated rewards from environment.

a = SelectAction(s)
return action selection from tree policy.

Expand(s)
Expand the tree by adding a new node at
state s.

Backup(s, r)
Update the collected reward along the
visited path

R= Simulation(s, depth)
return Rollout(s, depth)

a = Search(s)
s0 = s
depth = 0
while Time remaining do

a = SelectAction(s) // Selection
s′ = P(·|s, a)
r = R(s, a, s′)
Expand(s’) //Expansion
Simulation (s′, depth) //Simulation
s = s′

Backup(s, r) // Backpropagation
depth = depth+ 1

return the best action at state s0

MainLoop
a = Search(s)

In UCT, each node is a separate bandit, where the arms correspond to the actions, and
the payoff is the reward of the episodes starting from them. In the backup phase, value is
backed up recursively from the leaf node to the root as

Xn =

K∑
i=1

(Ti(n)

n

)
Xi,Ti(n). (5)

Pseudocode of UCT is shown in Algorithm 2. Kocsis et al. (2006) proved that UCT con-
verges in the limit to the optimal policy.

3.4 α-divergence

The f -divergence(Csiszár, 1964) generalizes the definition of the distance between two prob-
abilistic distributions P and Q on a finite set A as

Df (P∥Q) =
∑
a∈A

Q(a)f

(
P (a)

Q(a)

)
, (6)

where f is a convex function on (0,∞) such as f(1) = 0. For example, the KL-divergence
corresponds to fKL = x log x − (x − 1). The α−divergence is a subclass of f -divergence
generated by α−function with α ∈ R. α−function is defined as

fα(x) =
(xα − 1)− α(x− 1)

α(α− 1)
. (7)

The α−divergence between two probabilistic distributions P and Q on a finite set A is
defined as

Dα (P∥Q) =
∑
a∈A

Q(a)fα

(
P (a)

Q(a)

)
, (8)
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Algorithm 2: Pseudocode of UCT.

s, s′: states
a: action
N(s): number of simulations of V Node of state
s

n(s, a): number of simulations of Q Node of
state s and action a

Ss,a: is the set of next states after taking action
a from state s

r
(i)
s,a: the i-th instantaneous reward collected
after executing action a in state s

V (s): Value of V Node at state s. Default is 0
Q(s, a): Value of Q Node at state s, action a.
Default is 0
P(·|s, a): transition function
R(s, a, s′): reward function
γ: discount factor
ϵ > 0:

R = Rollout(s, depth)
if γdepth < ϵ then

return 0
a ∼ πRollout(.)
s′ ∼ P(·|s, a)
r ∼ R(s, a, s′)
return r + γRollout (s′, depth+ 1)

a = SelectAction(s)

return argmax
a

Q(s, a) + C
√

logN(s)
n(s,a)

a = Search(s)
while Time remaining do

SimulateV (s, 0)

return SelectAction(s)

SimulateV(s, depth)
a =SelectAction (s)
SimulateQ (s, a,depth)
N(s)← N(s) + 1

V (s)←
∑
a

n(s,a)
N(s) Q(s, a)

SimulateQ(s, a, depth)
s′ ∼ P(·|s, a)
r ∼ R(s, a, s′)
if Node s′ not expanded then

Rollout(s′,depth)
else

SimulateV (s′,depth + 1)

n(s, a)← n(s, a) + 1

Q(s, a)←
∑n(s,a)

i=1 r(i)s,a+γ
∑

s′∈Ss,a
N(s′)V (s′)

n(s,a)

MainLoop
a = Search(s)

where
∑

a∈AQ(a) =
∑

a∈A P (a) = 1.
Furthermore, given the α−function, we can derive the generalization of Tsallis entropy of
a policy π as

Hα(s) =
1

α(1− α)

(
1−

∑
a∈A

π(s, a)α
)

(9)

In addition, we have

lim
α→1

Hα(s) = −
∑
a∈A

π(s, a) log π(s, a) (10)

H2(s) =
1

2

(
1−

∑
a∈A

π(s, a)2
)
, (11)

respectively, the Shannon entropy (10) and the Tsallis entropy (11) functions.

4. Generalized Mean Estimation

In this section, we present a novel approach to estimating the expected value of a bandit
arm in MCTS using the power mean (Mitrinovic and Vasic, 1970). The power mean is a
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function for aggregating sets of numbers, which includes the Pythagorean means (arithmetic,
geometric, and harmonic means) as special cases. For a sequence of positive numbers
X = (X1, ..., Xn) and positive weights w = (w1, ..., wn), the power mean with exponent p
(where p is an extended real number) is defined as

M[p]n(X,w) =

(∑n
i=1wiX

p
i∑n

i=1wi

) 1
p

. (12)

When p = 1, it becomes the weighted arithmetic mean. In the limit as p approaches 0, it
becomes the geometric mean, and when p = −1, it becomes the harmonic mean (Mitrinovic
and Vasic, 1970). We will use the power mean to estimate the expected value of bandit
arms in our proposed approach for MCTS.

Furthermore, we get (Mitrinovic and Vasic, 1970)

M[−∞]
n (X,w) = lim

p→−∞
M[p]

n (X,w) = Min(X1, ..., Xn), (13)

M[+∞]
n (X,w) = lim

p→+∞
M[p]

n (X,w) = Max(X1, ..., Xn), (14)

The weighted arithmetic mean lies between Min(X1, ..., Xn) and Max(X1, ..., Xn). More-

over, the following lemma shows that M
[p]
n (X,w) is an increasing function.

Lemma 1. M
[p]
n (X,w) is an increasing function meaning that

M[1]
n (X,w) ≤ M[q]

n (X,w) ≤ M[p]
n (X,w),∀p ≥ q ≥ 1 (15)

Proof. For the proof, see Mitrinovic and Vasic (1970).

The following lemma shows that Power Mean can be upper bound by Average Mean
plus with a constant.

Lemma 2. Let 0 < l ≤ Xi ≤ U,C = U
l ,∀i ∈ (1, ..., n) and p > q. We define:

Q(X,w, p, q) =
M

[p]
n (X,w)

M
[q]
n (X,w)

(16)

D(X,w, p, q) = M[p]
n (X,w)−M[q]

n (X,w). (17)

Then we have:

Q(X,w, p, q) ≤ Lp,qD(X,w, p, q) ≤ Hp,q

Lp,q =

(
q(Cp − Cq)

(p− q)(Cq − 1)

) 1
p

(
p(Cq − Cp)

(q − p)(Cp − 1)

)− 1
q

Hp,q = (θUp + (1− θ)lp)
1
p − (θU q + (1− θ)lq)1/q,

where θ is defined in the following way. Let

h(x) = x
1
p − (ax+ b)1/q
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where:

a =
U q − lq

Up − lp
; b =

Uplq − U qlp

Up − lp
(18)

x
′
= argmax{h(x), x ∈ (lp, Up)} (19)

then:

θ =
x′ − lp

Up − lp
.

Proof. Refer to Mitrinovic and Vasic (1970).

From power mean, we derive power mean backup operator and propose our novel
method, Power-UCT

4.1 Power Mean Backup

It has been studied that when performing backups with the average mean backup operator,
the resulting value estimate of the node typically underestimates the actual value, while
using the maximum backup operator leads to overestimation (Coulom, 2006). Typically,
the average backup operator is used in situations where the number of simulations is low
to provide a conservative update of the nodes due to the lack of samples, whereas the
maximum operator is favored when the number of simulations is high. We propose a new
backup operator for UCT based on the power mean, as shown in Equation 12, to address
this issue:

Xn(p) =

(
K∑
i=1

(
Ti(n)

n

)
X

p
i,Ti(n)

) 1
p

. (20)

We aim to bridge the gap between the average and maximum estimators by proposing
a novel approach called Power-UCT which offers the advantages of both. In the following,
we provide a more detailed description of our approach.

4.2 Power-UCT

MCTS has two types of nodes, V-nodes for state-values and Q-nodes for state-action values.
When an action is taken from the V-node of the current state, it leads to the corresponding
Q-node, which then leads to the V-node of the reached state. Our proposed backup operator
in UCT, called Power-UCT, does not require major changes to the algorithm. In Power-
UCT, the expansion of nodes and rollouts are done in the same way as UCT, and the
only difference is the method of computing the backup of returns from Q-nodes to V-nodes.
Unlike UCT, which computes the average of returns, Power-UCT uses a power mean of them.
Note that our algorithm can be applied to several bandit-based enhancements of UCT, but
for simplicity, we focus only on UCT. The backup value for each state s corresponds to its
V-node is

V (s)←

(∑
a

n(s, a)

N(s)
Q(s, a)p

) 1
p

(21)

519



Dam, D’Eramo, Peters & Pajarinen

SimulateV (s, depth)
a =SelectAction (s)
SimulateQ (s, a,depth)
N(s)← N(s) + 1

V (s)←
∑
a

n(s,a)
N(s) Q(s, a)

SimulateV (s, depth)
a =SelectAction (s)
SimulateQ (s, a,depth)
N(s)← N(s) + 1

V (s)←
(∑

a

n(s,a)
N(s) Q(s, a)p

)1/p
Figure 2: Comparing UCT (left) and Power-UCT (right) in the SimulateV procedure. The

only distinction is in the V value function backup; the two methods are identical
in other procedures.

where N(s) is the number of visits to state s, n(s, a) is the number of visits of action a in
state s. On the other hand, the backup value of Q nodes is

Q(s, a)←
(
∑n(s,a)

i=1 r
(i)
s,a) + γ

∑
s′∈Ss,a

N(s′)V (s′)

n(s, a)
(22)

where γ is the discount factor, Ss,a is the set of next states after taking action a from state

s, and r
(i)
s,a is the i-th instantaneous reward collected after executing action a in state s.

Power-UCT and UCT follow the same steps, differing only in the V value backup. Power-
UCT employs a power mean backup operator, while UCT uses an average mean backup
operator. See Fig. 2 for details.

4.3 Theoretical Analysis

This section presents how Power-UCT can adapt to all UCT Kocsis et al. (2006) theorems
using a generalized mean as the backup operator. The main contribution of this work is
Theorem 6 and Theorem 7, which prove the convergence of the failure probability and derive
the bias of power mean estimated payoff. To prove them, we first introduce Theorem 1,
which establishes the concentration of power mean with respect to i.i.d random variables
X. Then, Theorem upper bounds the expected number of times a suboptimal arm is
played, while Theorem 3 bounds the expected error of power mean estimation. Furthermore,
Theorem 4 provides a lower bound on the number of times any arm is played, and Theorem 5
demonstrates the concentration of power mean backup around its mean value at each node
in the tree.

Theorem 1. If X1, X2, ..., Xn are independent with Pr(0 ≤ Xi ≤ 1) = 1 then for any ϵ > 0,
p ≥ 1,∃Cp > 0 that

Pr

(∣∣∣∣∣
(∑n

i=1X
p
i

n

) 1
p

− E

[(∑n
i=1X

p
i

n

) 1
p

]∣∣∣∣∣ > ϵ

)
≤ 2 exp

(
−Cpnϵ

2
)

The derivation of Theorem 1 involves the estimation of the variance of the power mean
operator and the application of Chernoff’s inequality. It is worth noting that this result
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can be viewed as an extension of the well-known Hoeffding inequality to the power mean.
Considering a sequence of i.i.d. random variables Xit as the payoff received at any internal
leaf node of the tree, we assume the existence of the expected payoff and let µin = E[Xin].
Additionally, we assume that the power mean reward varies over time and only converges
in the limit. This assumption implies that

µi = lim
n→∞

µin.

Let δin = µi − µin which also means that

lim
n→∞

δin = 0.

From now on, let ∗ be the upper index for all quantities related to the optimal arm. By
assumption, the rewards lie between 0 and 1.

Xn(p) =
(∑K

i=1

(
Ti(n)
n

)
X

p
i,Ti(n)

)1/p
is defined as the power mean value backup at the

root node. Here Ti(n) is the number of visitations of the arm i, Xi,Ti(n) is the average

rewards collected at arm i, Xi,n(p) is the estimated power mean backup of all the collected
rewards at arm i at the time step n. We make an assumption regarding the concentration
of the power mean backup operator.

Assumption 1. Fix 1 ≤ i ≤ K. Let {Fit}t be a filtration such that{Xit}t is {Fit}-adapted
and Xi,t is conditionally independent of Fi,t+1, Fi,t+2, ... given Fi,t−1. Then 0 ≤ Xit ≤ 1
and the limit of µin = E[Xin(p)] exists, Further, we assume that there exists a constant
C > 0 and an integer Nc such that for n > Nc, for any δ > 0, △n(δ) = C

√
n log(1/δ), the

following bounds hold

Pr(Xin(p) ≥ E[Xin(p)] +△n(δ)/n) ≤ δ, (23)

Pr(Xin(p) ≤ E[Xin(p)]−△n(δ)/n) ≤ δ. (24)

Under Assumption 1, a suitable choice for the bias sequence ct,s is given by

ct,s = 2C

√
log t

s
. (25)

where C is an exploration constant.
Next, we derive Theorems 2, 3, and 4 following the derivations in Kocsis et al. (2006).
First, from Assumption 1, we derive an upper bound on the error for the expected number
of times suboptimal arms are played.

Theorem 2. Consider UCB1 (using power mean estimator) applied to a non-stationary
problem where the pay-off sequence satisfies Assumption 1 and where the bias sequence, ct,s
defined in (25). Fix ϵ ≥ 0. Let Tk(n) denote the number of plays of arm k. Then if k is the
index of a suboptimal arm then Each sub-optimal arm k is played in expectation at most

E[Tk(n)] ≤
16C2 lnn

(1− ϵ)2△2
k

+A(ϵ) +Nc +
π2

3
+ 1. (26)

521



Dam, D’Eramo, Peters & Pajarinen

Next, we derive our version of Theorem 3 in Kocsis et al. (2006), which computes the upper
bound of the difference between the value backup of an arm with µ∗ up to time n.

Theorem 3. Under the assumptions of Theorem 2,

∣∣E[Xn(p)
]
− µ∗∣∣ ≤ |δ∗n|+O

(
K(C2 log n+N0)

n

) 1
p

.

A lower bound for the times choosing any arm follows

Theorem 4. (Lower Bound) Under the assumptions of Theorem 2, there exists some
positive constant ρ such that for all arms k and n, Tk(n) ≥ ⌈ρ log(n)⌉.

For deriving the concentration of estimated payoff around its mean, we modify Lemma 14
in Kocsis et al. (2006) for power mean: in the proof, we first replace the partial sums term
with a partial mean term and modify the following equations accordingly. The partial mean
term can then be easily replaced by a partial power mean term and we get

Theorem 5. Fix an arbitrary δ ≤ 0 and fix p ≥ 1, let △n = (94)
p−1(9

√
1
Cp

n log(2/δ)). Let

n0 be such that

√
n0 ≤ O(K(C2 log n0 +N0(1/2))). (27)

Then for any n ≥ n0, under the assumptions of Theorem 2, the following bounds hold true

Pr(Xn(p) ≥ E[Xn(p)] + (△n/n)
1
p ) ≤ δ (28)

Pr(Xn(p) ≤ E[Xn(p)]− (△n/n)
1
p ) ≤ δ (29)

Using The Hoeffding-Azuma inequality for Stopped Martingales Inequality (Lemma 10 in
Kocsis et al. (2006)), under Assumption 1 and the result from Theorem 4 we get

Theorem 6. (Convergence of Failure Probability) Under the assumptions of Theorem
2, it holds that

lim
t→∞

Pr(It ̸= i∗) = 0. (30)

And finally, the following is our main result showing the expected payoff of our Power-UCT.

