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ARTICLE

Atomic-resolution three-dimensional hydration
structures on a heterogeneously charged surface
Kenichi Umeda1,2, Lidija Zivanovic3, Kei Kobayashi1,4, Juha Ritala3, Hiroaki Kominami1, Peter Spijker 3,

Adam S. Foster 3,5 & Hirofumi Yamada1

Local hydration structures at the solid–liquid interface around boundary edges on hetero-

structures are key to an atomic-level understanding of various physical, chemical and bio-

logical processes. Recently, we succeeded in visualising atomic-scale three-dimensional

hydration structures by using ultra-low noise frequency-modulation atomic force microscopy.

However, the time-consuming three-dimensional-map measurements on uneven hetero-

geneous surfaces have not been achieved due to experimental difficulties, to the best of our

knowledge. Here, we report the local hydration structures formed on a heterogeneously

charged phyllosilicate surface using a recently established fast and nondestructive acquisition

protocol. We discover intermediate regions formed at step edges of the charged surface. By

combining with molecular dynamics simulations, we reveal that the distinct structural

hydrations are hard to observe in these regions, unlike the charged surface regions, possibly

due to the depletion of ions at the edges. Our methodology and findings could be crucial for

the exploration of further functionalities.
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A long with growing concern over energy and environ-
mental issues, functional materials and devices utilising
the catalytic, electrochemical and even biological pro-

cesses at the solid–liquid interface have gained great attention1–7.
Heterostructures, nano-clusters, edges and defects are particularly
crucial in these processes, because these structures often amplify
the reaction efficiencies due to quantum effects, low-coordinated
atoms or concentrated electric fields2–4, 7.

Since they are always accompanied by local hydration changes
reflecting the local structural and chemical changes of adsorption/
surface species, understanding the local hydration structures at
such reactive places is also essential. The hydration structures in
complicated biological crystal samples have been extensively
studied by X-ray/neutron crystallography, nuclear magnetic
resonance and cryoelecton microscopy8, 9. However, all of these
measurements require samples in a crystalline state, of which the
hydrations at such local structures are averaged out and also often
differ from those in liquid environments. Although the hydration
structures in liquid environments have been extensively studied
by X-ray/neutron reflectivity10 and surface force measurements11,
their lateral structure has hardly ever been observed.

Recently, we have opened the door to atomic-scale three-
dimensional (3D) mapping of the local hydration structures by
ultra-low noise frequency-modulation atomic force microscopy
(FM-AFM)12, 13, which has been applied to various homogeneous
samples12–18. Moreover, with the support from theoretical
molecular dynamics (MD) simulations, deeper molecular detail
has been achieved17, 19–23. However, the time-consuming atomic-
scale 3D hydration measurements on the uneven heterogeneous
surfaces have never been achieved, to the best of our knowledge,
because these experiments are extremely difficult without any
deformation of the surface structures by the tip. Therefore, no one
has yet observed atomic-scale local hydration structures between
surfaces of different compositions as far as we know. Further-
more, the relationship between the local hydrations and surface
properties on heterogeneous systems was theoretically dis-
cussed24, but validation against experiments is also necessary.
Previously, we established a fast and nondestructive acquisition
protocol of 3D map measurements on uneven heterogeneous
DNA samples without damaging the molecules25 (see ‘Methods’
section for details).

In this study, we show the local hydration structure around a
domain boundary between heterogeneous areas with different
structures and charges on a phyllosilicate surface. Molecular-scale
hydration structures on the terraces are visualised by 3D FM-
AFM in aqueous solution, which are reproduced by the MD
simulations. The simulations show different ion adsorption
behaviours on oppositely charged terraces, which are reflected in
the long-range electrostatic force in the experiment. We reveal the
intermediate regions near the step edge on the positively charged
terrace by 3D FM-AFM, presumably caused by the ion depletion
near the step edge, which is predicted by the MD simulations.

