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Abstract: This paper presents a convex optimization approach for the simultaneous recon-
struction of unknown input torque and torsional response in the driveline of an azimuth
thruster. Accurate estimates of the shaft torque responses are necessary for condition monitoring
purposes. Estimating torque responses also enables flexibility in the choice of sensor location,
with subsequent potential savings in installation and maintenance costs. It is shown that the
unknown inputs and states can be reconstructed using batch torque measurements from a
single location in the propulsion line. The estimation problem is formulated as a trend-filtering
problem, enforcing the smoothness of input estimates. The performance of the proposed method
is evaluated by means of simulations and experiments on a small-scale testbench of a maritime
azimuthing thruster. The results show that the torsional response of the propeller shaft can
be accurately reconstructed using torque measurements from sensors installed near the driving

motor at the opposite end of the driveline.

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Maritime propulsion systems are affected by various exci-
tations caused by hydrodynamic loads, ranging from exci-
tations related to normal operation, emergency situations,
and heavy sea conditions (Kozlowska, 2019). In the arctic
regions, which have gained increasing interest for maritime
operations (Jutterstrom et al., 2021; Kondratenko et al.,
2023), excitations caused by propeller-ice interactions are
especially of concern (Soininen, 1998; Ikonen et al., 2015;
de Waal et al., 2018). Monitoring the condition of the
system is crucial for preventing fatal scenarios, such as
shaft or gear failures, and for implementing predictive
maintenance strategies. However, condition monitoring re-
quires knowledge of the unknown external excitations that
rarely can be measured directly. Thus, this paper proposes
a virtual sensor for reconstructing torque excitations and
responses in maritime thruster drivetrains.

External forces due to, e.g., propeller-ice interactions have
been measured with strain gauges installed directly on the
propeller blades (Ikonen et al., 2015). As the propeller is
subject to heavy excitations, the measurement equipment
can break, requiring a reinstallation of the measurement

* This research was supported by Business Finland (CO-DES Dig-
ital transformation of collaborative powertrain design, under Grant
243/31/2022, GOOD Future electrified mobile machinery for harsh
conditions, under Grant 3014/31/2021, and Virtual Sea Trial under
Grant 7316/31/2023.

equipment. Measuring the torsional response of the com-
plete propulsion system is often not a viable option in
practice, as this requires installing measuring equipment
on multiple sections of the system, which can be limited
by space and installation costs. By estimating the response
of the system, more freedom is attained in the choice of
physical sensor locations.

Several approaches have been proposed for online estima-
tion of unknown inputs and maritime propulsion system
states. Whereas the simultaneous input-and-state estima-
tion methods (Gillijns and De Moor, 2007; Bitmead et al.,
2019) and augmented Kalman filtering and smoothing
methods (Lourens et al., 2012; Manngard et al., 2019;
Lagerblad et al., 2021; Manngard et al., 2022) are con-
sidered state of the art, Manngard et al. (2022) presented
a Kalman-filter approach for estimating the states and
unknown inputs of an azimuthing thruster. The thruster
model was augmented with excitations modeled as quasi-
stationary stochastic signals with bounded spectral densi-
ties.

Input reconstruction from batch measurements can be
considered an inverse problem, which has, e.g., been solved
by regularization methods (Ikonen et al., 2015; de Waal
et al., 2018; Nickerson and Bekker, 2021; Koker and
Bekker, 2022). Tkonen et al. (2015) considered truncated
singular value decomposition and Tikhonov regularization
for inverse determination of propeller torque in a direct
driven propulsion system. The work of Tkonen et al.
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(2015) was extended by Nickerson and Bekker (2021),
where the accuracy and computational speed of different
regularization methods were studied, finding Tikhonov
regularization to perform the best. However, Tikhonov
regularization might perform poorly for the estimation
for non-stationary excitations or step-like disturbances.
Thus, we propose a regularization approach based on
Hodrick-Prescott filtering (Hodrick and Prescott, 1997) for
reconstructing unknown input excitations.