Theorem 7. Consider algorithm Power-UCT running on a game tree of depth D, branching
factor K with stochastic payoff at the leaves. Assume that the payoffs lie in the interval [0,1].

Then the bias of the estimated expected payoff, Xn, is O(KD(log(n)/n)
1
p + KD(1/n)

1
p ).

Further, the failure probability at the root convergences to zero as the number of samples
grows to infinity.

Proof. (Sketch) As for UCT Kocsis et al. (2006), the proof is done by induction on D. When
D = 1, Power-UCT corresponds to UCB1 with average mean backup at the leaf node, and
the proof of convergence follows as the result of Hoeffding’s inequality, the expected payoff
is guaranteed directly from Theorem 1, Theorem 3 and Theorem 6. Now we assume that the
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result holds up to depth D − 1 and consider the tree of depth D. Running Power-UCT on
root node is equivalent to UCB1 on non-stationary bandit settings, but with power mean
backup. The error bound of running Power-UCT for the whole tree is the sum of payoff
at root node with payoff starting from any node i after the first action chosen from root
node until the end. This payoff by induction at depth D− 1 in addition to the bound from
Theorem 3 when the drift-conditions are satisfied, and with straightforward algebra, we can
compute the payoff at the depth D, in combination with Theorem 6. Since our induction
hypothesis holds for all nodes at a distance of one node from the root, the proof is finished
by observing that Theorem 3 and Theorem 5 do indeed ensure that the drift conditions
are satisfied. This completes our proof of the convergence of Power-UCT. Interestingly, the
proof guarantees the convergence for any finite value of p.

5. Convex Regularization in Monte-Carlo Tree Search

Consider an MDPM = ⟨S,A,R,P, γ⟩, as previously defined. Let Ω : Π→ R be a strongly
convex function. For a policy πs = π(·|s) and Qs = Q(s, ·) ∈ RA, we observe that the
Bellman operator TπsQs = ⟨π(·|s), Q(s, ·)⟩ = ⟨πs, Qs⟩. The Legendre-Fenchel transform (or
convex conjugate) of Ω is Ω∗ : RA → R, defined as:

Ω∗(Qs) ≜ max
πs∈Πs

{⟨πs, Qs⟩ − τΩ(πs)} , (31)

where the temperature τ specifies the strength of regularization. Among the several prop-
erties of the Legendre-Fenchel transform, we use the following (Mensch and Blondel, 2018;
Geist et al., 2019).

Proposition 1. Let Ω be strongly convex.

• Unique maximizing argument: ∇Ω∗ is Lipschitz and satisfies

∇Ω∗(Qs) = argmax
πs∈Πs

{⟨πs, Qs⟩ − τΩ(πs)} . (32)

• Boundedness: if there are constants LΩ and UΩ such that for all πs ∈ Πs, we have
LΩ ≤ Ω(πs) ≤ UΩ, then

max
a∈A

Qs(a)− τUΩ ≤ Ω∗(Qs) ≤ max
a∈A

Qs(a)− τLΩ. (33)

• Contraction: for any Q1, Q2 ∈ RS×A

∥ Ω∗(Q1)− Ω∗(Q2) ∥∞≤ γ ∥ Q1 −Q2 ∥∞ . (34)

Note that if Ω(·) is strongly convex, τΩ(·) is also strongly convex; thus all the properties
shown in Proposition 1 still hold1.
Solving equation (31) leads to the solution of the optimal primal policy function ∇Ω∗(·).

1. Other works use the same formula, e.g. Equation (31) in Niculae and Blondel (2017).
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a =SelectAction (s)
return
argmax

a
Q(s, a) + C

√
logN(s)
n(s,a)

SimulateV (s, depth)
a =SelectAction (s)
SimulateQ (s, a,depth)
N(s)← N(s) + 1

V (s)←
(∑

a

n(s,a)
N(s) Q(s, a)p

)1/p

a =SelectAction (s)
λs = ϵ|A|/log(

∑
a N(s,a)+1)

π(a|s) = ∇Ω∗(Q(s)/τ)(a)
ϵ0 ∼ uniform distribution
if ϵ0 > λs then

a ∼ π(·|s)
else

a ∼ randomly from action set
return a

SimulateV (s, depth)
a =SelectAction (s)
SimulateQ (s, a,depth)
N(s)← N(s) + 1
V (s)← τΩ∗(Q(s|·)/τ)

Figure 3: Comparing Power-UCT (left) and E3W (right) in the SimulateV procedure. The
only distinction is in the V value function backup; the two methods are identical
in other procedures.

Since Ω(·) is strongly convex, the dual function Ω∗(·) is also convex. One can solve the
optimization problem (31) in the dual space Nachum and Dai (2020b) as

Ω(πs) = max
Qs∈RA

{⟨πs, Qs⟩ − τΩ∗(Qs)} (35)

and find the solution of the optimal dual value function as Ω∗(·). The Legendre-Fenchel
transform of the value conjugate function is the convex function Ω, i.e. Ω∗∗ = Ω. In the
subsequent section, we exploit this primal-dual connection based on the Legendre-Fenchel
transform, which uses both the conjugate value function and policy function, to establish
the regularized MCTS backup and tree policy.

We first study the general framework of convex regularization in MCTS, and then in-
vestigate the α-divergence function as a particular form of the convex regularizer with a
specific value of a constant α to derive the entropy-based regularization methods in MCTS.

5.1 Regularized Backup and Tree Policy

As discussed in section 3.2, the MCTS tree contains nodes that represent state, action
s ∈ S, a ∈ A and have two attributes: a visitation count N(s, a) and a state-action function
QΩ(s, a). Additionally, MCTS constructs a look-ahead tree search T in real-time during
simulation to determine the optimal action at the root node. When a trajectory of state,
action s0, a0, s1, a1..., sT is obtained, sT is defined as the leaf node corresponding to the
reached state sT . Assuming sT is expanded, its corresponding value function V (sT ) is
initialized as an estimate returned from an evaluation function computed in sT , e.g. a
discounted cumulative reward averaged over multiple rollouts, or the value-function of node
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sT returned by a value-function approximator, e.g. a neural network pretrained with deep Q-
learning (Mnih et al., 2015), as done in (Silver et al., 2016; Xiao et al., 2019). Its respective
state action values are initialized as QΩ(sT , a) = 0, and N(sT , a) = 0 for all a ∈ A. Unlike
UCT, which uses the average mean to backpropagate the value function of each node in
the tree (as mentioned in section 3.3), statistical information is backpropagated along the
trajectory in MCTS by updating the visitation count using N(st, at) = N(st, at) + 1, and
the action-value functions by

QΩ(st, at) =

{
r(st, at) + γVΩ(sT ) if t = T ,

r(st, at) + γτΩ∗(QΩ(st+1)/τ) if t < T ,
(36)

where QΩ(st) ∈ RA with QΩ(st, a),∀a ∈ A, r(st, at) is an average of collected rewards up
to time t at state action st, at, VΩ(st) is the regularized value function. Through the use
of the convex conjugate in Equation (36), we extent the E2W sampling strategy which is
limited to maximum entropy regularization (Xiao et al., 2019) and derive a novel sampling
strategy that generalizes to any convex regularizer

πt(at|st) = (1− λst)∇Ω∗(QΩ(st)/τ)(at) +
λst

|A|
, (37)

where λst = ϵ|A|/log(
∑

a N(st,a)+1) with ϵ > 0 as an exploration parameter, and ∇Ω∗ depends
on the measure in use (see Table 1 for maximum, relative, and Tsallis entropy). The use of
the convex conjugate in this equation results in a novel sampling strategy that generalizes to
any convex regularizer. This strategy is called the Extended Empirical Exponential Weight
(E3W) sampling strategy, which extends the previous E2W sampling strategy by introduc-
ing a connection with the duality representation through the Legendre-Fenchel transform.
This transformation provides a basic connection for a theory of several state-of-the-art al-
gorithms in reinforcement learning, such as TRPO, SAC, A3C (Geist and Scherrer, 2011).
Our result is the first to introduce the connection with MCTS.

5.2 Convergence Rate to Regularized Objective

Our findings demonstrate that by assuming a σ2-subgaussian distribution for each node in
the tree, the regularized value VΩ can be estimated effectively at the root state s ∈ S. This
result expands upon the analysis presented in (Xiao et al., 2019), which only considers the
use of maximum entropy. The primary outcomes of this study are presented here, while a
comprehensive proof of all the theorems can be found in the Appendix section.

Theorem 8. At the root node s where N(s) is the number of visitations, with ϵ > 0, VΩ(s)
is the estimated value, with constant C and Ĉ, we have

P(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ C exp{ −N(s)ϵ

Ĉσ log2(2 +N(s))
}, (38)

where VΩ(s) = Ω∗(Qs) and V ∗
Ω(s) = Ω∗(Q∗

s).
From this theorem, we obtain that E3W ensures the exponential convergence rate of

choosing the best action a∗ at the root node.
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Theorem 9. Let at be the action returned by E3W at step t. For large enough t and
constants C, Ĉ

P(at ̸= a∗) ≤ Ct exp{− t

Ĉσ(log(t))3
}. (39)

For any strongly convex regularizer, this outcome demonstrates that the exponential
convergence rate of selecting the optimal action at the root node holds true, which has been
previously demonstrated for the maximum entropy case in a study by Xiao et al. (2019).

5.3 Entropy-Regularization Backup Operators

This section focuses on entropic-based regularizers as backup operators and sampling strate-
gies in MCTS, rather than generic strongly convex regularizers. Table 1 shows the Legendre-
Fenchel transform and maximizing argument of entropic-based regularizers, which can re-
spectively replace the backup operation (Equation 36) and sampling strategy E3W (Equa-
tion 37). The maximum entropy regularization is used in the MENTS algorithm (Xiao
et al., 2019). This approach is similar to the maximum entropy RL framework that encour-
ages exploration (Haarnoja et al., 2018; Schulman et al., 2017a). We introduce two other
entropic-based regularizer algorithms in MCTS: Relative Entropy Monte-Carlo Planning
(RENTS), which is inspired by trust-region (Schulman et al., 2015; Belousov and Peters,
2019) and proximal optimization methods (Schulman et al., 2017b) in RL and uses the
relative entropy of the policy update, and Tsallis entropy, which has been recently used in
RL to encourage the learning of sparse policies (Lee et al., 2018). We call this algorithm:
Tsallis Entropy Monte-Carlo Planning (TENTS). Contrary to maximum and relative en-
tropy, the definition of the Legendre-Fenchel and maximizing argument of Tsallis entropy
is non-trivial, being

Ω∗(Qt) = τ · spmax(Qt(s, ·)/τ), (40)

∇Ω∗(Qt) = max{Qt(s, a)

τ
−
∑

a∈K Qt(s, a)/τ − 1

|K|
, 0}, (41)

where spmax is defined for any function f : S ×A → R as

spmax(f(s, ·)) ≜
∑
a∈K

(
f(s, a)2

2
−

(
∑

a∈K f(s, a)− 1)2

2|K|2

)
+

1

2
,

and K is the set of actions that satisfy 1 + if(s, ai) >
∑i

j=1 f(s, aj), with ai indicating
the action with the i-th largest value of f(s, a) (Lee et al., 2018). It is worth noting that
implementing the Tsallis entropy does not pose a significant challenge. While it does require
additional computation that may take up to O(|A| log(|A|)) time in the worst-case scenario,
the order of Q-values remains unchanged between rollouts, thus reducing computational
complexity in practice.

5.4 Regret Analysis

At the root node, let each children node i be assigned with a random variable Xi, with
mean value Vi, while the quantities related to the optimal branch are denoted by ∗, e.g.
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Table 1: List of entropy regularizers with Legendre-Fenchel transforms (regularized value
functions) and maximizing arguments (regularized policies).

Entropy Regularizer Ω(πs) Value Ω∗(Qs) Policy ∇Ω∗(Qs)

Maximum
∑

a π(a|s) log π(a|s) τ log
∑

a e
Q(s,a)

τ
e

Q(s,a)
τ∑

b e
Q(s,b)

τ

Relative DKL(πt(a|s)||πt−1(a|s)) τ log
∑

a πt−1(a|s)e
Qt(s,a)

τ
πt−1(a|s)e

Qt(s,a)
τ∑

b πt−1(b|s)e
Qt(s,b)

τ

Tsallis 1
2(∥ π(a|s) ∥

2
2 −1) Equation (40) Equation (41)

mean value V ∗. At each timestep n, the mean value of variable Xi is Vin . Even though
there are some relevant works in literature focus on simple regret for MCTS Danihelka et al.
(2021); Shperberg et al. (2017); Hay et al. (2014); Feldman and Domshlak (2013); Tolpin
and Shimony (2012). In this work, we study the psudo-regret (Coquelin and Munos, 2007).
The pseudo-regret (Coquelin and Munos, 2007) at the root node, at timestep n, is defined
as RUCT

n = nV ∗ −
∑n

t=1 Vit . Similarly, we define the regret of E3W at the root node of the
tree as

Rn = nV ∗ −
n∑

t=1

Vit = nV ∗ −
n∑

t=1

I(it = i)Vit = nV ∗ −
∑
i

Vi

n∑
t=1

π̂t(ai|s), (42)

where π̂t(·) is the policy at time step t, and I(·) is the indicator function.
The expected regret is defined as

E[Rn] = nV ∗ −
n∑

t=1

⟨π̂t(·), V (·)⟩ . (43)

Theorem 10. Consider an E3W policy applied to the tree. Let define DΩ∗(x, y) = Ω∗(x)−
Ω∗(y) − ∇Ω∗(y)(x − y) as the Bregman divergence between x and y, The expected pseudo
regret Rn satisfies

E[Rn] ≤− τΩ(π̂) +
n∑

t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)) +O(
n

log n
).

This theorem bounds the regret of E3W for a generic convex regularizer Ω; the regret
bounds for each entropy regularizer can be easily derived from it. Let m = mina∇Ω∗(a|s).

Corollary 1. Maximum entropy regret: E[Rn] ≤ τ(log |A|) + n|A|
τ +O( n

logn).

Corollary 2. Relative entropy regret: E[Rn] ≤ τ(log |A| − 1
m) + n|A|

τ +O( n
logn).

Corollary 3. Tsallis entropy regret: E[Rn] ≤ τ( |A|−1
2|A| ) +

n|K|
2 +O( n

logn).
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Remarks. The regret bound of UCT and its variance have been studied for non-regularized
MCTS with a binary tree in previous work (Coquelin and Munos, 2007). In contrast, our
regret bound analysis in Theorem 10 is applicable to general regularized MCTS. The corol-
laries suggest that the maximum and relative entropy have similar bounds, with the bounds
for relative entropy being slightly smaller due to 1

m . Interestingly, the bounds for Tsallis
entropy become tighter as the number of actions increases, resulting in smaller regret for
problems with a high branching factor. This result demonstrates the advantage of Tsal-
lis entropy over other entropy regularizers in complex problems, as empirically verified in
Section 7.

5.5 Error Analysis

We analyse the error of the regularized value estimate at the root node n(s) w.r.t. the
optimal value: εΩ = VΩ(s)− V ∗(s).