Results
Structure of a heterogeneously charged surface. Clinochlore,
(Mg,Fe)5Al(Si3Al)O10(OH)8, belongs to the chlorite group of
phyllosilicate materials, which are ubiquitous minerals existing
over wide temperature and pressure ranges26–29 (see Supple-
mentary Methods for determination of the composition and
orientation of the crystal used in this study). It is composed of
alternating structures of a tetrahedral–octahedral–tetrahedral
(2:1) negatively charged talc-like (T) layer of [(Mg,Fe)3(Si3Al)
O10(OH)2]– and the positively charged brucite-like (B) layer of
[(Mg,Fe)2Al(OH)6]+ (Fig. 1a and Supplementary Movie 1). Note
that each layer is equivalent to phlogopite mica or hydrotalcite

excluding the intercalating ions24. Upon cleavage of the crystal,
this unique character of clinochlore allows us to investigate the
step edges where the T and B layers alternate in great detail with
both the 3D FM-AFM and MD simulations.

After cleavage of the sample, we obtained a large-scale
topographic image of the clinochlore (001) surface in a 100 mM
KCl aqueous solution (Fig. 1b). In this image, we see island
structures with stripe-like patterns running along the [310]
direction, with the typical size of 100 × 10 nm2. From the cross-
sectional line profile along P–Q (Fig. 1c), we deduced the island
heights to be about 0.5 nm, the thickness of the B monolayer27, 28,
meaning that the higher islands are the B layer and the other
regions are the T layer. Note that some islands in Fig. 1b have
characteristic triangular shapes and step directions similar to the
side of the drawn blue triangle, as previously reported29, 30.

In order to investigate the clinochlore island structure, we
obtained an atomic-scale topographic image (Fig. 1d). On the T
layer, atomic contrast is clearly visible, while the B layer seems to
be composed of central and peripheral regions, indicated as BI
and BII, respectively. The BII region has a lower height of 0.3 nm
instead of 0.5 nm for the BI region. Figure 1e, f show enlarged
atomic resolution images of the T and BI regions, respectively. We
observed honeycomb-like patterns with a 0.53-nm spacing on the
T regions and a hexagonal lattice with a 0.31-nm spacing on the
BI regions. In the BII regions, a similar hexagonal pattern was
observed, but was less clear than on BI (Supplementary Fig. 1).

Comparison between the experimental and theoretical data. In
Fig. 2a, b, we show representations of the 3D force map obtained
across an area including the T, BII and BI regions (Supplementary
Movie 2) and the equivalent MD simulation (Supplementary
Note 1 and Supplementary Movie 3), respectively. In order to
better understand the nature of the BII region, we first focus in
detail on the hydration structures found on the BI and T regions.
Previous studies have already shown that the force profiles or
maps obtained by AFM gave good qualitative agreement with the
density distributions of the water molecules determined by the X-
ray reflectivity or predicted by the MD simulations13, 14, 17, 23, 31–
35. Specifically, it has been reported in some papers that AFM
force maps were well reproduced by free-energy calculations17, 32.
We first analysed the hydration layers on the T region in the same
manner as in ref. 13, where we assumed that the hydration force
maxima correspond to the density maxima. For the T region, we
could clearly distinguish two hydration layers. In Fig. 2c, the
honeycomb-like pattern of the first hydration layer (closest to the
surface) as observed in the AFM experiments is shown, and a
similar pattern (Fig. 2e) is seen in the 2D water density dis-
tribution of the first higher layer. The second hydration layer
above the T region follows much more like a dot-like pattern in
both the experiment and simulation (Fig. 2d, f). We can see
highly localised spots in the honeycomb hollows in the 2D water
density distribution of the first higher layer (Fig. 2e). These dots
are seen only in some honeycomb hollows because of the limited
simulation time and they correspond to the tails of the adsorbed
first lower layer, mainly contributed by the water molecules
adsorbed in the honeycomb hollow. These are related to counter
cations resident at the sites, but would be averaged out, and
appear much fainter, if the simulations could be run long enough
to obtain full sampling of the ion mobility. In the case of the BI
region, atomic-scale patterns with the same lattice constant are
observed in both the experiment (Fig. 2g, h) and simulation
(Fig. 2i, j). While the 2D water density distributions show bright
and dark dot patterns for the first (Fig. 2i) and the second (Fig. 2j)
hydration layers, respectively, the patterns observed in the
experiment are somewhat ambiguous. It is difficult to judge if
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they are the same as those predicted from the simulation or even
inverted because the contrast varies as a function of the tip height
and conditions36. Since the lattice spacing of the B layer is smaller
than that of the T layer and comparable to the size of the water
molecule, it is plausible that the hydrated water molecules other
than that on the tip apex play a role in the contrast formation and
cause the patterns to be ambiguous or possibly inverted. As we
show later, the anions form a honeycomb-like pattern at the same
height of the first hydration layer on the B layer, which is the
inverted pattern of the water (oxygen) distribution and may play
a role in this observation.