This article studies the problem of reconstructing torque
excitation and responses in maritime azimuthing-thruster
drivetrains. The input-reconstruction problem is formu-
lated as a trend filtering problem, where shaft dynamics
and measurement errors are accounted for in the system
model, and regularization is applied to enforce smooth-
ness in input estimates. The proposed method has been
implemented on a laboratory-scale test bench designed to
emulate the real-life operating conditions of a maritime
azimuth thruster. It is shown that the proposed trend-
filtering method can be used to estimate the propeller
torque excitations and propeller-shaft torque responses
using measurements from a location close to the driving
motor. The method is verified using simulations and ex-
periments on the testbench.

2. MATERIALS AND METHODS

This section presents the modeling methods and problem
formulation for unknown input torque estimation using
trend filtering methods. The laboratory-scale maritime
thruster testbench presented in Figure 1 was used to verify
the method.

2.1 Dynamic model

A lumped-element model of a maritime thruster is derived
in the form of a discrete-time linear time-invariant (LTT)
state-space model. The discrete-time state-space model is

then extended to a form allowing the use of batch input
data. For torsional vibration analysis, rotating machinery,

Encoder 2 Encoder 1

-

Torque
transduger 1

Driving motor

Bevel gear 1(\ -

Torque Loading motor

transducer 2

/
Bevel gear 2 Planetary gear

Fig. 1. Small-scale maritime thruster testbench. The test-
bench speed was kept constant using the driving mo-
tor. Torque excitations were applied using the loading
motor. Measurements from encoder 1, encoder 2 and
torque transducer 1 were used for torque reconstruc-
tion, verified using measurements from torque trans-
ducer 2.

including maritime thrusters, can be modeled using the
shaft-line finite element method (FEM) (Friswell et al.,
2010; Genta, 2012; Murawski and Charchalis, 2014). In the
shaft-line FEM, components of the system are divided into
lumped-elements with inertia I; connected by torsional
springs with stiffness k; and damping ¢; (Figure 2). Torque
losses due to, e.g., viscous friction, can be included in the
model as internal damping of the shafts, or external damp-
ing d;. The lumped-element model can be represented in
a discrete-time state-space form

z(k+1) = Az(k) + Bu(k), (1)
y(k) = Cx(k) + Du(k) + v(k), (2)

where z(k) € R™ are the system states. The system
matrices A, B,C are assembled from the lumped mass-
moment of inertia I;, damping coefficients ¢; and d;, and
stiffness k;, cf. (Manngard et al., 2019, 2022). Differing
from the standard approach (Friswell et al., 2010), to
ensure that the state-space realization is minimal, the
state vector is expressed in terms of angular velocities
0; and difference in consecutive lumped-element angles
AO; = (0; — 0;_1). The values u(k) € R™ are unknown
torque excitations, y(k) € R! are output measurements,
and v(k) € R! measurement noise. The measurement noise
is assumed to be a zero-mean stationary-stochastic signal
with known covariance

E [v(k)v(k)"] = R. (3)
Repeated substitution of (1) into (2) allows measurements

y(0),y(1),...,y(IN — 1) to be expressed in terms of input
signals u(k) and the initial state 2(0) as

y=0z(0)+Tu+o, (4)
where
y(0) u(0) v(0)
y(1) u(1) v(1)
y = : ) u = : b v = : b
y(N —1) u(N —1) v(N —1)

f f \
Torque Encoder 2 Encoder 1 Driving motor

transducer 1

Tot}que
transducer 2

Loading motor

Fig. 2. Lumped-element model of the laboratory testbench.
The model consists of lumped masses and gear el-
ements connected by torsional springs and dampers.
External torque is applied at the first and last lumped
element positions.
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2.2 Optimization problem

For known initial state 2(0) in (4), the input reconstruction
problem can be posed as a weighted, regularized least-
squares problem

N-1
1
minimize L(u) + — v(k)" R (k)
i N 2 5)
subject to v =y — Oz(0) —Tu

where L(u) is a regularization term introduced to ensure
the least-squares problem is well-posed. The regularization
function L(u) should be determined based on known
properties of the unknown input signal w.