Theorem 11. For any δ > 0 and generic convex regularizer Ω, with some constant C, Ĉ,
with probability at least 1− δ, εΩ satisfies

−

√
Ĉσ2 log C

δ

2N(s)
− τ(UΩ − LΩ)

1− γ
≤ εΩ ≤

√
Ĉσ2 log C

δ

2N(s)
. (44)

As far as we are aware, this theorem is the first to provide an error analysis of value
estimation at the root node in MCTS with convex regularization. In Table 1, we provide
a better understanding of the impact of each entropy regularizer by specializing the bound
in Equation (44) to each regularizer. From (Lee et al., 2018), we know that for maximum
entropy Ω(πt) =

∑
a πt log πt, we have − log |A| ≤ Ω(πt) ≤ 0; for relative entropy Ω(πt) =

KL(πt||πt−1), if we define m = mina πt−1(a|s), then we can derive 0 ≤ Ω(πt) ≤ − log |A|+
log 1

m ; and for Tsallis entropy Ω(πt) =
1
2(∥ πt ∥

2
2 −1), we have −

|A|−1
2|A| ≤ Ω(πt) ≤ 0. Defining

Ψ =

√
Ĉσ2 log C

δ
2N(s) yields the following corollaries.

Corollary 4. Maximum entropy error: −Ψ− τ log |A|
1− γ

≤ εΩ ≤ Ψ.

Corollary 5. Relative entropy error: −Ψ−
τ(log |A| − log 1

m)

1− γ
≤ εΩ ≤ Ψ.

Corollary 6. Tsallis entropy error: −Ψ− |A| − 1

2|A|
τ

1− γ
≤ εΩ ≤ Ψ.

Corollaries 4-6 demonstrate that in scenarios where the number of actions |A| is large,
the error of TENTS is the smallest and that the lower bound of RENTS is smaller than the
lower bound of MENTS.

6. α-divergence in MCTS

In this section, we show how to use α-divergence as a convex regularization function to gen-
eralize the entropy regularization in MCTS and respectively derive MENTS, RENTS and

528



A Unified Perspective on Value Backup and Exploration in Monte-Carlo Tree Search

TENTS. Additionally, we show how to derive power mean (which is used as the backup op-
erator in Power-UCT) using α-divergence as the distance function to replace the Euclidean
distance in the definition of the empirical average mean value. Finally, we study the regret
bound and error analysis of the α-divergence regularization in MCTS.

6.1 α-divergence Regularization in MCTS

We introduce α-divergence regularization to MCTS. Denote the Legendre-Fenchel transform
(or convex conjugate) of α-divergence regularization with Ω∗ : RA → R, defined as:

Ω∗(Qs) ≜ max
πs∈Πs

⟨πs, Qs⟩ − τHα(πs), (45)

where the temperature τ specifies the strength of regularization, and Hα(πs) is the gener-
alized Tsallis entropy derived from α function defined in (9). Note that α-divergence of the
current policy πs and the uniform policy has the same form as Hα(πs). It is known that:

• when α = 1, we have the regularizer H1(πs) = πs log πs, which is the Shannon entropy,
getting MENTS. Note that if we apply the α-divergence with α = 1, we get RENTS;

• when α = 2, we have the regularizer H2(πs) =
1
2(πs − 1)2, and derive Tsallis entropy,

getting TENTS.

For α > 1, α ̸= 2 we can derive (Chen et al., 2018)

∇Ω∗(Qt) =

(
max

{
Qπ∗

τ (s,a)

τ
− c(s)

τ
, 0

}
(α− 1)

) 1
α−1

(46)

where

c(s) = τ

∑
a∈K(s)

Qπ∗
τ (s,a)

τ − 1

∥K(s)∥
+ τ

(
1− 1

α− 1

)
, (47)

with K(s) representing the set of actions with non-zero chance of exploration in state s, as
determined below

K(s) =
{
ai

∣∣∣∣1 + i
Qπ∗

τ (s,ai)

τ
>

i∑
j=1

Qπ∗
τ (s,aj)

τ
+ i(1− 1

α− 1
)

}
, (48)

where ai denotes the action with the i−th highest Q-value in state s. and the regularized
value function

Ω∗(Qt) =
〈
∇Ω∗(Qt), Q

π∗
τ (s,a)

〉
− τHα(∇Ω∗(Qt)). (49)

6.2 Connecting Power Mean with α-divergence

In order to connect the Power-UCT approach that we introduced in Section 4.2 with α-
divergence, we study here the entropic mean (Ben-Tal et al., 1989) which uses f -divergence,
of which α-divergence is a special case, as the distance measure. Since power mean is a
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special case of the entropic mean, the entropic mean allows us to connect the geometric
properties of the power mean used in Power-UCT with α-divergence.

In more detail, let a = (a1, a2, ...an) be given strictly positive numbers and let w =
(w1, w2, ..., wn) be given weights and

∑n
i=1wi = 1, wi > 0, i = 1...n. Let’s define dist(α, β)

as the distance measure between α, β > 0 that satisfies

dist(α, β) =

{
0 if α = β

> 0 if α ̸= β
(50)

When we consider the distance as f -divergence between the two distributions, we get the
entropic mean of a = (a1, a2, ...an) with weights w = (w1, w2, ..., wn) as

meanw(a) = min
x>0

{
n∑

i=1

wiaif

(
x

ai

)}
. (51)

When applying fα(x) =
x1−p−p
p(p−1) + x

p , with p = 1− α, we get

meanw(a) =

(
n∑

i=1

wia
p
i

) 1
p

, (52)

which is equal to the power mean.

6.3 Regret and Error Analysis of α-divergence in Monte-Carlo Tree Search

We measure how different values of α in the α-divergence function affect the regret in
MCTS.

Theorem 12. When α ∈ (0, 1), the regret of E3W is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) + n(2τ)−1|A|α +O( n

log n
).

For α ∈ (1,∞), we derive the following results

Theorem 13. When α ∈ (1,∞), the regret of E3W is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) +

n|K|
2

+O( n

log n
).

where |K| is the number of actions that are assigned non-zero probability in the policy at
the root node. Note that when α = 1, 2, please refer to Corollary 1, 2, 3.
We analyse the error of the regularized value estimate at the root node n(s) w.r.t. the
optimal value: εΩ = VΩ(s)− V ∗(s). where Ω is the α-divergence regularizer fα.

Theorem 14. For any δ > 0 and α-divergence regularizer fα (α ̸= 1, 2), with some constant
C, Ĉ, with probability at least 1− δ, εΩ satisfies

−

√
Ĉσ2 log C

δ

2N(s)
− τ

α(1− α)
(|A|1−α − 1) ≤ εΩ ≤

√
Ĉσ2 log C

δ

2N(s)
. (53)

For α = 1, 2, please refer to Corollary 4, Corollary 5, Corollary 6. We can see that when α
increases, the error bound decreases.
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7. Empirical Evaluation

The empirical evaluation consists of three parts. Firstly, we evaluate Power-UCT using
the FrozenLake, Copy, Rocksample, and Pocman environments. This evaluation demon-
strates the advantages of using the power mean backup operator over the average mean
and maximum backup operators in UCT. We aim to answer the following empirical ques-
tions: (1) Does the power mean offer superior performance in MDP and POMDP MCTS
tasks compared to the regular mean operator? (2) How does the choice of p value affect
the overall performance? (3) How does Power-UCT compare to state-of-the-art methods
in tree-search? We choose the recent MENTS algorithm (Xiao et al., 2019) as a repre-
sentative state-of-the-art method. For MENTS we find the best combination of the two
hyper-parameters (temperature τ and exploration ϵ) by grid search. In MDP tasks, we find
the UCT exploration constant using grid search. For Power-UCT, we find the p-value by
increasing it until performance starts to decrease. In the Rocksample and Pocman envi-
ronments, we utilize the source code provided by the authors of the POMCP paper (Silver
et al., 2010) to execute the POMCP algorithm. Subsequently, we develop our Power-UCT
method based on this implementation.

In the second part, we evaluate the benefits of our proposed entropy-based MCTS reg-
ularizers (MENTS, RENTS, and TENTS) in different tasks. First, we use Synthetic Tree
to complement our theoretical analysis and provide an interpretable demonstration of the
effects of our proposed regularizers. Second, we apply our entropy-based regularizers to
various Atari games using a simplified version of the AlphaGo algorithm to highlight the
benefits of our approach. Our implementation is a simplified version of the original al-
gorithm, where we remove various tricks in favor of better interpretability. For the same
reason, we do not compare with the most recent and state-of-the-art MuZero (Schrittwieser
et al., 2019), as this is a slightly different solution highly tuned to maximize performance,
and a detailed description of its implementation is not available.

The learning time of AlphaZero can be slow in problems with high branching factor,
due to the need of a large number of MCTS simulations for obtaining good estimates of
the randomly initialized action-values. To overcome this problem, AlphaGo (Silver et al.,
2016) initializes the action-values using the values retrieved from a pretrained state-action
value network, which is kept fixed during the training.

Finally, we use the Synthetic Tree environment to show how α-divergence help to balance
between exploration and exploitation in MCTS effectively. We measure the error of value
estimate and the regret at the root node with different values of α to show that the empirical
results match our theoretical analysis. We release the source code to reproceduce the
experimental results2.

7.1 FrozenLake

In the OpenAI Gym (Brockman et al., 2016), the FrozenLake problem is a well-known
empirical MDP environment. The task is to navigate an agent in an 8x8 ice-grid world to
reach a target position while avoiding unstable locations that lead to a fall into the water.
The stochastic nature of the environment makes the task challenging, as the agent moves

2. https://github.com/damquangtuan/UnifiedMCTS.git
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Table 2: Mean and two times standard deviation of the success rate, over 500 evaluation
runs, of UCT, Power-UCT and MENTS in FrozenLake from OpenAI Gym. The
top row of each table shows the number of simulations used for tree-search at each
time step.

Algorithm 4096 16384 65536 262144
UCT 0.08± 0.02 0.23± 0.04 0.54± 0.05 0.69± 0.04
p=2.2 0.12± 0.03 0.32± 0.04 0.62± 0.04 0.81± 0.03
p=max 0.10± 0.03 0.36± 0.04 0.55± 0.04 0.69± 0.04
MENTS 0.28± 0.04 0.46± 0.04 0.62± 0.04 0.74± 0.04
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Figure 4: Evaluating Power-UCT w.r.t. different p-values: The mean discounted total re-
ward at 65536 simulations (shaded area denotes standard error) over 100 evalu-
ation runs.

only one-third of the time in the intended direction and the rest of the time in one of the
two tangential directions. Reaching the target position yields the agent a reward of +1,
while all other outcomes yield a reward of zero. Table 2 shows that Power-UCT performs
better than UCT, and its performance outperforms MENTS when increasing the number
of simulations.

7.2 Copy Environment

Our aim is to investigate Power-UCT and MENTS, RENTS’s performance in environments
with high branching factors. We conduct our study using the Copy environment in OpenAI
gym, where the agent’s task is to copy characters from an input band to an output band.
The agent can move, read the input band, and write a character from the alphabet to
the output band at each time step. Thus, the number of available actions scales with the
size of the alphabet. The agent receives a reward of +1 for each correct character copied.
If the agent copies an incorrect character or runs out of time, the task ends. The total
accumulated rewards are equal to the size of the input band.

In contrast to our previous experiments, the tree-search runs only once at the start,
and there is no re-planning between actions. As a result, all actions are selected based on
value estimates from the initial search. The input band size is fixed to 40 characters, while
we vary the alphabet size to test different branching factors. Table 3 demonstrates that
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Figure 5: Performance of Power-UCT compared to POMCP in rocksample. The mean of
total discounted reward over 1000 evaluation runs is shown by thick lines while
the shaded area shows standard error.

Table 3: Mean and two times standard deviation of discounted total reward, over 100 eval-
uation runs, of UCT, Power-UCT and MENTS in the copy environment with 144
actions (top) and 200 actions (bottom). Top row: number of simulations at each
time step.

Algorithm 512 2048 8192 32768
UCT 2.6± 0.98 9.± 1.17 34.66± 1.68 40.± 0.
p = 3 3.24± 1.17 12.35± 1.14 40.± 0. 40.± 0.
p = max 2.56± 1.48 9.55± 3.06 37.52± 5.11 39.77± 0.84
MENTS 3.26± 1.32 11.96± 2.94 39.37± 1.15 39.35± 0.95
RENTS 3.21± 1.42 11.71± 2.94 39.96± 0.56 40.0± 0.0

(a) 144 Actions
Algorithm 512 2048 8192 32768
UCT 1.98± 0.63 6.43± 1.36 24.5± 1.56 40.± 0.
p = 3 2.55± 0.99 9.11± 1.41 36.02± 1.72 40.± 0.
p = max 2.03± 1.37 6.99± 2.51 27.89± 4.12 39.93± 0.51
MENTS 2.44± 1.34 8.86± 2.65 34.63± 5.6 39.42± 0.99
RENTS 2.41± 1.32 8.78± 2.68 34.76± 4.89 40.0± 0.0

(b) 200 Actions
Algorithm 512 2048 8192 32768
UCT 1.65± 0.95 3.45± 1.07 13.9± 1.43 40.± 0.
p = 3 2.55± 0.99 9.11± 1.41 36.02± 1.72 40.± 0.
p = max 1.48± 1.04 4.49± 2.09 16.95± 3.49 39.94± 0.47
MENTS 1.71± 0.90 5.28± 1.70 21.08± 2.98 39.71± 0.91
RENTS 1.71± 0.90 5.28± 1.70 21.03± 2.93 40.0± 0.0

(c) 300 Actions

Power-UCT is much more efficient than the baseline UCT in solving the task. Additionally,
we observe that MENTS, RENTS and Power-UCT with p = ∞ exhibit more significant
variance than Power-UCT with a finite value of p. They cannot solve the task reliably as
they do not reach the maximum reward of 40 with zero standard deviation.
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7.3 Rocksample and PocMan

We evaluate the Power-UCT’s performance in POMDP problems against the standard
POMCP algorithm (Silver and Veness, 2010). Since the state is not fully observable in
POMDPs, POMCP assigns a unique action-observation history to each tree node, which
is a sufficient statistic for optimal decision-making in POMDPs instead of the full state.
Similar to fully observable UCT, POMCP selects actions using the UCB1 bandit strat-
egy (Auer et al., 2002). To conduct a fair comparison, we modify POMCP by replacing the
backup operator with the power mean backup operator used in fully observable UCT. This
modification results in a POMDP version of Power-UCT. Similarly, we modify POMCP to
implement the MENTS approach. Next, we discuss the evaluation of the POMDP based
Power-UCT, MENTS, and POMCP, in rocksample and pocman environments (Silver and
Veness, 2010).
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Figure 6: Performance of Power-UCT compared to UCT and MENTS in rocksample 11x11.
The mean of discounted total reward over 1000 evaluation runs is shown by thick
lines while the shaded area shows standard error.