From both the experimental and theoretical data, we extracted
force and density maps perpendicular to the clinochlore surface
along the lines indicated in Fig. 2c, e, g, i. On each of these four
maps, we can identify the respective lateral spacing, which is 0.53
nm for the T region (Fig. 2k, l) and 0.31 nm for the BI region
(Fig. 2m, n).

From the discussion above, we found that the apparent surfaces
(tip trajectories) are the first layers instead of the bare mineral
surface, and the molecular-scale patterns observed in the
experiment were in good agreement with the 2D water density
distributions in the first and second hydration layers. It should be
mentioned that when we set the threshold values higher, the tip
change was often induced by a strong interaction force and the
continuity of the consecutively recorded force curves was

deteriorated. These results demonstrate that the combination of
liquid-3D FM-AFM and MD simulation is useful for illuminating
the details of 3D water distributions.

Quantitative analysis of force curves. For more quantitative
analysis, we also constructed averaged force curves (measured at
200 randomly selected pixels) for both the T and BI regions from
the experiment (Fig. 3a, b). While the similar oscillatory features
are obvious in both cases, the repulsive and attractive background
forces are seen on the T and BI regions, respectively. We fitted
these background forces by exponential functions with decay
distances of 0.15 and 0.9 nm for the T and BI regions, respectively.
The decay distance of 0.9 nm on the BI region is almost equiva-
lent to the Debye length in the 100mM KCl solution, meaning
that this force component is likely the long-range electric double-
layer force25. The reason why this force was hardly observed on
the T region can be explained by the fact that most of the surface-
negative charges on the T layer are neutralised by the coad-
sorption of the proton and cation in the solution of pH 5.737. This
strong adsorption of cations on the T layer is also seen in our
simulations, which will be shown later. For this reason, while the
structural charge density of the T (–) and B (+) layers is the same,
±0.32 C/m2, the apparent surface charge densities are different,
–0.015 and +0.32 C/m2, respectively37, 38. We estimated that the
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Fig. 1 FM-AFM images of clinochlore. a Crystal structure of clinochlore crystal, which is composed of negatively charged talc-like (T) and positively
charged brucite-like (B) layers. The figure was drawn using VESTA42. b Topographic image of the clinochlore (001) surface. The triangle shows the
characteristic shapes due to the partial dissolution of the B layer29. c Cross-sectional profile along the P–Q line indicated in b. d Atomic-resolution image of
the clinochlore (001) surface showing that the B island has two regions (BI and BII) with different heights. In the blue square, the contrast was enhanced
and smoothed by a Gaussian filter. e, f Magnified atomic-resolution images taken on the T region (e), and BI region (f), with the inset of an FFT-filtered
image. All of the images were acquired with Δf ~ + 300 Hz. Scale bars: 100 nm (b), 3 nm (d), and 0.5 nm (e, f)
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surface charge density on the BII region was +0.05 C/m2 (Sup-
plementary Note 2), which was significantly lower than that on
the BI region due to the edge effect as discussed later. For the
short-range force observed on the T regions, we consider that it
was possibly due to the relaxation of the tip/sample atoms, as
previous theoretical studies on the interactions between the
positive/negative tip on the positive/negative ions of calcite in
solutions showed different tip relaxation behaviours depending
on the tip/sample polarities17, 36. We also consider that the short-
range repulsive force could be due to strongly bound cations in
the hollow sites, as we also observed a similar short-range
repulsive force on muscovite mica in a high-salt solution13. Since
we cannot determine the tip configuration during the experiment,
identifying the role of the tip would require a very extensive set of
simulations including free-energy calculations using various tip/
sample models and more experiments to identify the origin of the
short-range force. This is an ongoing challenge for the field, but is
beyond the scope of the current work.