For stationary-stochastic zero-mean input excitations with
known covariance, E [u(k)u' (k)] = Q, the regularized
term can be set to
=
L(u) = w > u' ())Q "u(k) (6)
k=
resulting in the weighted Tikhonov-regularized problem
N—-1
1
.. TA—1 Tp—1
minimize Z u(k) Q u(k) + i Z v(k) R~ v(k)
k=0 k=0
subject to v =1y —Tu.
(7)
Defining matrices Wg = Iy ® R~ and Wo = Iy ® Q71,
the problem has the explicit solution

u=(Wo+TTWgI) " T Wgy. ®)

In practice, unknown input excitations are rarely zero-
mean stationary stochastic. Instead, signals can be en-
forced to be smooth in order to constrain the feasible set
of solutions in the input reconstruction problem. Similar
to trend filtering, where the goal is to find a trade-off
between the smoothness of estimates and the residual error
(Hodrick and Prescott, 1997; Kim et al., 2009), the in-
put reconstruction problem can be formulated to promote
smoothness in input estimates by constraining the second
difference of v with the regularisation function
N—2
L(u) = ) (u(k—1) = 2u(k) + u(k +1))* = || Azull3. (9)
k=1
In the present case, for input torques u,, from the motor
and up, from the propeller, the regularization term is

10-2 0 1 um (0)
10 -2 0 1 up(0)
Dgu=| : (10)
1 0 -2 01 Um (k)
1 0 —=201] [up(k)
The input reconstruction problem then becomes
N-1
mirgglize M| Agul|3 + kZ:Ov(k)TR_lv(k) (11)

subject to v =y — Oz(0) — T'u.

The regularization parameter A > 0 was introduced to
control the trade-off between the smoothness of u and the
output error y — ['u. The problem has an explicit solution

u=(AA] Ay + TTWRT) ' T Why. (12)
The proposed method resembles the Hodrick-Prescott
trend filter (Hodrick and Prescott, 1997; Kim et al., 2009).
However, the crucial difference is that, here, the known

dynamics of the system and measurement errors have been
properly accounted for.

2.8 Measurements on a small-scale testbench

A lumped-element model of the testbench was created
and formulated to a discrete-time LTI state-space model
as described in Section 2.1. Theoretical analysis of the
method was conducted using simulated excitations. The
method was verified experimentally using shaft torque
(Torque transducer 1) and rotational speed (Encoder 1
& 2) measurements near the driving motor of the test-
bench (Figure 1). The torsional response reconstructed
using estimated motor and propeller input torques was
compared to shaft torque measurements from the propeller
shaft (Torque transducer 2).

The testbench represents a down-scaled maritime thruster.
It has been designed to have dynamical properties compa-
rable to a full-scale thruster, for example similar torsional
natural frequencies and angular displacement of shafts at
nominal load. The testbench consists of shafts, couplings
and two bevel gears. The bevel gears, annotated in Figure
1, have gear ratios 3:1 and 4:1 respectively. The testbench
includes two identical 2.63 kW servomotors for driving
and loading the testbench. The loading motor is coupled
with a planetary gear with a gear ratio 1:8. The used
measurement equipment include two rotary encoders and
a torque transducer on the driving motor shaft. Another
torque transducer is located on the propeller shaft for
verification measurements. For a thorough description of
the testbench, the reader is referred to (Haikonen et al.,
2022).

3. RESULTS
8.1 Simulated experiments

Three simulated excitation cases were considered for the-
oretical analysis. The considered cases were an impulse,
step, and periodic excitation (Figure 3). All of these in-
put torques act on the propeller inertia in the system
model. The length of the simulated excitations were 500
timesteps, where the step size At = 0.001s. In all of
the simulated excitation cases, the driving motor torque
was set to a constant 2.7 Nm to mimic real operating
conditions of the testbench. Zero-mean Gaussian white
noise with a standard deviation ¢ = 0.1 was added to the
simulated excitations and the response to include process
and measurement noise in the simulation experiments.