Rocksample. The benchmark rocksample (n,k) (Smith and Simmons, 2004) emulates a
Mars Explorer robot in a n x n grid containing k rocks. The goal is to identify valuable rocks
with a long-range sensor, sample valuable rocks, and then exit the map to the east. The
agent can perform k+5 actions, such as moving in one of the four directions (north, south,
east, west), tracking down one of the k rocks, or taking a rock sample. rock sampling requires
robust exploration to discover informative actions that may not provide immediate rewards
but may provide high long-term rewards. We examine three versions of rocksample with
different grid sizes and rock counts: rocksample (11,11), rocksample (15,15), and rocksample
(15,35). We set the value of the exploration constant to the difference between the maximum
and minimum immediate rewards (Rmax − Rmin), as in (Silver and Veness, 2010). The
superiority of Power-UCT over POMCP is evident in Fig. 5 for almost all values of p. We
perform a sensitivity analysis for Power-UCT in rocksample (11x11) with different p values
in 65536 simulations, and the results are shown in Fig. 4. The figure shows that it is easy
to find a suitable p-value in rocksample. Additionally, Fig. 6 demonstrates that Power-UCT
significantly outperforms MENTS in rocksample (11,11). It is possible that MENTS does
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Table 4: Discounted total reward in pocman for the comparison methods. Mean ± standard
error are computed from 1000 simulations except in MENTS where we ran 100
simulations.

1024 4096 16384 65536
POMCP 30.89± 1.4 33.47± 1.4 33.44± 1.39 32.36± 1.6
p = max 14.82± 1.52 14.91± 1.52 14.34± 1.52 14.98± 1.76
p = 10 29.14± 1.61 35.26± 1.56 44.14± 1.60 53.30± 1.46
p = 30 28.78± 1.44 33.92± 1.56 42.45± 1.54 49.66± 1.70
MENTS 54.08± 3.20 55.37± 3.0 53.90± 2.86 51.03± 3.36

not explore sufficiently in this task, but further analysis of MENTS is required to confirm
this.

Pocman. In addition to the previous experiment, we evaluate the performance of
Power-UCT in another POMDP domain, namely the pocman problem (Silver and Veness,
2010). The pocman problem requires an agent called PocMan to navigate in a maze of size
(17x19) using only local observations while trying to eat as many food pellets as possible
and avoiding being caught by four ghosts. PocMan receives different rewards such as −1 at
each step, +10 for eating each food pellet, +25 for eating a ghost, and −100 for dying. The
results in Table 4 indicate that both Power-UCT and MENTS perform better than POMCP
in terms of discounted total rewards. Additionally, with 65536 simulations, Power-UCT
outperforms MENTS.

7.4 Synthetic Tree

In the paper by Xiao et al. (2019), a synthetic tree toy problem is used to compare MENTS
and UCT. The problem involves a tree with depth d and branching factor k. Each edge
of the tree has a random value between 0 and 1, and at each leaf, a Gaussian distribution
is used as an evaluation function resembling the return of random rollouts. The mean
of the Gaussian distribution is the sum of the values assigned to the edges connecting
the root node to the leaf, while the standard deviation is σ = 0.053 To ensure stability,
the means are normalized between 0 and 1. Similar to Xiao et al. (2019), we conduct
25 experiments on five trees with five runs each, covering all combinations of branching
factors k = {2, 4, 6, 8, 10, 12, 14, 16} and depths d = {1, 2, 3, 4, 5}. We compute the value
estimation error at the root node compared to the regularized optimal value, εΩ = VΩ−V ∗

Ω ,
the value estimation error at the root node compared to the unregularized optimal value,
εUCT = VΩ − V ∗

UCT, and the regret R as described in Equation (42). For fair comparison,
we set τ = 0.1 and ϵ = 0.1 for all algorithms. The behavior of UCT, Power-UCT, and each
regularizer for different tree configurations are shown in Figure 9 and 7. In our experiments,
we found that TENTS is a robust method that converges quickly to the optimal value and
is largely unaffected by increasing tree size, unlike RENTS and MENTS, which converge
more slowly. The optimal value obtained by TENTS is very close to the optimal value of
UCT and converges faster than the value estimated by UCT. Power-UCT, on the other
hand, converges faster than UCT and very closed to TENTS. Regarding regret, UCT is

3. The value of the standard deviation is not provided in Xiao et al. (2019). After trying different values,
we observed that our results match the one in Xiao et al. (2019) when using σ = 0.05.
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Figure 7: For different branching factor k (rows) and depth d (columns), the heatmaps
show: the absolute error of the value estimate at the root node after the last
simulation of each algorithm w.r.t. the respective optimal value (a), and w.r.t.
the optimal value of UCT (b); regret at the root node (c).

less exploratory than regularized methods, resulting in lower regret but slower convergence.
Power-UCT shows lowest regret. However, TENTS has the smallest regret among the
regularizers and explores more efficiently than other regularizers. We show in Figure 8(a)
that TENTS outperforms other regularized methods in high branching factor problems in
terms of approximation error and regret. Additionally, we conduct a sensitivity analysis of
each algorithm w.r.t. the values of the exploration coefficient ε and τ in two different trees
in Figures 8(b) and 8(c). Our results demonstrate the superiority of TENTS in this toy
problem, confirming our theoretical findings about the advantages of TENTS in problems
with many actions in terms of approximation error (Corollary 6) and regret (Corollary 3).

7.5 Entropy-regularized AlphaGo

Atari. Wemeasure our entropy-based regularization MCTS algorithms in Atari 2600 (Belle-
mare et al., 2013) Games. Atari 2600 (Bellemare et al., 2013) is a popular benchmark for
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(a) Results in trees with high branching factor.
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Figure 8: High branching factor trees (a), regret sensitivity study w.r.t. ε and τ (b, c).

testing Deep RL methods (Mnih et al., 2015; Van Hasselt et al., 2016; Bellemare et al., 2017),
but has not been relatively studied in MCTS. In this experiment, we modify the standard
AlphaGo algorithm, PUCT, using our regularized value-backup operator and policy selec-
tion. We use a pre-trained deep Q-network, using the same experimental setting of Mnih
et al. (2015) as prior, to initialize the action value function of each node after the expansion
step in the tree as Qinit(s, a) = (Q(s, a)− V (s)) /τ , for MENTS and TENTS, as in Xiao
et al. (2019). For RENTS, we initialize Qinit(s, a) = logPprior(a|s)) + (Q(s, a)− V (s)) /τ ,
where Pprior is the Boltzmann distribution induced by the action values Q(s, .) computed
from the network. Each experimental run consists of 512 MCTS simulations. To find hyper-
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Figure 9: For each algorithm, we show the convergence of the value estimate at the root
node to the respective optimal value (top), to the UCT optimal value (middle),
and the regret (bottom).

parameters, for each of our regularized MCTS algorithms, we perform a grid search over the
temperature parameter τ with a range from 0.01 to 1. In addition, the discount factor is set
to γ = 0.99, and for the PUCT algorithm, we use an exploration constant of c = 0.1. The
performance of our regularized MCTS algorithms and the standard PUCT and MaxMCTS
baselines is evaluated using 22-Atari games in terms of cumulative reward. The results in
Table 5 show that our regularized methods outperform the baselines, with TENTS scor-
ing the highest in all games. In particular, TENTS performs significantly better in games
with high branching factors, such as Asteroids and Phoenix, confirming the results of our
experiment with synthetic trees and the theoretical advantages of TENTS in corollary 3
and 6.

7.6 Power-UCT in Synthetic Tree

We evaluate Power-UCT using the synthetic tree toy problem within the same experimental
framework as in the previous section, setting the variance at each node to σ = 0.05, and
normalizing the mean values between 0 and 1. Figure 10 shows the convergence of the value
estimations and regret of Power-UCT at the root node in the Synthetic Tree environment. It
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Table 5: Average score in Atari over 100 seeds per game. Bold denotes no statistically
significant difference to the highest mean (t-test, p < 0.05). Bottom row shows #
no difference to highest mean.

UCT MaxMCTS α = 1(MENTS) α = 1(RENTS) α = 2(TENTS)

Alien 1,486.80 1,461.10 1,508.60 1,547.80 1,568.60

Amidar 115.62 124.92 123.30 125.58 121.84

Asterix 4, 855.00 5,484.50 5,576.00 5,743.50 5,647.00

Asteroids 873.40 899.60 1, 414.70 1, 486.40 1,642.10

Atlantis 35, 182.00 35,720.00 36,277.00 35, 314.00 35,756.00

BankHeist 475.50 458.60 622.30 636.70 631.40

BeamRider 2,616.72 2,661.30 2,822.18 2, 558.94 2,804.88

Breakout 303.04 296.14 309.03 300.35 316.68

Centipede 1, 782.18 1, 728.69 2,012.86 2,253.42 2,258.89

DemonAttack 579.90 640.80 1,044.50 1,124.70 1,113.30

Enduro 129.28 124.20 128.79 134.88 132.05

Frostbite 1, 244.00 1, 332.10 2,388.20 2,369.80 2,260.60

Gopher 3, 348.40 3, 303.00 3,536.40 3,372.80 3,447.80

Hero 3, 009.95 3, 010.55 3,044.55 3,077.20 3,074.00

MsPacman 1, 940.20 1, 907.10 2, 018.30 2,190.30 2,094.40

Phoenix 2, 747.30 2, 626.60 3, 098.30 2, 582.30 3,975.30

Qbert 7, 987.25 8, 033.50 8, 051.25 8, 254.00 8,437.75

Robotank 11.43 11.00 11.59 11.51 11.47

Seaquest 3,276.40 3,217.20 3,312.40 3,345.20 3,324.40

Solaris 895.00 923.20 1,118.20 1,115.00 1,127.60

SpaceInvaders 778.45 835.90 832.55 867.35 822.95

WizardOfWor 685.00 666.00 1,211.00 1,241.00 1,231.00

# Highest mean 6/22 7/22 17/22 16/22 22/22

shows that the error in the value estimate at the root node varies with different values of p in
different settings. For example, for k = 10, d = 1, the errors ϵΩ and ϵUCT converge similarly
for p = 1, 2, 4, 8, 10, 16, but the regret is smallest for p = 16. In the case of k = 14, d = 3,
p = 2, Power-UCT achieves the fastest convergence, but the performance decreases when
we increase the value of p with p = 4, 8, 10, 16. Furthermore, we evaluate the performance
of Power-UCT in high branching factor scenarios as shown in Fig 11. The results show the
effectiveness of Power-UCT as depending on the problem settings, we can always find the
value of p that Power-UCT outperforms UCT. For example, for k = 100, d = 2, Power-UCT
performs best with p = 16, and its performance decreases as p decreases.
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Figure 10: We show the convergence of the value estimate at the root node to the respective
optimal value (top), to the UCT optimal value (middle), and the regret (bottom)
with different p parameter of Power-UCT in Synthetic tree environment with
p = 1.0(UCT), 2.0, 4.0, 6.0, 8.0, 10.0, 16.0.

7.7 α-divergence in Synthetic Tree

We further use the toy problem Synthetic Tree to measure how the α-divergence help to
balance between exploration and exploitation in MCTS. We use the same experimental
settings as in the last section with the variance of the distributions at each node of the
Synthetic Tree is set to σ = 0.05. The mean value of each distribution at each node of
the toy problem is normalized between 0 and 1 for stabilizing. We set the temperature
τ = 0.1 and the exploration ϵ = 0.1. Figure 13 illustrates the heatmap of the absolute
error of the value estimate at the root node after the last simulation of each algorithm
w.r.t. the respective optimal regularized value, the optimal value of UCT and regret at the
root node with α = 1.0 (MENTS), 1.5, 2.0 (TENTS), 4.0, 8.0, 16.0. Figure 12 shows the
convergence of the value estimate and regret at the root node of α-divergence in Synthetic
Tree environment. It shows that the error of the value estimate at the root node with
respect to the optimal UCT value and the regularized value decrease when α increase which
matches our theoretically results in Theorem 14. Regarding the regret, the performance is
different depend on different settings of branching factor k and depth d, which illustrate
that the value of α helps to trade off between exploration and exploitation depending on
each environment. For example, with k = 16, d = 2, the regret is smaller when we increase
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Figure 11: We show the convergence of the value estimate at the root node to the respective
optimal value (top), to the UCT optimal value (middle), and the regret (bottom)
with different p parameter of Power-UCT in high branching factor Synthetic tree
environments with p = 1.0(UCT), 2.0, 4.0, 6.0, 8.0, 10.0, 16.0.

Figure 12: We show the convergence of the value estimate at the root node to the respective
optimal value (top), to the UCT optimal value (middle), and the regret (bottom)
with different α parameter of α-divergence in Synthetic tree environment with
α = 1.0 (MENTS), 1.5, 2.0 (TENTS), 4.0, 8.0, 16.0.
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Figure 13: We show the effectiveness of α-divergence in Synthetic Tree environment with
different branching factor k (rows) and depth d (columns). The heatmaps show:
the absolute error of the value estimate at the root node after the last simulation
of each algorithm w.r.t. the respective optimal value (a), and w.r.t. the optimal
value of UCT (b); regret at the root node (c).

the value of α, and the regret is smallest with α = 8.0. When k = 14, d = 3, the regret
is smaller when we increase the value of α and the regret performance is the best with
α = 16.0, and when k = 16, d = 4, the regret enjoys the best performance with α = 2.0
(TENTS)

8. Discusstion

Based on the above results across diverse environments, we can identify specific scenarios
where each method excels and provide guidelines for selecting the appropriate algorithm
depending on the domain characteristics.

Power-UCT vs. UCT: Power-UCT consistently outperforms the standard UCT algo-
rithm in both MDP and POMDP settings. This superiority is particularly noticeable as
the complexity of the environment increases, such as in high branching factor scenarios
(e.g., Copy environment) and partially observable domains (e.g., Rocksample, PocMan).
The power mean backup operator used in Power-UCT helps alleviate the bias problem as
the average mean underestimates the optimal value, and the maximum backup operators
overestimate it, allowing Power-UCT to adapt better to different reward structures and
decision-making complexities.
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Effect of the p-Value in Power-UCT: The choice of the p-value in Power-UCT is
crucial and should be carefully tuned according to the specific characteristics of the problem
domain. The results show that the optimal p-value can vary significantly depending on the
task.

Entropy-Based Regularizers (MENTS, RENTS, TENTS) in MCTS: Entropy-
based regularizers offer distinct advantages in environments where balancing exploration
and exploitation is challenging. TENTS, in particular, demonstrates strong performance
in both synthetic and real-world domains, such as Atari games. It is shown to converge
quickly, especially in high branching factor problems, by maintaining a fine balance be-
tween exploration and exploitation. On the other hand, MENTS and RENTS exhibit more
variance in performance and may be less consistent across different problem settings.

α-divergence Regularizers in MCTS: The use of α-divergence in MCTS provides a
versatile mechanism to balance exploration and exploitation based on the specific charac-
teristics of the environment. In the Synthetic Tree experiments, varying the α parameter
revealed crucial insights into how this method adjusts the behavior of MCTS. The results
showed that adjusting α allows for fine-tuning the level of exploration versus exploitation,
directly impacting the accuracy of value estimates and regret minimization at the root node.

Domain Characteristics and Algorithm Selection: The properties of the environment
play a significant role in determining the effectiveness of each algorithm:

High Branching Factor : In environments like the Synthetic Tree and certain Atari games,
methods that prioritize efficient exploitation, such as TENTS or Power-UCT, are more
effective. In addition, using a larger α value encourages broader exploration, helping to
cover more action possibilities. This prevents premature convergence to suboptimal paths
and ensures a thorough search of the space.

Stochasticity and Partial Observability : In POMDPs, where the environment is uncertain
and only partially observable (e.g., Rocksample, PocMan), Power-UCT with an appro-
priately tuned p-value offers significant advantages. Additionally, incorporating entropy
regularization (TENTS) can further improve robustness in these scenarios.