We retrieved the normalised water density curves (averaged
over the entire surfaces) from the MD simulations (Fig. 3c, d).
When comparing the hydration peak distances, we consistently
observed that there was no intrinsic difference in the hydration
layer spacing for either the T or BI regions; namely, 0.31 and
0.30 nm in the experiments, and 0.25 and 0.24 nm in the
simulation for the T and BI regions, respectively (see arrows in
Fig. 3). Although the experimental forces and theoretical water
densities have many features in common, in principle, we cannot
compare them directly17. To overcome this problem, we also
converted the densities to force by the recently proposed solvent
tip approximation model39, and we obtained consistent results
regarding the terrace regions (Supplementary Note 3).

Intermediate region around the step edge. From the 3D FM-
AFM data, we reconstructed a topographic image of the clino-
chlore (001) surface (Fig. 4a), whose model is shown in Fig. 4b.
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Along the broken lines P–Q and R–S (both running in the [310]
direction), we extracted the 2D force maps (Fig. 4c). On the BII
region, we did not observe the dot-like patterns, which was
consistent with the result that atomic-resolution imaging on the
BII region was less clear than that on the BI region. As the
apparent height of the BII region was about 0.3 nm, we conclude
that the tip was scanned over the first layers on the T and BI
regions, giving the atomic resolution on both the regions, while
the tip was directly scanned over the solid surface in the BII
region.

Discussion
We show 2D theoretical water (oxygen) and ion density maps in
Fig. 5a, b, which are presented with the unit of mol/L and not
normalised to the bulk density. Note that we used a 1M solution
in the initial state due to time and size constraints (see Supple-
mentary Fig. 6c for the snapshot), which had a ten times higher
ion concentration than the experimental condition. Under this
condition, the water density is still orders of magnitude larger
than the ion density even in the vicinity of the charged surfaces.
We consider that the ions were moving around during the mil-
lisecond timescale of the AFM measurements, and thus that the
experimentally observed hydration forces and their contrast
patterns in the 2D maps mainly originate from the water density
distribution. This is supported by repeated observations of the
common similarities between experimental force and simulated
water/force on several other surfaces13, 14, 17, 21, 23, 31–35. A recent
paper on FM-AFM measurements of the hydration structures of
calcium fluorite in ultra-pure water and supersaturated solution
has shown that the adsorbed ions could give a slight modulation
in the oscillatory force profiles, but they did not change the
overall features33. Actually, we also observed the hydration
structures on muscovite mica in ultra-pure water as well as in
high-salt solutions (Supplementary Note 4). We do not deny the
role of ions in the AFM measurement, but their effects are lim-
ited. For the T region, Fig. 5d shows that the innermost cations