The regularization parameter A affects how strongly regu-
larization is enforced in the input reconstruction problem,
and its value is defined by the user. One way to deter-
mine values A is to use the L-curve method. The L-curve
criterion states that a pareto-optimal A can be found at
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Fig. 3. Simulated excitations, where a) is a single impulse
with an amplitude of 10 Nm, b) is a 10 Nm step
and c) is a sum of three sine waves with 10 Nm DC-
offset, amplitudes of 10, 5 and 1 Nm and frequencies
corresponding to 1, 4 and 8 times 2000 rpm without
phase difference.
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Fig. 4. Residual norm and the regularizing norm, resulting
from the estimation of the simulated impulse exci-
tation with different A\ values, forms the L-curve. A
suitable regularization parameter A = 1 is annotated
in red near the corner of the L-curve.

the corner of the L-curve. The corner can be found by
calculating the curvature of the L-curve and the pareto-
optimal X is found where the curvature is the largest
(Hansen, 1998). This method includes a challenge that
the regularization parameter can be too large, thus the
regularization is enforced too strongly (Hansen, 2001). In
the present application, this means that smoothness could
be enforced more than is desirable. Another challenge
regarding the pareto-optimal \ is that it most likely varies
between different data batches. To find a precise value
for A, the L-curve should be calculated for each batch
of data used in the estimation, increasing computational
cost significantly. Thus, it would be beneficial for the
present application to predetermine a value for A using
simulations, which yields satisfactory results in practice.

Instead of calculating the L-curve and its maximum cur-
vature for every individual data batch, A was determined
from L-curve using simulation results. This way, the opti-

—— Simulated estimate

Simulated measurement

Torque (Nm)

Torque (Nm)

Torque (Nm)

Time (s)

Fig. 5. Propeller shaft torque reconstructed using the
simulated unit excitations. In a) is the response to
the impulse, in b) the step excitation and in ¢) the
periodic excitation. Regularization parameter A = 1
was used in all three simulations, determined from L-
curves of each case respectively.

mality of A\ is not guaranteed, however, a sufficient value
A can readily be found. Furthermore, the user may want
to vary how strongly the smoothness in the estimate is
enforced, thus, a reasonable range for values A could be
determined using the L-curve. The testbench model and
the simulated excitations were used to form an L-curve for
each simulation case. The L-curves were used to determine
a suitable regularization parameter A to be used in the
input estimation problem. In Figure 4 is presented the L-
curve produced using the simulated impulse excitation.

Simulated measurements were used for the estimation of
input torques. The simulated measurements were pro-
duced using the testbench model and the excitations
shown in Figure 3. The simulated input torques were
estimated using Equation (12). Gaussian white noise was
added to the simulated measurements, thus, the measure-
ment noise covariance matrix R = I, where I is the
identity matrix, was used. The states of the testbench were
reconstructed using the discrete-time state-space model
and the estimated input torques with

2k +1) = A#(k) + Ba(k)
§(k) = Ci(k),
where (k) is the estimated input torque and g(k) is the

resulting estimated response. The reconstructed torsional
response at the propeller shaft is presented in Figure 5.

(13)

8.2 Experimental verification

Three unit excitation cases similar to the simulated exci-
tations were considered for the experimental verification.
The testbench was excited using the loading motor and
the driving motor speed was kept constant at 2000 rpm.
Shaft torque and rotational speed measurements near the
driving motor were used in the estimation of the input
torques. Shaft torque measurements on the propeller shaft
were used for verifying the shaft torque reconstructed
using the estimated input torques. The measurement noise
covariance matrix R = diag(0.05,0.10,0.20) was deter-
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Fig. 6. Propeller shaft torque measurement from the test-
bench compared with the shaft torque reconstructed
using the trend filter input torque estimates. In a)
is the response to the impulse, in b) the step excita-
tion and in c) the periodic excitation. Regularization
parameter A = 1 was used in all three experiments,
determined from L-curves of the simulated cases.

mined using the testbench measurement data. The diag-
onal elements of R correspond to the measurement noise
covariance of encoder 1, encoder 2 and torque transducer
1 respectively.