Reward Structure: Domains with sparse or highly variable rewards benefit from Power-
UCT’s ability to adjust the backup operator, allowing the algorithm to focus on promising
branches without being misled by noise. Environments like FrozenLake and Copy show how
adjusting the backup strategy helps in stabilizing performance.

Final Recommendation: The choice of algorithm should be guided by the specific char-
acteristics of the task at hand. Power-UCT, with its tunable p-value, is recommended for
most scenarios, especially where exploration needs to be carefully balanced with exploita-
tion. TENTS stands out as a robust regularizer, particularly in complex, high branch-
ing factor domains. For tasks with simpler dynamics, standard UCT may still suffice,
but Power-UCT and entropy-regularized methods generally offer superior performance and
adaptability across a broader range of challenges.

Furthermore, the empirical findings highlight the crucial role of α-divergence in tuning
MCTS algorithms. By adjusting α, one can navigate the trade-offs between exploration
and exploitation, thereby impacting the accuracy of value estimates and regret. Selecting
the appropriate α value is context-dependent, with higher values favoring extensive explo-
ration in high-branching environments, while moderate values (like TENTS) are effective
for balancing exploration and exploitation in typical scenarios. These insights provide valu-
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able guidelines for practitioners applying MCTS in various domains, enabling more effective
search strategies tailored to the specific challenges of the environment.

9. Conclusion

Our research presented three main contributions. First, we proposed a novel backup op-
erator in MCTS called Power-UCT, which is derived from power mean with theoretical
convergence guarantee to the optimum and was shown to outperform other baselines in
experiments on highly complex MDPs and POMDPs.

Second, we developed a theory of convex regularization in MCTS using the Legendre-
Fenchel transform framework, which proved that a generic strongly convex regularizer con-
verges exponentially to the optimal action at the root node. Additionally, our results
provided theoretical support for previous findings on maximum entropy regularization, and
we conducted the first study of MCTS regret using a strongly convex regularizer. Our
empirical results on AlphaGo demonstrated the superiority of Tsallis entropy over other
entropy-regularizers in convex regularization.

Finally, we present a new perspective on the use of α-divergence in Monte-Carlo Tree
Search (MCTS). We establish a connection between Power-UCT and convex regularization
in MCTS by demonstrating that the Power Mean backup operator in Power-UCT can be
obtained as a solution using an α-function as the probabilistic distance, which replaces the
Euclidean distance used to calculate the average mean. The generalized power mean is the
closed-form solution. Additionally, we show that entropic regularization in MCTS can be
derived using α-function regularization. We analyze the regret bound of Power-UCT and
E3W with respect to the α parameter, and we provide an error-bound analysis between the
regularized value estimate and the optimal regularized value at the root node. Finally, our
empirical results in a synthetic tree experiment demonstrate the effective balance between
exploration and exploitation of α-divergence in MCTS with different values of α.

While the presented methods demonstrate strong performance across various domains,
further research is necessary to explore their limitations and potential improvements. For
instance, combining Power-UCT with entropy-based regularizers might offer even greater
flexibility and robustness. Additionally, extending these methods to more complex real-
world tasks or integrating them with learning-based approaches like MuZero could unlock
new levels of performance.
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Appendix A. Generalized Mean Estimation in Monte-Carlo Tree Search

We derive here the proof of convergence for Power-UCT. The proof is based on the proof of
the UCT Kocsis et al. (2006) method but differs in several key places. In this section, we
show that Power-UCT can smoothly adapt to all theorems of UCT Kocsis et al. (2006).
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The following results can be seen as a generalization of the results for UCT, as we consider a
generalized mean instead of a standard mean as the backup operator. Our main results are
Theorem 6 and Theorem 7, which respectively prove the convergence of failure probability
at the root node, and derive the bias of power mean estimated payoff. In order to prove
them, we start with Theorem 1 to show the concentration of power mean with respect to
i.i.d random variable X. Subsequently, Theorem 2 shows the upper bound of the expected
number of times when a suboptimal arm is played. Theorem 3 bounds the expected error
of the power mean estimation. Theorem 4 shows the lower bound of the number of times
any arm is played. Theorem 5 shows the concentration of power mean backup around its
mean value at each node in the tree.

We start with well-known lemmas and respective proofs: The following lemma shows that
Power Mean can be upper bound by Average Mean plus with a constant

Lemma 2. Let 0 < l ≤ Xi ≤ U,C = U
l ,∀i ∈ (1, ..., n) and p > q. We define

Q(X,w, p, q) =
M

[p]
n (X,w)

M
[q]
n (X,w)

D(X,w, p, q) = M[p]
n (X,w)−M[q]

n (X,w).

Then we have

Q(X,w, p, q) ≤ Lp,q

D(X,w, p, q) ≤ Hp,q

Lp,q =

(
q(Cp − Cq)

(p− q)(Cq − 1)

) 1
p

(
p(Cq − Cp)

(q − p)(Cp − 1)

)− 1
q

Hp,q = (θUp + (1− θ)lp)
1
p − (θU q + (1− θ)lq)1/q,

where θ is defined in the following way. Let

h(x) = x
1
p − (ax+ b)1/q

where

a =
U q − lq

Up − lp

b =
Uplq − U qlp

Up − lp

x
′
= argmax{h(x), x ∈ (lp, Up)}

then

θ =
x′ − lp

Up − lp
.
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Proof. Refer to Mitrinovic and Vasic (1970).

Lemma 3. Let X be an independent random variable with common mean µ and a ≤ X ≤ b.
Then for any t

E[exp(tX)] ≤ exp

(
tµ+ t2

(b− a)2

8

)
(54)

Proof. Refer to Wasserman (2004) page 67.

Lemma 4. Chernoff’s inequality t > 0,

Pr(X > ϵ) ≤ exp(−tϵ)E[exp(tX)] (55)

Proof. This is a well-known result.

The next result show the concentration Inequality of Power Mean estimation

Theorem 1. If X1, X2, ..., Xn are independent with Pr(0 ≤ Xi ≤ 1) = 1 then for any ϵ > 0,
p ≥ 1,∃Cp > 0 that

Pr

(∣∣∣∣∣
(∑n

i=1X
p
i

n

) 1
p

− E

[(∑n
i=1X

p
i

n

) 1
p

]∣∣∣∣∣ > ϵ

)
≤ 2 exp

(
−Cpnϵ

2
)

Proof. Apply the Theorem 6 Francois et al. (2007), we have√
Var(∥ X ∥p)
E(∥ X ∥p)

≃ 1√
n

(
1

p

σp
µp

)
(56)

where ∥ X ∥p is p-norm. µp = E[Xp], σ2
p = Var(Xp)

Then

Var

((∑n
i=1X

p
i

n

) 1
p

)
≃ 1

n

(
1

p

σp
µp

E

[(∑n
i=1X

p
i

n

) 1
p

])2

(57)

Let define 1
Cp

=

(
1
p
σp

µp
E
[(∑n

i=1 X
p
i

n

) 1
p

])2

We have

Var

((∑n
i=1X

p
i

n

) 1
p

)
≃ 1

nCp
(58)

With σ2 = Var(X), Applying Lemma 3 and Lemma 4 we have

Pr(|X − E[X]| > ϵ) ≤ 2 exp

(
− ϵ2

σ2

)
(59)

Apply (59) for the power mean of X1, X2, ..., Xn, and based on the result of 58, we get the
result of Theorem 1.

546



A Unified Perspective on Value Backup and Exploration in Monte-Carlo Tree Search

With △n = 9
√

1
Cp

n log(2δ ), (δ > 0 are constant), and µp = E
[(∑n

i=1 X
p
i

n

) 1
p

]
, apply

Theorem 1, we get

Pr

((∑n
i=1X

p
i

n

) 1
p

− µp >
△n

9n

)
≤ exp

(
−Cpn

(
△n

9n

)2
)
.

Therefore,

Pr

((∑n
i=1X

p
i

n

) 1
p

− µp >
△n

9n

)
≤ exp

(
−Cp

1

Cp
log

(
2

δ

))
=

δ

2
. (60)

we have

Pr

((∑n
i=1X

p
i

n

) 1
p

− µp >
△n

9n

)
≤ δ

2
. (61)

Let’s start with an assumption

Assumption 1. Fix 1 ≤ i ≤ K. Let {Fit}t be a filtration such that{Xit}t is {Fit}-adapted
and Xi,t is conditionally independent of Fi,t+1, Fi,t+2, ... given Fi,t−1. Then 0 ≤ Xit ≤ 1
and the limit of µin = E[Xin(p)] exists, Further, we assume that there exists a constant
C > 0 and an integer Nc such that for n > Nc, for any δ > 0, △n(δ) = C

√
n log(1/δ), the

following bounds hold:

Pr(Xin(p) ≥ E[Xin(p)] +△n(δ)/n) ≤ δ, (62)

Pr(Xin(p) ≤ E[Xin(p)]−△n(δ)/n) ≤ δ. (63)

Under Assumption 1, For any internal node arm k, at time step t, let define µkt = E[Xkt(p)],

a suitable choice for bias sequence is that ct,s = 2C
√

log t
s (C is an exploration constant)

used in UCB1 (using power mean estimator), we get

Pr

((∑s
i=1X

p
ki

s

) 1
p − µkt > 2C

√
log t

s

)
≤ t−4 (64)

Pr

((∑s
i=1X

p
ki

s

) 1
p − µkt < −2C

√
log t

s

)
≤ t−4. (65)

From Assumption 1, we derive the upper bound for the expectation of the number of plays
a sub-optimal arm

Theorem 2. Consider UCB1 (using power mean estimator) applied to a non-stationary
problem where the pay-off sequence satisfies Assumption 1 and where the bias sequence,
ct,s = 2C

√
log t/s (C is an exploration constant). Fix ϵ ≥ 0. Let Tk(n) denote the number

of plays of arm k. Then if k is the index of a suboptimal arm then Each sub-optimal arm
k is played in expectation at most

E[Tk(n)] ≤
16C2 lnn

(1− ϵ)2△2
k

+A(ϵ) +Nc +
π2

3
+ 1. (66)
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Proof. When a sub-optimal arm k is pulled at time t we get(∑Tk(t−1)
i=1 Xp

k,i

Tk(t− 1)

) 1
p

+ 2C

√
ln t

Tk(t− 1)
≥

(∑Tk∗ (t−1)
i=1 Xp

k∗,i

Tk∗(t− 1)

) 1
p

+ 2C

√
ln t

Tk∗(t− 1)
(67)

Now, consider the following two inequalities:

• The empirical mean of the optimal arm is not within its confidence interval(∑Tk∗ (t−1)
i=1 Xp

k∗,i

Tk∗(t− 1)

) 1
p

+ 2C

√
ln t

Tk∗(t− 1)
≤ µ∗

t (68)

• The empirical mean of the arm k is not within its confidence interval(∑Tk(t−1)
i=1 Xp

k,i

Tk(t− 1)

) 1
p

≥ µkt + 2C

√
ln t

Tk(t− 1)
(69)

If both previous inequalities (68), (69) do not hold, and if a sub-optimal arm k is pulled,
then we deduce that

µkt + 2C

√
ln t

Tk(t− 1)
≥

(∑Tk(t−1)
i=1 Xp

k,i

Tk(t− 1)

) 1
p

see (69) (70)

and(∑Tk(t−1)
i=1 Xp

k,i

Tk(t− 1)

) 1
p

≥

(∑Tk∗ (t−1)
i=1 Xp

k∗,i

Tk∗(t− 1)

) 1
p

+ 2C

√
ln t

Tk∗(t− 1)
− 2C

√
ln t

Tk(t− 1)
see (67)

(71)

and (∑Tk∗ (t−1)
i=1 Xp

k∗,i

Tk∗(t− 1)

) 1
p

+ 2C

√
ln t

Tk∗(t− 1)
≥ µ∗

t see (68). (72)

So that

µkt + 4C

√
ln t

Tk(t− 1)
≥ µ∗

t . (73)

µkt = µk + δkt, µ
∗
t = µ∗ + δ∗t and we have an assumption that limt→∞ µkt = µk for any

k ∈ [1, 2, ...K] yields limt→∞ δkt = 0 Therefore, for any ϵ > 0, we can find an index A(ϵ)
such that for any t > A(ϵ): δkt ≤ ϵ△k with △k = µ∗ − µk. Which means that

4C

√
ln t

Tk(t− 1)
≥ △k − δkt + δ∗t ≥ (1− ϵ)△k (74)
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which implies Tk(t− 1) ≤ 16C2 ln t
(1−ϵ)2△2

k
.

This says that whenever Tk(t−1) ≥ 16C2 ln t
(1−ϵ)2△2

k
+A(ϵ)+Nc, either arm k is not pulled at time t

or one of the two following events (68), (69) holds. Thus if we define u = 16C2 ln t
(1−ϵ)2△2

k
+A(ϵ)+Nc,

we have

Tk(n) ≤ u+
n∑

t=u+1

1{It = k;Tk(t) ≥ u}

≤ u+
n∑

t=u+1

1{(68), or (69) holds }

We have from (64),(65)

Pr

((∑Tk∗ (t−1)
i=1 Xp

k∗,i

Tk∗(t− 1)

) 1
p
+ 2C

√
ln t

Tk∗(t− 1)
≤ µ∗

t

)
≤

t∑
s=1

1

t4
=

1

t3
(75)

and

Pr

((∑Tk(t−1)
i=1 Xp

k,i

Tk(t− 1)

) 1
p ≥ µkt + 2C

√
ln t

Tk(t− 1)

)
≤

t∑
s=1

1

t4
=

1

t3
(76)

so that from (75), we have

E[Tk(n)] ≤
16C2 ln t

(1− ϵ)2△2
k

+A(ϵ) +Nc +
n∑

t=u+1

2

t8C2−1
=

16C2 ln t

(1− ϵ)2△2
k

+A(ϵ) +Nc

+

n∑
t=u+1

2

t3

≤ 16C2 ln t

(1− ϵ)2△2
k

+A(ϵ) +Nc +
π2

3

Based on this result we derive an upper bound for the expectation of power mean in the
next theorem as follows.

Theorem 3. Under the assumptions of Theorem 2,

∣∣E[Xn(p)
]
− µ∗∣∣ ≤ |δ∗n|+O

(
K(C2 log n+N0)

n

) 1
p

.