(Na+) are located closer to the surface than the oxygens of the
water molecules. As already mentioned, the short-range repulsive
force observed on the T region could be because of these strongly
bound cations in the hollow sites. On the other hand, for the B
region, we see in Fig. 5d that the innermost anions are competing
with the water oxygens at almost the same height, and they create
the opposite patterns (see the right side of Fig. 5a, c). As pre-
viously mentioned, the ambiguous or possibly inverted 2D pat-
terns observed on the B region could be due to the anions (Cl–).
This result is consistent with the experimental result that we
observed, the long-range electrostatic force on the B region but
not on the T layer probably because most of the negative charges
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on the T region are screened by the cations inside the hydration
layer. Finally, it should also be noted that several researchers have
resolved individual adsorbed ions by AFM if they strongly bound
on the surfaces with the timescale longer than the AFM mea-
surements22, 40.

The MD simulations also suggest a reason why no clear
hydration structures could be observed in the BII region. Around
a step edge, the water densities in the first layers (top view, Fig. 5a,
and side view, Fig. 5b) indeed show an increase, while the ion
(cation and anion) densities (top view, Fig. 5c, and side view,
Fig. 5d) are decreased. The orientations of the water molecules
around the step edges were comparable to those on the terrace,
meaning that this depletion of ions is a possible candidate for the
indistinct hydration structure. It has been experimentally shown
that a high ion concentration often enhances the image contrast
of the hydration structure12–16, which can be explained by the
reduction in the diffusion coefficient and the increase in the
residence time of the water molecules24, 41.

In order to discuss the origin of the depletion, we calculated the
electric potential as shown in Fig. 5e (see Supplementary Methods
for the details). As a result, we found a neutral area around the
step edge, and the potential on the B layer was reduced in the
vicinity of the step edges. In the case of an electrified metal, where
the boundary condition is the constant-potential, the electric
fields and ion concentration around edge structures are enhanced
due to the edge effect3. On the other hand, in the case of a fully
charged system such as the B layer, where the boundary condition
is a constant-charge, the electric fields around the edges are the
same as those on the flat surfaces, while the surface potentials and
ion concentration around the edges significantly decrease. The
reduced surface potential causes the depletion of ions, while the
constant electric field maintains the same hydration structure as

that on the terrace. Increasing the ion concentration reduced the
width of the BII region (Supplementary Fig. 2), which supports
this explanation.

A schematic illustration of the cross section of the clinochlore
(001) step deduced from the experiments and simulations is
shown in Fig. 5g. We explicitly draw the water molecules in the
first layers and use blue patterns as the upper hydration layers
observed by liquid-3D FM-AFM. We only observed the multiple
hydration layers on the T and BI regions, but barely observed any
layers on the BII region although there are hydration layers on the
BII region as well. Our results clearly show that the liquid-3D FM-
AFM can distinguish the local hydration structures reflecting
different surface properties even at the domain boundaries.

In summary, we performed the 3D FM-AFM experiment and
MD simulations on the clinochlore (001) surface in aqueous
solution. By comparing these results, we conclude that lattice
periodicities are reflected in the intrinsic lateral water distribu-
tions, which are experimentally observed as a laterally periodic
hydration structure. Meanwhile, the surface charge difference is
reflected in the adsorption behaviour of the ion species, which are
experimentally observed as the long-range background force. We
also discovered intermediate regions at the step edges of the B
islands, which likely originate from ion depletion by the edge
effect, although the stability of different step morphologies could
also play a role.