The measurement data was divided into batches of 700
consecutive timesteps. Consecutive batches were over-
lapped by 100 timesteps from the beginning and the end
to remove transients in the estimate, which would be
caused by setting the initial state to zero in the input
reconstruction problem (Equation (11)), when it is not
actually zero. The same A values as in the simulated cases
were used in the estimation of the unit excitations. The
overlapping input torque estimates were dropped and the
propeller shaft torque was reconstructed using Equation
(13), similar to the simulated experiments. Results of the
unit excitation experiment are presented in Figure 6.

In addition to the unit excitations, an ice excitation
experiment was conducted. The propeller-ice excitation
was defined as described in maritime rules and regulations
(DNV, 2011; TRAFI, 2021). The excitation was applied
using the loading motor while the driving motor speed
was kept constant at 2000 rpm. The estimated propeller
shaft torque is shown in Figure 7. The regularization
parameter A\ = 1 was again used. The trend filter input
estimates resulted in a smooth reconstructed propeller
shaft torque. Additionally, the estimation was carried out
with A = 0.001 and A = 1000 to analyze, in a practical
manner, the sensitivity of the trend filtering method with
respect to different values .

Figure 8 presents the error distributions of the estimated
propeller shaft torque in the four excitation cases. The
error distributions appear Gaussian with a negative bias.
The bias could be due to too large external damping
values in the testbench model, causing a DC offset in
the reconstructed propeller torque when compared to the
measurements.

a)

—— Measurement
’é 201 —— Estimate with A =1 ]
z
Q
& 10
&

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
b) ‘ ‘ Ti‘me (s)

—— Estimate with A =1
z 201 imate with 2 — 0.001 ]
% —— Estimate with A = 1000
]
g 10
5

3.6 3.8 4.0 412 4.4 4.6 4.8 5.0
Time (s)

Fig. 7. a) Propeller shaft torque transducer measurement
compared with the shaft torque reconstructed using
the trend filter input torque estimates with A\ = 1.
b) Estimates with A = 0.001, A = 1 and A = 1000
demonstrate the smoothing enforced by regulariza-
tion, and sensitivity of the trend filter with respect
to different values .
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50

0 5
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Fig. 8. Error distribution of the propeller shaft torque
estimates compared to measured shaft torques in the
a) impulse, b) step, ¢) periodic and d) ice excitation
cases.

4. DISCUSSION AND CONCLUSIONS

The reconstruction of the input torques and states of
a small-scale thruster testbench was studied. A trend-
filtering method was proposed for reconstructing torque
excitations and shaft torque responses. Experiment results
show that the proposed method can accurately reconstruct
torque signals from velocity measurements and a single
torque sensor placed on the driving motor shaft.

In contrast to conventional Kalman-filtering approaches,
the trend-filtering formulation simplifies the imposition of
additional constraints, such as ensuring smoothness in the
estimates. This makes the design of virtual sensors more
convenient and flexible. The application of constraints to
the estimation process aids in ensuring that the recon-
structed signals adhere to physical principles.
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The presented method contributes to the improving con-
dition monitoring procedures of maritime propulsion sys-
tems. Knowledge of large torque variations in the propul-
sion system allows proper maintenance scheduling and
avoiding fatal scenarios, such as failure of mechanical
components. Using industry-standard modeling methods
makes applying the torque estimation procedure straight-
forward for different systems. Predetermination of the
regularization parameter with simulations decreases com-
putational cost compared to calculating it online for ev-
ery measurement batch, and the analytical solution of
the trend-filtering problem can make real-time estimation
viable. The results on the laboratory testbench support
the viability of the torque estimation method in full-
scale applications, and the method could be readily taken
into use. However, verification using measurements from
a full-scale thruster should be done. In addition to full-
scale tests, future work includes studying other regularized
least-squares problems for torque estimation, different ap-
proaches for real-time torque estimation, and including an
electric motor model in the thruster model.
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