Proof. In UCT, the value of each node is used for backup as Xn =
∑K

i=1

(
Ti(n)
n

)
Xi,Ti(n),

and the authors show that∣∣E[Xn

]
− µ∗∣∣ ≤ ∣∣E[Xn

]
− µ∗

n

∣∣+ ∣∣µ∗
n − µ∗∣∣

=
∣∣δ∗n∣∣+ ∣∣E[Xn

]
− µ∗

n

∣∣
≤
∣∣δ∗n∣∣+O

(
K(C2 log n+N0)

n

)
(77)
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We derive the same results replacing the average with the power mean. First, we have

E
[
Xn(p)

]
− µ∗

n = E

( K∑
i=1

Ti(n)

n
X

p
i,Ti(n)

) 1
p

− µ∗
n. (78)

In the proof, we will make use of the following inequalities:

0 ≤ Xi ≤ 1, (79)

x
1
p ≤ y

1
p when 0 ≤ x ≤ y, (80)

(x+ y)m ≤ xm + ym(0 ≤ m ≤ 1), (81)

E[f(X)] ≤ f(E[X]) (f(X) is concave). (82)

With i∗ being the index of the optimal arm, we can derive an upper bound on the difference
between the value backup and the true average reward

E

( K∑
i=1

Ti(n)

n
X

p
i,Ti(n)

) 1
p

− µ∗
n

≤ E


 K∑

i=1;i ̸=i∗

Ti(n)

n

+X
p
i∗,Ti∗(n)

 1
p

− µ∗
n(see (79))

≤ E


 K∑

i=1;i ̸=i∗

Ti(n)

n

 1
p

+Xi∗,Ti∗(n)

− µ∗
n(see (81))

= E


 K∑

i=1;i ̸=i∗

Ti(n)

n

 1
p

+ E
[
Xi∗,Ti∗(n)

]
− µ∗

n

= E


 K∑

i=1;i ̸=i∗

Ti(n)

n

 1
p


≤

 K∑
i=1;i ̸=i∗

E
[
Ti(n)

n

] 1
p

(see (82))

≤ ((K − 1)O

(
K(C2 log n+N0)

n

)
)
1
p (Theorem 2 & (80)) (83)

According to Lemma 1, it holds that

E
[
Xn(p)

]
≥ E

[
Xn

]
for p ≥ 1. Because of this, we can reuse the lower bound given by (77)

−O

(
K(C2 log n+N0)

n

)
≤ E

[
Xn

]
− µ∗

n,
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so that

−O

(
K(C2 log n+N0)

n

)
≤ E

[
Xn

]
− µ∗

n

≤ E
[
Xn(p)

]
− µ∗

n. (84)

Combining (83) and (84) concludes our prove

∣∣E[Xn(p)
]
− µ∗∣∣ ≤ |δ∗n|+O

(
K(C2 log n+N0)

n

) 1
p

.

The following theorem shows lower bound of choosing all the arms

Theorem 4. (Lower Bound) Under the assumptions of Theorem 2, there exists some
positive constant ρ such that for all arms k and n, Tk(n) ≥ ⌈ρ log(n)⌉

Proof. There should exist a constant S that(∑Tk(t−1)
i=1 Xp

k,i

Tk(t− 1)

) 1
p

+ 2C

√
ln t

Tk(t− 1)
≤ S

for all arm k so

µk + δkt + 2C

√
log t

Tk(t− 1)
≤ S

because

lim
t→∞

δkt = 0

so there exists a positive constant ρ that Tk(t− 1) ≥ ⌈ρ log(t)⌉

The next result shows the estimated optimal payoff concentration around its mean (Theorem
5). In order to prove that, we now reproduce here Lemma 5, 6 Kocsis et al. (2006) that we
use for our proof:

Lemma 5. Hoeffding-Azuma inequality for Stopped Martingales (Lemma 10 in Koc-
sis et al. (2006)). Assume that St is a centered martingale such that the corresponding
martingale difference process is uniformly bounded by C. Then, for any fixed ϵ ≥ 0, integers
0 ≤ a ≤ b, the following inequalities hold

Pr(SN ≥ ϵN) ≤ (b− a+ 1) exp
(−2a2ϵ2

C2

)
+ Pr(N /∈ [a, b]), (85)

Pr(SN ≤ ϵN) ≤ (b− a+ 1) exp
(−2a2ϵ2

C2

)
+ Pr(N /∈ [a, b]), (86)
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Lemma 6. (Lemma 13 in Kocsis et al. (2006)) Let (Zi), i=1,...,n be a sequence of random
variables such that Zi is conditionally independent of Zi+1, ..., Zn given Z1, ..., Zi−1. Let
define Nn =

∑n
i=1 Zi, and let an is an upper bound on E[Nn]. Then for all △ ≥ 0, if n is

such that an ≤ △/2 then

Pr(Nn ≥ △) ≤ exp(−△2/(8n)). (87)

The next lemma is our core result for propagating confidence bounds upward in the tree,
and it is used for the prove of Theorem 5 about the concentration of power mean estimator.

Lemma 7. let Zi, ai be as in Lemma 6. Let Fi denotes a filtration over some probability
space. Yi be an Fi-adapted real valued martingale-difference sequence. Let Xi be an i.i.d.
sequence with mean µ. We assume that both Xi and Yi lie in the [0,1] interval. Consider
the partial sums

Sn =

(∑n
i=1(1− Zi)X

p
i + ZiY

p
i

n

) 1
p

. (88)

Fix an arbitrary δ > 0, and fix p ≥ 1. Let △n = 9
√

1
Cp

n log(2/δ), and △ = (9/4)p−1△n let

Rn = E

[(∑n
i=1X

p
i

n

) 1
p
]
− E[Sn]. (89)

Then for n such that an ≤ (1/9)△n and |Rn| ≤ (4/9)(△/n)
1
p

Pr(Sn ≥ E[Sn] + (△/n)
1
p ) ≤ δ (90)

Pr(Sn ≤ E[Sn]− (△/n)
1
p ) ≤ δ (91)

Proof. We have a very fundamental probability inequality:
Consider two events: A,B. If A ∈ B, then Pr(A) ≤ Pr(B).
Therefore, if we have three random variables X,Y, Z and if we are sure that

Y ≥ Z, then Pr(X ≥ Y ) ≤ Pr(X ≥ Z) (92)

We have(∑n
i=1(1− Zi)X

p
i + ZiY

p
i

n

) 1
p

=

(∑n
i=1X

p
i

n
+

Zi(Y
p
i −Xp

i )

n

) 1
p

≤

(∑n
i=1X

p
i

n
+

2
∑n

i=1 Zi

n

) 1
p

(Xi, Yi ∈ [0, 1])

≤

(∑n
i=1X

p
i

n

) 1
p

+

(
2
∑n

i=1 Zi

n

) 1
p

(see (80)) (93)
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Therefore,

T = Pr

(
Sn ≥ E[Sn] + (△/n)

1
p

)
(94)

= Pr

((∑n
i=1(1− Zi)X

p
i + ZiY

p
i

n

) 1
p ≥ E[

∑n
i=1X

p
i

n

) 1
p
]−Rn + (△/n)

1
p

)
(see (89)) (95)

≤ Pr

((∑n
i=1X

p
i

n

) 1
p
+
(2∑n

i=1 Zi

n

) 1
p ≥ E

[(∑n
i=1X

p
i

n

) 1
p

]
−Rn + (△/n)

1
p

)
(see (92), (93))) (96)

Using the elementary inequality I(A + B ≥ △/n) ≤ I(A ≥ α△/n) + I(B ≥ (1 − α)△/n)
that holds for any A,B ≥ 0; 0 ≤ α ≤ 1, we get

T ≤ Pr

((∑n
i=1X

p
i

n

) 1
p ≥ E

[(∑n
i=1X

p
i

n

) 1
p

]
+ 1/9(△/n)

1
p

)
+ Pr

((2∑n
i=1 Zi

n

) 1
p ≥ 8/9(△/n)

1
p −Rn

)
(97)

Define µp = E

[(∑n
i=1 X

p
i

n

) 1
p

]
, we have

≤ Pr

((∑n
i=1X

p
i

n

) 1
p ≥ µp + 1/9(△/n)

1
p

)
+ Pr

((2∑n
i=1 Zi

n

) 1
p ≥ 4/9(△/n)

1
p

)
( see Rn ≤ (4/9)(△/n)

1
p ) (98)

= Pr

((∑n
i=1X

p
i

n

) 1
p ≥ µp +

1

9

9

4
(
4

9
△n/n)

1
p

)
+ Pr

((2∑n
i=1 Zi

n

) 1
p ≥ (

(4/9)p△
n

)
1
p

)
( definition of △) (99)

≤ Pr

((∑n
i=1X

p
i

n

) 1
p ≥ µp +△n/9n

)
+ Pr

((∑n
i=1 Zi

n

)
≥ 2△n/9n

)
(see (80) and f(x) = ax is decrease when a < 1) (100)

The first term is bounded by δ/2 according to (61) and the second term is bounded by δ/2
according to Lemma 6 (the condition of Lemma 6 is satisfied because an ≤ (1/9)△n). This
finishes the proof of the first part (90). The second part (91) can be proved in an analogous
manner.

Theorem 5. Fix an arbitrary δ ≤ 0 and fix p ≥ 1, let △n = (94)
p−1(9

√
1
Cp

n log(2/δ)). Let

n0 be such that

√
n0 ≤ O(K(C2 log n0 +N0(1/2))). (101)
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Then for any n ≥ n0, under the assumptions of Theorem 2, the following bounds hold true

Pr(Xn(p) ≥ E[Xn(p)] + (△n/n)
1
p ) ≤ δ (102)

Pr(Xn(p) ≤ E[Xn(p)]− (△n/n)
1
p ) ≤ δ (103)

Proof. Let Xt is the payoff sequence of the best arm. Yt is the payoff at time t. Both Xt, Yt
lies in [0,1] interval, and

Xn(p) =
(∑n

i=1(1−Zi)X
p
i +ZiY

p
i

n

) 1
p
Apply Lemma 6 and remember that X

1
p −Y

1
p ≤ (X−Y )

1
p

we have

Rn = E

[(∑n
i=1X

p
i

n

) 1
p

]
− E

[(∑n
i=1(1− Zi)X

p
i + ZiY

p
i

n

) 1
p

]
.

= E

[(∑n
i=1X

p
i

n

) 1
p −

(∑n
i=1(1− Zi)X

p
i + ZiY

p
i

n

) 1
p
]
.

≤ E

[(∑n
i=1X

p
i −

∑n
i=1(1− Zi)X

p
i − ZiY

p
i

n

) 1
p

]
.

= E

[(∑n
i=1 Zi(X

p
i − Y p

i )

n

) 1
p

]
.

≤ E

[( K∑
i=1

Ti(n)

n

) 1
p

]
.

≤

(∑K
i=1 E[Ti(n)]

n

) 1
p

. see Jensen inequality

=

(
(K − 1)O

(
K(C2 log n+N0(1/2))

n

)) 1
p

.

So that let n0 be an index such that if n ≥ n0 then an ≤ △n/9 and Rn ≤ 4/9(△n/n)
1
p .

Such an index exists since △n = O(
√
n) and an, Rn = O((log n/n)

1
p ). Hence, for n ≥ n0,

the conditions of lemma 6 are satisfied and the desired tail-inequalities hold for Xn(p).

In the next theorem, we show that Power-UCT can ensure the convergence of choosing
the best arm at the root node.

Theorem 6. (Convergence of Failure Probability) Under the assumptions of Theorem
2, it holds that

lim
t→∞

Pr(It ̸= i∗) = 0 (104)

Proof. We show that Power-UCT can smoothly adapt to UCT’s prove. Let i be the in-
dex of a suboptimal arm and let pit = Pr(Xi,Ti(t)(p) ≥ X

∗
T ∗(t)(p)) from above. Clearly,
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Pr(It ̸= i∗) ≤
∑

i ̸=i∗ pit. Hence, it suffices to show that pit ≤ ϵ/K holds for all suboptimal
arms for t sufficiently large.
Clearly, if Xi,Ti(t)(p) ≤ µi +△i/2 and X

∗
T ∗(t)(p) ≥ µ∗ −△i/2 then Xi,Ti(t)(p) < X

∗
T ∗(t)(p).

Hence,

pt ≤ Pr(Xi,Ti(t)(p) ≤ µi +△i/2) + Pr(X
∗
T ∗(t)(p) ≥ µ∗ −△i/2)

The first probability can be expected to be converging much slower since Ti(t) converges
slowly. Hence, we bound it first.
In fact,

Pr(Xi,Ti(t)(p) ≤ µi +△i/2) ≤ Pr(Xi,Ti(t)(p) ≤ µi,Ti(t) − |δi,Ti(t)|+△i/2).

Without the loss of generality, we may assume that |δi,Ti(t)| ≤ △i/4. Therefore

Pr(Xi,Ti(t)(p) ≤ µi +△i/2) ≤ Pr(Xi,Ti(t)(p) ≤ µi,Ti(t) +△i/4).

Now let a be an index such that if t ≥ a then (t+1)Pr(Xi,Ti(t)(p) ≤ µi,Ti(t)+△i/4) ≤ ϵ/(2K).
Such an index exist by our assumptions on the concentration properties of the average
payoffs. Then, for t ≥ a

Pr(Xi,Ti(t)(p) ≤ µi,Ti(t) +△i/4) ≤ Pr(Xi,Ti(t)(p) ≤ µi,Ti(t) +△i/4, Ti(t) ≥ a)

+Pr(Ti(t) ≤ a)

Since the lower-bound on Ti(t) grows to infinity as t → ∞, the second term becomes zero
when t is sufficiently large. The first term is bounded using the method of Lemma 5. By
choosing b = 2a, we get

Pr(Xi,Ti(t)(p) ≤ µi,Ti(t) +△i/4, Ti(t) ≥ a) ≤ (a+ 1)Pr(Xi,a(p) ≤ µi,a +△i/4, Ti(t) ≥ a)

+Pr(Ti(t) ≥ 2b) ≤ ϵ/(2K),

where we have assumed that t is large enough so that P (Ti(t) ≥ 2b) = 0.
Bounding Pr(X

∗
T ∗(t)(p) ≥ µ∗ − △i/2) by ϵ/(2K) can be done in an analogous manner.

Collecting the bound yields that pit ≤ ϵ/K for t sufficiently large which complete the
prove.

Now is our result to show the bias of expected payoff Xn(p)

Theorem 7. Consider algorithm Power-UCT running on a game tree of depth D, branching
factor K with stochastic payoff at the leaves. Assume that the payoffs lie in the interval [0,1].

Then the bias of the estimated expected payoff, Xn, is O(KD(log(n)/n)
1
p + KD(1/n)

1
p ).

Further, the failure probability at the root convergences to zero as the number of samples
grows to infinity.

Proof. The proof is done by induction on D. When D = 1, Power-UCT becomes UCB1
problem and as the result of Hoeffding’s inequality, the convergence is guaranteed directly
from Theorem 1, Theorem 3 and Theorem 6.
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Now we assume that the result holds up to depth D− 1 and consider the tree of Depth
D. Running Power-UCT on root node is equivalence as UCB1 on non-stationary bandit
settings. The error bound of running Power-UCT for the whole tree is the sum of payoff at
root node with payoff starting from any node i after the first action chosen from root node
until the end. This payoff by induction at depth (D − 1) is

O(K(D − 1)(log(n)/n)
1
p +KD−1(1/n)

1
p ).

According to the Theorem 3, the payoff at the root node is

|δ∗n|+O

(
K(log n+N0)

n

) 1
p

.

The payoff of the whole tree with depth D

|δ∗n|+O

(
K(log n+N0)

n

) 1
p

= O(K(D − 1)(log(n)/n)
1
p +KD−1(1/n)

1
p )

+O

(
K(log n+N0)

n

) 1
p

≤ O(K(D − 1)(log(n)/n)
1
p +KD−1(1/n)

1
p )

+O

(
K

(
log n

n

) 1
p

+KN0

(
1

n

) 1
p

)
= O(KD(log(n)/n)

1
p +KD(1/n)

1
p )

with N0 = O((K − 1)KD−1), which completes our proof of the convergence of Power-UCT.
Since by our induction hypothesis this holds for all nodes at a distance of one node from the
root, the proof is finished by observing that Theorem 3 and Theorem 5 do indeed ensure
that the drift conditions are satisfied. Interestingly, the proof guarantees the convergence
for any finite value of p.