This work is, to the best of our knowledge, the first demon-
stration of the 3D FM-AFM measurements on an inhomogeneous
mineral surface since 3D FM-AFM has so far been applied mainly
to atomically flat homogeneous mineral surfaces12–15, 17, 32–34.
This was quite challenging because it has step-and-terrace
structures and the oppositely charged areas. However, we devel-
oped a fast and nondestructive acquisition protocol by disabling
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heights of the lateral water density maps in a and c, respectively. e Electric potential of 0.1 nm above the outermost oxygen atoms of the B region (showing
a zero potential at the step edge, in white). f Structural model used in the MD simulation. g Schematic illustration of the cross section of the clinochlore
(001) surface along the dashed lines in Fig. 4a, b. The green dashed curve shows the apparent surface (trajectory of the tip scan during imaging
topography). Scale bars: 1.0 nm (a, c, e) and 0.3 nm (b, d)
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the constant frequency shift feedback and setting the frequency
threshold instead, which enabled us to acquire the 3D map on an
uneven heterogeneous mineral surface. We consider this as an
important milestone in the development of the FM-AFM/MD
method, and we hope that the methodology, once established,
could be applicable for the hydration structures of more com-
plicated systems such as catalysis, electrochemistry and even
biological molecules including proteins and nucleic acids in the
future. Here, we also remark that the clinochlore (001) surface
can also serve as an experimental platform for exploring the
biological processes because it can be used for patterning27 or
suspension (Supplementary Note 5) of biological molecules. Since
FM-AFM could give some information on the outer hydration
shells surrounding biomolecules in vivo, we consider that it is
useful as a complementary tool to the conventional techniques
that mainly give the information on the distribution of the water
molecules inside the biomolecules.

Methods
FM-AFM setup. We used a customised commercial AFM head (Shimadzu: SPM-
9600) with a homebuilt digital PXI controller (National Instruments: NI PXI-8196)
based on a high-speed field-programmable gate array (FPGA) board (National
Instruments: NI PXI-7833R) programmed by LabVIEW (National Instruments)
and a homebuilt FM detector circuit43. In order to achieve quantitative and
reproducible force measurements in a liquid environment, we employed a pho-
tothermal excitation setup44. We used a rectangular cantilever with a gold backside
coating (Nanosensors: PPP-NCHAuD), whose nominal spring constant (kz) was
42 N/m. The kz of the cantilevers used in the experiments was determined to be 35
N/m by Sader’s method45. The resonance frequency of the cantilever (f0) was 131
kHz in a 100 mM KCl solution. Immediately prior to each experiment, organic
contaminations on the tip were removed by irradiating the tip using a UV-ozone
cleaner (Filgen: UV253) for a few hours.

The measurement was performed in 100 mM potassium chloride aqueous
solutions (KCl, 99.5% purity, Wako Pure Chemical Industries, Ltd.) whose Debye
length is 0.97 nm at 298 K. This reagent was used without further purification and
any pH regulation. The aqueous solution was slightly acidified to a pH value of
around 5.7 due to the dissolved CO2 gas. All the experiments are conducted in a
temperature-regulated enclosure (Mitsubishi Electric Engineering Company, Ltd.:
CN-40A), which can maintain a constant temperature of 298± 0.1 K and thus
reduce the influence of thermal drift by the AFM head.

3D FM-AFM measurement. The 3D map measurement on an uneven hetero-
geneous surface was realised by the real-time monitoring13, 25, instead of a time-
averaging monitoring12, of the frequency shift, which was implemented by a high-
speed FPGA board. The signal-to-noise ratio and the acquisition time of the 3D
map measurements are in a trade-off relation. When the scanning speed is reduced,
the risk of surface deformation decreases, but the thermal drift increases. Con-
versely, when the scanning speed is increased, the thermal drift is reduced, but the
surface deformation can occur. In order to keep a high-enough signal-to-noise ratio
while suppressing the thermal drift, we need several improvements to the FM-AFM
experiment system as follows.