Appendix B. Convex Regularization in Monte-Carlo Tree Search

In this section, we describe how to derive the theoretical results presented for the Convex
Regularization in Monte-Carlo Tree Search.

First, the exponential convergence rate of the estimated value function to the conjugate
regularized value function at the root node (Theorem 1) is derived based on induction with
respect to the depth D of the tree. When D = 1, we derive the concentration of the average
reward at the leaf node with respect to the ∞-norm (as shown in Lemma 1) based on the
result from Theorem 2.19 in Wainwright (2019), and the induction is done over the tree by
additionally exploiting the contraction property of the convex regularized value function.
Second, based on Theorem 1, we prove the exponential convergence rate of choosing the
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best action at the root node (Theorem 2). Third, the pseudo-regret analysis of E3W is
derived based on the Bregman divergence properties and the contraction properties of the
Legendre-Fenchel transform (Proposition 1). Finally, the bias error of estimated value at
the root node is derived based on results of Theorem 1, and the boundedness property of
the Legendre-Fenchel transform (Proposition 1).

Let r̂ and r be respectively the average and the the expected reward at the leaf node,
and the reward distribution at the leaf node be σ2-sub-Gaussian.

Lemma 1. For the stochastic bandit problem E3W guarantees that, for t ≥ 4,

Pr
(
∥ r − r̂t ∥∞≥

2σ

log(2 + t)

)
≤ 4|A| exp

(
− t

(log(2 + t))3

)
.

Proof. Let us define Nt(a) as the number of times action a have been chosen until time
t, and N̂t(a) =

∑t
s=1 πs(a), where πs(a) is the E3W policy at time step s. By choosing

λs =
|A|

log(1+s) , it follows that for all a and t ≥ 4,

N̂t(a) =

t∑
s=1

πs(a) ≥
t∑

s=1

1

log(1 + s)
≥

t∑
s=1

1

log(1 + s)
− s/(s+ 1)

(log(1 + s))2

≥
∫ 1+t

1

1

log(1 + s)
− s/(s+ 1)

(log(1 + s))2
ds =

1 + t

log(2 + t)
− 1

log 2
≥ t

2 log(2 + t)
.

From Theorem 2.19 in Wainwright (2019), we have the following concentration inequality

Pr(|Nt(a)− N̂t(a)| > ϵ) ≤ 2 exp{− ϵ2

2
∑t

s=1 σ
2
s

} ≤ 2 exp{−2ϵ2

t
},

where σ2
s ≤ 1/4 is the variance of a Bernoulli distribution with p = πs(k) at time step s.

We define the event

Eϵ = {∀a ∈ A, |N̂t(a)−Nt(a)| ≤ ϵ},

and consequently

Pr(|N̂t(a)−Nt(a)| ≥ ϵ) ≤ 2|A| exp(−2ϵ2

t
). (105)

Conditioned on the event Eϵ, for ϵ =
t

4 log(2+t) , we have Nt(a) ≥ t
4 log(2+t) . For any action a

by the definition of sub-gaussian,

Pr

(
|r(a)− r̂t(a)| >

√
8σ2 log(2δ ) log(2 + t)

t

)
≤ Pr

(
|r(a)− r̂t(a)| >

√
2σ2 log(2δ )

Nt(a)

)
≤ δ

by choosing a δ satisfying log(2δ ) =
1

(log(2+t))3
, we have

Pr

(
|r(a)− r̂t(a)| >

√
2σ2 log(2δ )

Nt(a)

)
≤ 2 exp

(
− 1

(log(2 + t))3

)
.
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Therefore, for t ≥ 2

Pr

(
∥ r − r̂t ∥∞>

2σ

log(2 + t)

)
≤ Pr

(
∥ r − r̂t ∥∞>

2σ

log(2 + t)

∣∣∣∣∣Eϵ

)
+ Pr(EC

ϵ )

≤
∑
k

(
Pr

(
|r(a)− r̂t(a)| >

2σ

log(2 + t)

)
+ Pr(EC

ϵ ) ≤ 2|A| exp

(
− 1

(log(2 + t))3

))

+ 2|A| exp

(
− t

(log(2 + t))3

)
= 4|A| exp

(
− t

(log(2 + t))3

)
.

Lemma 2. Given two policies π(1) = ∇Ω∗(r(1)) and π(2) = ∇Ω∗(r(2)), ∃L, such that

∥ π(1) − π(2) ∥p≤ L ∥ r(1) − r(2) ∥p .

Proof. This comes directly from the fact that π = ∇Ω∗(r) is Lipschitz continuous with
ℓp-norm. Note that p has different values according to the choice of regularizer. Refer
to Niculae and Blondel (2017) for a discussion of each norm using maximum entropy and
Tsallis entropy regularizer. Relative entropy shares the same properties with maximum
Entropy.

Lemma 3. Consider the E3W policy applied to a tree. At any node s of the tree with depth
d, Let us define N∗

t (s, a) = π∗(a|s).t, and N̂t(s, a) =
∑t

s=1 πs(a|s), where πk(a|s) is the

policy at time step k. There exists some C and Ĉ such that

Pr
(
|N̂t(s, a)−N∗

t (s, a)| >
Ct

log t

)
≤ Ĉ|A|t exp{− t

(log t)3
}.

Proof. We denote the following event,

Erk = {∥ r(s′, ·)− r̂k(s
′, ·) ∥∞<

2σ

log(2 + k)
}.
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Thus, conditioned on the event
⋂t

i=1Ert and for t ≥ 4, we bound |N̂t(s, a)−N∗
t (s, a)| as

|N̂t(s, a)−N∗
t (s, a)| ≤

t∑
k=1

|π̂k(a|s)− π∗(a|s)|+
t∑

k=1

λk

≤
t∑

k=1

∥ π̂k(·|s)− π∗(·|s) ∥∞ +

t∑
k=1

λk

≤
t∑

k=1

∥ π̂k(·|s)− π∗(·|s) ∥p +
t∑

k=1

λk

≤ L
t∑

k=1

∥ Q̂k(s
′, ·)−Q(s′, ·) ∥p +

t∑
k=1

λk(Lemma 2)

≤ L|A|
1
p

t∑
k=1

∥ Q̂k(s
′, ·)−Q(s′, ·) ∥∞ +

t∑
k=1

λk( Property of p-norm)

≤ L|A|
1
pγd

t∑
k=1

∥ r̂k(s′′, ·)− r(s′′, ·) ∥∞ +
t∑

k=1

λk(Contraction 1)

≤ L|A|
1
pγd

t∑
k=1

2σ

log(2 + k)
+

t∑
k=1

λk

≤ L|A|
1
pγd

∫ t

k=0

2σ

log(2 + k)
dk +

∫ t

k=0

|A|
log(1 + k)

dk

≤ Ct

log t
.

for some constant C depending on |A|, p, d, σ, L, and γ . Finally,

Pr(|N̂t(s, a)−N∗
t (s, a)| ≥

Ct

log t
) ≤

t∑
i=1

Pr(Ec
rt) =

t∑
i=1

4|A| exp(− t

(log(2 + t))3
)

≤ 4|A|t exp(− t

(log(2 + t))3
)

= O(t exp(− t

(log(t))3
)).

Lemma 4. Consider the E3W policy applied to a tree. At any node s of the tree, Let us
define N∗

t (s, a) = π∗(a|s).t, and Nt(s, a) as the number of times action a have been chosen
until time step t. There exists some C and Ĉ such that

Pr
(
|Nt(s, a)−N∗

t (s, a)| >
Ct

log t

)
≤ Ĉt exp{− t

(log t)3
}.
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Proof. Based on the result from Lemma 3, we have

Pr
(
|Nt(s, a)−N∗

t (s, a)| > (1 + C)
t

log t

)
≤ Ct exp{− t

(log t)3
}

≤ Pr
(
|N̂t(s, a)−N∗

t (s, a)| >
Ct

log t

)
+ Pr

(
|Nt(s, a)− N̂t(s, a)| >

t

log t

)
≤ 4|A|t exp{− t

(log(2 + t))3
}+ 2|A| exp{− t

(log(2 + t))2
}(Lemma 3 and (105))

≤ O(t exp(− t

(log t)3
)).

Theorem 8. At the root node s of the tree, defining N(s) as the number of visitations and
VΩ∗(s) as the estimated value at node s, for ϵ > 0, we have

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}.

Proof. We prove this concentration inequality by induction. When the depth of the tree is
D = 1, from Proposition 1, we get

|VΩ(s)− V ∗
Ω(s)| =∥ Ω∗(QΩ(s, ·))− Ω∗(Q∗

Ω(s, ·)) ∥∞≤ γ ∥ r̂ − r∗ ∥∞ (Contraction)

where r̂ is the average rewards and r∗ is the mean reward. So that

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ r̂ − r∗ ∥∞> ϵ).

From Lemma 1, with ϵ = 2σγ
log(2+N(s)) , we have

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ r̂ − r∗ ∥∞> ϵ) ≤ 4|A| exp{− N(s)ϵ

2σγ(log(2 +N(s)))2
}

= C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}.

Let assume we have the concentration bound at the depth D − 1, Let us define VΩ(sa) =
QΩ(s, a), where sa is the state reached taking action a from state s. then at depth D − 1

Pr(|VΩ(sa)− V ∗
Ω(sa)| > ϵ) ≤ C exp{− N(sa)ϵ

Ĉ(log(2 +N(sa)))2
}. (106)

Now at the depth D, because of the Contraction Property, we have

|VΩ(s)− V ∗
Ω(s)| ≤ γ ∥ QΩ(s, ·)−Q∗

Ω(s, ·) ∥∞
= γ|QΩ(s, a)−Q∗

Ω(s, a)|.
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So that

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ QΩ(s, a)−Q∗

Ω(s, a) ∥> ϵ)

≤ Ca exp{−
N(sa)ϵ

Ĉa(log(2 +N(sa)))2
}

≤ Ca exp{−
N(sa)ϵ

Ĉa(log(2 +N(s)))2
}.

From (106), we can have limt→∞N(sa) = ∞ because if ∃L,N(sa) < L, we can find ϵ > 0
for which (106) is not satisfied. From Lemma 4, when N(s) is large enough, we have
N(sa)→ π∗(a|s)N(s) (for example N(sa) >

1
2π

∗(a|s)N(s)), that means we can find C and

Ĉ that satisfy

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}.

Lemma 5. At any node s of the tree, N(s) is the number of visitations. We define the
event

Es = {∀a ∈ A, |N(s, a)−N∗(s, a)| < N∗(s, a)

2
} where N∗(s, a) = π∗(a|s)N(s),

where ϵ > 0 and VΩ∗(s) is the estimated value at node s. We have

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ|Es) ≤ C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}.

Proof. The proof is the same as in Theorem 2. We prove the concentration inequality by
induction. When the depth of the tree is D = 1, from Proposition 1, we get

|VΩ(s)− V ∗
Ω(s)| =∥ Ω∗(QΩ(s, ·))− Ω∗(Q∗

Ω(s, ·)) ∥≤ γ ∥ r̂ − r∗ ∥∞ (Contraction Property)

where r̂ is the average rewards and r∗ is the mean rewards. So that

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ r̂ − r∗ ∥∞> ϵ).

From Lemma 1, with ϵ = 2σγ
log(2+N(s)) and given Es, we have

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ r̂ − r∗ ∥∞> ϵ) ≤ 4|A| exp{− N(s)ϵ

2σγ(log(2 +N(s)))2
}

= C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}.

Let assume we have the concentration bound at the depth D − 1, Let us define VΩ(sa) =
QΩ(s, a), where sa is the state reached taking action a from state s, then at depth D − 1

Pr(|VΩ(sa)− V ∗
Ω(sa)| > ϵ) ≤ C exp{− N(sa)ϵ

Ĉ(log(2 +N(sa)))2
}.
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Now at depth D, because of the Contraction Property and given Es, we have

|VΩ(s)− V ∗
Ω(s)| ≤ γ ∥ QΩ(s, ·)−Q∗

Ω(s, ·) ∥∞
= γ|QΩ(s, a)−Q∗

Ω(s, a)|(∃a, satisfied).

So that

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ QΩ(s, a)−Q∗

Ω(s, a) ∥> ϵ)

≤ Ca exp{−
N(sa)ϵ

Ĉa(log(2 +N(sa)))2
}

≤ Ca exp{−
N(sa)ϵ

Ĉa(log(2 +N(s)))2
}

≤ C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}(because of Es)

.

Theorem 9. Let at be the action returned by algorithm E3W at iteration t. Then for t
large enough, with some constants C, Ĉ,

Pr(at ̸= a∗) ≤ Ct exp{− t

Ĉσ(log(t))3
}.

Proof. Let us define event Es as in Lemma 5. Let a∗ be the action with largest value
estimate at the root node state s. The probability that E3W selects a sub-optimal arm at
s is

Pr(at ̸= a∗) ≤
∑
a

Pr(VΩ(sa)) > VΩ(sa∗)|Es) + Pr(Ec
s)

=
∑
a

Pr((VΩ(sa)− V ∗
Ω(sa))− (VΩ(sa∗)− V ∗

Ω(sa∗)) ≥ V ∗
Ω(sa∗)− V ∗

Ω(sa)|Es) + Pr(Ec
s).

Let us define ∆ = V ∗
Ω(sa∗)− V ∗

Ω(sa), therefore for ∆ > 0, we have

Pr(at ̸= a∗) ≤
∑
a

Pr((VΩ(sa)− V ∗
Ω(sa))− (VΩ(sa∗)− V ∗

Ω(sa∗)) ≥ ∆|Es) + +Pr(Ec
s)

≤
∑
a

Pr(|VΩ(sa)− V ∗
Ω(sa)| ≥ α∆|Es) + Pr(|VΩ(sa∗)− V ∗

Ω(sa∗)| ≥ β∆|Es) + Pr(Ec
s)

≤
∑
a

Ca exp{−
N(s)(α∆)

Ĉa(log(2 +N(s)))2
}+ Ca∗ exp{−

N(s)(β∆)

Ĉa∗(log(2 +N(s)))2
}+ Pr(Ec

s),

where α+ β = 1, α > 0, β > 0, and N(s) is the number of visitations the root node s.

Let us define 1
Ĉ
= min{ (α∆)

Ca
, (β∆)

Ca∗
}, and C = 1

|A| max{Ca, Ca∗} we have

Pr(a ̸= a∗) ≤ C exp{− t

Ĉσ(log(2 + t))2
}+ Pr(Ec

s).
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From Lemma 4, ∃C ′
, Ĉ ′ for which

Pr(Ec
s) ≤ C

′
t exp{− t

Ĉ ′(log(t))3
},

so that

Pr(a ̸= a∗) ≤ O(t exp{− t

(log(t))3
}).

Theorem 10. Consider an E3W policy applied to the tree. Let define DΩ∗(x, y) = Ω∗(x)−
Ω∗(y) − ∇Ω∗(y)(x − y) as the Bregman divergence between x and y, The expected pseudo
regret Rn satisfies

E[Rn] ≤ −τΩ(π̂) +
n∑

t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)) +O(
n

log n
).

Proof. Without loss of generality, we can assume that Vi ∈ [−1, 0], ∀i ∈ [1, |A|]. as the
definition of regret, we have

E[Rn] = nV ∗ −
n∑

t=1

⟨π̂t(·), V (·)⟩ ≤ V̂1(0)−
n∑

t=1

⟨π̂t(·), V (·)⟩ ≤ −τΩ(π̂)−
n∑

t=1

⟨π̂t(·), V (·)⟩ .

By the definition of the tree policy, we can obtain

−
n∑

t=1

⟨π̂t(·), V (·)⟩ = −
n∑

t=1

〈
(1− λt)∇Ω∗(V̂t(·)), V (·)

〉
−

n∑
t=1

〈
λt(·)
|A|

, V (·)
〉

= −
n∑

t=1

〈
(1− λt)∇Ω∗(V̂t(·)), V (·)

〉
−

n∑
t=1

〈
λt(·)
|A|

, V (·)
〉

≤ −
n∑

t=1

〈
∇Ω∗(V̂t(·)), V (·)

〉
−

n∑
t=1

〈
λt(·)
|A|

, V (·)
〉
.
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with

−
n∑

t=1

〈
∇Ω∗(V̂t(·)), V (·)

〉
=

n∑
t=1

Ω∗(V̂t(·) + V (·))−
n∑

t=1

Ω∗(V̂t(·))−
n∑

t=1

〈
∇Ω∗(V̂t(·)), V (·)

〉
− (

n∑
t=1

Ω∗(V̂t(·) + V (·))−
n∑

t=1

Ω∗(V̂t(·)))

=

n∑
t=1

DΩ∗(V̂t(·) + V (·), V̂t(·))

− (
n∑

t=1

Ω∗(V̂t(·) + V (·))−
n∑

t=1

Ω∗(V̂t(·)))

≤
n∑

t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)) + n ∥ V (·) ∥∞

(Contraction property, Proposition 1)

≤
n∑

t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)).( because Vi ≤ 0)

And

−
n∑

t=1

〈
λt(·)
|A|

, V (·)
〉
≤ O( n

log n
), (Because

n∑
k=1

1

log(k + 1)
→ O( n

log n
))

So that

E[Rn] ≤ −τΩ(π̂) +
n∑

t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)) +O(
n

log n
).

We consider the generalized Tsallis Entropy Ω(π) = Sα(π) = 1
1−α(1−

∑
i π

α(ai|s)).
According to (Abernethy et al., 2015), when α ∈ (0, 1)

DΩ∗(V̂t(·) + V (·), V̂t(·)) ≤ (τα)−1|A|α

−Ω(π̂n) ≤
1

1− α
(|A|1−α − 1).

Then, for the generalized Tsallis Entropy, when α ∈ (0, 1), the regret is

E[Rn] ≤
τ

1− α
(|A|1−α − 1) + n(τα)−1|A|α +O( n

log n
),

when α = 2, which is the Tsallis entropy case we consider, according to Zimmert and Seldin
(2019), By Taylor’s theorem ∃z ∈ conv(V̂t, V̂t + V ), we have

DΩ∗(V̂t(·) + V (·), V̂t(·)) ≤
1

2

〈
V (·),∇2Ω∗(z)V (·)

〉
≤ |K|

2
.
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So that when α = 2, we have

E[Rn] ≤ τ(
|A| − 1

|A|
) +

n|K|
2

+O( n

log n
).

when α = 1, which is the maximum entropy case in our work, we derive.

E[Rn] ≤ τ(log |A|) + n|A|
τ

+O( n

log n
)

Finally, when the convex regularizer is relative entropy, One can simply writeKL(πt||πt−1) =
−H(πt)− Eπt log πt−1, let m = mina πt−1(a|s), we have

E[Rn] ≤ τ(log |A| − 1

m
) +

n|A|
τ

+O( n

log n
).

Before derive the next theorem, we state the Theorem 2 in Geist et al. (2019)

• Boundedness: for two constants LΩ and UΩ such that for all π ∈ Π, we have LΩ ≤
Ω(π) ≤ UΩ, then

V ∗(s)− τ(UΩ − LΩ)

1− γ
≤ V ∗

Ω(s) ≤ V ∗(s). (107)

Where τ is the temperature and γ is the discount constant.

Theorem 11. For any δ > 0, with probability at least 1− δ, the εΩ satisfies

−

√
Ĉσ2 log C

δ

2N(s)
− τ(UΩ − LΩ)

1− γ
≤ εΩ ≤

√
Ĉσ2 log C

δ

2N(s)
.

Proof. From Theorem 2, let us define δ = C exp{−2N(s)ϵ2

Ĉσ2
}, so that ϵ =

√
Ĉσ2 log C

δ
2N(s) then for

any δ > 0, we have

Pr(|VΩ(s)− V ∗
Ω(s)| ≤

√
Ĉσ2 log C

δ

2N(s)
) ≥ 1− δ.

Then, for any δ > 0, with probability at least 1− δ, we have

|VΩ(s)− V ∗
Ω(s)| ≤

√
Ĉσ2 log C

δ

2N(s)

−

√
Ĉσ2 log C

δ

2N(s)
≤ VΩ(s)− V ∗

Ω(s) ≤

√
Ĉσ2 log C

δ

2N(s)

−

√
Ĉσ2 log C

δ

2N(s)
+ V ∗

Ω(s) ≤ VΩ(s) ≤

√
Ĉσ2 log C

δ

2N(s)
+ V ∗

Ω(s).

From Proposition 1, we have

−

√
Ĉσ2 log C

δ

2N(s)
+ V ∗(s)− τ(UΩ − LΩ)

1− γ
≤ VΩ(s) ≤

√
Ĉσ2 log C

δ

2N(s)
+ V ∗(s).
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Appendix C. A Unified Perspective on Value Backup and Exploration in
Monte-Carlo Tree Search

Theorem 12. When α ∈ (0, 1), the regret of E3W (Dam et al., 2021) with the regularizer
fα is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) + n(2τ)−1|A|α +O( n

log n
).

Proof. Please refer to equation (107) in Theorem 10

Theorem 13. When α ∈ (1,∞), α ̸= 2, the regret of E3W (Dam et al., 2021) with the
regularizer fα is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) +

n|K|
2

+O( n

log n
).

where |K| is the number of actions that are assigned non-zero probability in the policy
at the root node.

Proof. From Theorem 10, we have

E[Rn] ≤ −τΩ(π̂) +
n∑

t=1

DΩ∗(V̂t(·) + V (·), V̂t(·)) +O(
n

log n
).

Here, Ω(π̂) = fα(π̂) =
1

α(1−α)(1−
∑

i π̂
α(ai|s)). So as the result from Theorem 10, we have

−Ω(π̂n) ≤
1

α(1− α)
(|A|1−α − 1).

By Taylor’s theorem ∃z ∈ conv(V̂t, V̂t + V ), we have

DΩ∗(V̂t(·) + V (·), V̂t(·)) ≤
1

2

〈
V (·),∇2Ω∗(z)V (·)

〉
.

So that according to Equations (46), (47), (48), (49), we have

DΩ∗(V̂t(·) + V (·), V̂t(·)) ≤
1

2

〈
V (·),∇2Ω∗(z)V (·)

〉
≤ |K|

2
.

so that

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) +

n|K|
2

+O( n

log n
).

We analyse the error of the regularized value estimate at the root node n(s) w.r.t. the
optimal value: εΩ = VΩ(s)− V ∗(s). where Ω is the α-divergence regularizer fα.
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Theorem 14. For any δ > 0 and α-divergence regularizer fα (α ̸= 1, 2), with some constant
C, Ĉ, with probability at least 1− δ, εΩ satisfies

−

√
Ĉσ2 log C

δ

2N(s)
− τ

α(1− α)
(|A|1−α − 1) ≤ εΩ ≤

√
Ĉσ2 log C

δ

2N(s)
. (108)

Proof. We have

0 ≤ −Ω(π̂n) ≤
1

α(1− α)
(|A|1−α − 1).

combine with Theorem 11 we will have

−

√
Ĉσ2 log C

δ

2N(s)
− τ

α(1− α)
(|A|1−α − 1) ≤ εΩ ≤

√
Ĉσ2 log C

δ

2N(s)
. (109)

Appendix D. Experimental Hyperparameter Search

Table 6: The hyperparameter τ (temperature) for MENTS and TENTS in Atari.
MENTS RENTS TENTS

Alien 0.1 0.01 0.03
Asterix 0.02 0.09 0.1
Asteroids 0.08 0.1 0.2
Atlantis 0.08 0.01 0.03
BankHeist 0.0 0.01 0.0
BeamRider 0.02 0.02 0.03
Breakout 0.02 0.01 0.04
Centipede 0.0 0.5 0.0
DemonAttack 0.0 0.6 0.0
Enduro 0.02 0.08 0.1
Frostbite 0.01 0.01 0.02
Gopher 0.0 0.07 0.0
Hero 0.4 0.04 0.03
MsPacman 0.09 0.08 0.03
Phoenix 0.07 0.03 0.6
Qbert 0.02 0.06 0.4
Robotank 0.01 0.03 0.05
Seaquest 0.02 0.02 0.03
Solaris 0.03 0.05 0.06
SpaceInvaders 0.02 0.01 0.06
WizardOfWor 0.1 0.2 0.01

To compare the performance of UCT, Power-UCT, E3W to other state-of-the-art planning
algorithms, we run several experiments on standard MDP as well as POMDP environments.
The hyperparameters are tuned using grid-search. Except for the case of PocMan environ-
ment, we scale the rewards into the range [0, 1]. We set the discount factor γ = 0.99 in all
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MDPs (except for FrozenLake(8 × 8) where we set the discount factor=1.0) and γ = 0.95
in all POMDPs.
FrozenLake :In FrozenLake(8× 8) environment, since this is a challenging problem, we do
Bayesian optimization to find the best hyperparameter for MENTS with τ = 0.046, ϵ = 0.17.
We perform hyper parameter search for the exploration constant C in UCT with C =
{0.01, 0.02, ..., 1.2, 1.3, 1.41} and find that UCT works best for C = 1.41. We set C = 1.41
for Power-UCT also.
Atari : We run E3W in Atari with 100 random seeds, where each seed with 512 samples
and collect the average score. We found that only 512 simulations were necessary due to
the utilization of a pretrained neural network. The temperature parameter τ of MENTS,
RENTS and TENTS is tuned from {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The selected parameter τ are shown in Table 6. The
exploration constant ϵ for MENTS, RENTS and TENTS are set to 0.01. For MaxMCTS,
we find the best hyperparameter λ = 1.0
Rocksample and pocman : In all Rocksample and Pocman environments, we set the
heuristic for rollouts as treeknowledge = 0, rolloutknowledge = 1. We use gridsearch
(τ = 0.01, 0.02, ..., 0.1, 0.2, ..., 1.0), (ϵ = 1.0, 0.5, 0.25, 0.125, 0.01, 0, 025) to find the best
hyperparameter τ = 0.5, ϵ = 0.125 for MENTS in Pocman (Table. 4). The exploration
constant for UCT and Power-UCT is set to c =

√
2.

Copy : For Copy environments (Table. 3), We find the best hyperparameter after a grid-
search for MENTS with τ = 0.1, 1.0, 0.08 in Copy-144,Copy-200 and Copy-300 respectively.
For RENT, the performance does not change much and the best hyperparameter after a
gridsearch for RENTS is τ = 0.08 in all Copy-144,Copy-200 and Copy-300. We set ϵ = 0
for both MENTS and RENTS since the softmax policy itself does the exploration and the
Copy environment does not need much exploration.
We find the exploration constant works best for UCT and Power-UCT with c = 0.25 by
doing grid search over {0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}.

Appendix E. Additional experiments

We additionally include a concrete running example of UCT, Power-UCT and MENTS,
TENTS, α-divergence(α = 4.0, 8.0, 10.0, 16.0) approaches on a small synthetic tree to sig-
nificantly show the benefits of each method. We run each algorithm in a synthetic tree and
show the whole planning tree of each method after a certain number of samples. Due to
the limitation space, we plot four Figures. Fig. 14 shows the whole MCTS tree comparing
UCT and Power-UCT. Fig. 15 compares MENTS and TENTS. Fig. 16 shows compares
α−divergence with α = 4 and α = 8, while Fig. 17 compares α−divergence with α = 10
and α = 16. As shown in Fig. 14, Power-UCT and UCT share nearly the same visitation
count of each node, and both methods show that we can find the optional node in red color.
However, due to the power mean estimator, the estimated value of Power-UCT is higher
than the average mean estimator of UCT. We further compare the detail intermediate steps
of MENTS and TENTS in Fig. 15. Both methods can find the optimal action (shown in red
color). However, it shows that TENTS converges faster than MENTS (as the number of
visitation count at the optimal node is 706 compared to 695 of MENTS after 1000 samples.)
We take a further step to compare α-divergence with difference value of α = 4, 8, 10, 16. As
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(a) UCT.

(b) Power-UCT.

Figure 14: Monte-Carlo Tree Search of UCT and Power-UCT after 1000 samples. Blue
color circle is Vnode, Brown color circle is Qnode. Yellow color circle is the leaf
node. Red color circle is the node with the optimal Qvalue function. Labels
below the circles are (empirical mean value, visitation count). The two methods
share nearly the same visitation count of each node. However, due to the power
mean estimator, the estimated value in Power-UCT is higher than the average
mean estimator of UCT.

shown in Fig 16, Fig 17, the convergence rate of choosing the optimal node (in red color)
increase when we increase the value of α = 4, 8, 10. However, the performance does not
increase when we increase α = 10, and α = 16.

569



Dam, D’Eramo, Peters & Pajarinen

(a) MENTS.

(b) TENTS.

Figure 15: Monte-Carlo Tree Search of MENTS and TENTS after 1000 samples. Blue color
circle is Vnode, Brown color circle is Qnode. Yellow color circle is the leaf node.
Red color circle is the node with the optimal Qvalue function. Labels below
the circles are (empirical mean value, visitation count). Due to the sparsity of
action selection policy, optimal action selection in TENTS converges faster than
MENTS as we can see at the optimal node in red color, the number of visitation
in the tree of TENTS is 706 compared to 695 in MENTS.
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(a) α-divergence(α = 4.0).

(b) α-divergence(α = 8.0).

Figure 16: Monte-Carlo Tree Search of α-divergence(α = 4.0) and α-divergence(α = 8.0)
after 1000 samples. Blue color circle is Vnode, Brown color circle is Qnode.
Yellow color circle is the leaf node. Red color circle is the node with the optimal
Qvalue function. Labels below the circles are (empirical mean value, visitation
count). The optimal action selection in α-divergence(α = 8.0) converges faster
than α-divergence(α = 4.0) as we can see at the optimal node in red color, the
number of visitation in the tree of α = 4.0 is 921 compared to 939 of α = 8.0.
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(a) α-divergence(α = 10.0).

(b) α-divergence(α = 16.0).

Figure 17: Monte-Carlo Tree Search of α-divergence(α = 10.0) and α-divergence(α = 16.0)
after 1000 samples. Blue color circle is Vnode, Brown color circle is Qnode.
Yellow color circle is the leaf node. Red color circle is the node with the optimal
Qvalue function. Labels below the circles are (empirical mean value, visitation
count). The optimal action selection in α = 10.0, and α = 16.0 share the same
converges rate as we can see at the optimal node in red color, the number of
visitation in the tree of α = 10.0 is 939 compared to 938 of α = 16.0.
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