A 3D Δf map with dimensions of 12.8 × 1.5 × 1.7 nm3 (256 × 15 × 173 pixels)
was acquired by collecting perpendicular 2D Δfmaps (XZ slices). During the 2D Δf
map acquisition, the frequency shift vs. distance curves (1D Δf curves) were
recorded by translating the tip towards the sample using a sawtooth waveform
signal of 22 Hz, which corresponds to a tip velocity of about 40 nm/s. The approach
was immediately stopped when the frequency shift signal reached a predetermined
threshold value, and then the tip was retracted to the original position.
Proper setting of the threshold value minimises the possibility of the tip change as
well as the sample damage, and thereby secures the continuity of the consecutively
recorded force curves. By omitting the retraction curve measurement, the total
acquisition time can be reduced by almost half to 1.5 min. Although it has been
demonstrated that a 3D Δf map can be collected by employing a sinusoidal tip
motion with a slow constant frequency shift feedback12, 14, 16–18, 32, 33, it is not
suitable for acquiring a 3D Δf map on an uneven heterogeneous surface, where
large variations in the topographic height and long-range electric double-layer
force are expected during the data acquisition.

In ultra-high vacuum (UHV), the atom-tracking technique is often used for
suppressing the thermal drift46. However, in a liquid, it is difficult to implement
because the thermal drift is nonlinear and the tip change often occurs due to the
higher interaction force than that in the UHV. In order to solve this problem, we
used a real-time feedforward system. Additionally, an automatic post-processing
programme is also crucial for the efficient time-consuming 3D map measurements.

As described above, the photothermal excitation setup44 is essential for
stabilising the uncontrollable fluctuation of the resonance frequency. The
preparation method for the tip and sample is also essential for high-resolution 3D

map imaging. Any organic contaminants on the tip should be removed by a UV-
ozone cleaner immediately before each experiment for avoiding unstable tip
conditions. A droplet of the solution should be placed on the sample as soon as
possible after the cleavage of the sample for avoiding any contamination. Since an
adhesive for fixing the sample to a magnetised stainless-steel plate often
contaminates the solution, a larger sample size should be used in order to cover the
entire stainless-steel plate.

Post-processing of 3D FM-AFM data. We established an automatic post-
processing programme based on Visual Studio (Microsoft), which is essential for
efficient analysis of the large-size 3D map data. First, the 3D Δf data were
smoothed by using a Gaussian filter with a standard deviation of 0.034 nm (x and
y) and 0.011 nm (z), and the 3D force data were obtained by converting each 2D Δf
map to a 2D force map using Sader’s method47. Since the background offset of the
1D curves in the 2D map contained fluctuations, they were smoothed using a
Gaussian filter with a standard deviation of 1.23 nm before and after the conver-
sion. Second, the resolution of the 3D data was increased to 1024 × 113 × 346 pixels
using a Lanczos interpolation filter of an order of 3 (Lanczos-3)48. Third, the
background offset in each force curve was corrected using an analytical formula
based on the electric double-layer theory25. Note that the force curve in Fig. 3b has
a non-zero value in the farthest part because of the offset correction. Finally, the
linear and nonlinear lateral drifts were corrected such that the lattice constants in
the 2D lateral maps match those in the literature49. For the 2D force maps pre-
sented in Figs. 2k, m and 4c, the boundaries between the pixels with data (blue
colour) and without data (green colour) were interpolated using the Lanczos-3
filter.

MD simulations. All the MD simulations were performed using LAMMPS (Large-
Scale Atomic/Molecular Massively Parallel Simulator) code50 under ambient
conditions (300 K and 1 bar) using a Nosé–Hoover scheme and a time step of 1 fs.
Along all the dimensions, periodic boundary conditions were employed. The
surfaces were first optimised in vacuum in order to remove any unphysical
interactions between overlapping atoms and then immersed into water. After water
equilibration (for 25 ps), all atoms in the crystal were allowed to move, except for
the Mg atoms in the central layer (in order to prevent drift of the entire system),
and the system was equilibrated again for 25 ps. The target pressure was specified
only along the z direction (to protect the crystal from lateral stress) allowing the
simulation box to change during the dynamics, ensuring the proper water density
in the bulk phase. The production MD runs with flat terraces were only performed
for 10 ns, but it was increased to 15 ns for the systems with a clinochlore step
present. This longer simulation time was necessary to allow ions in the solution to
sufficiently diffuse in order to be able to reach the surface or step edge.

We obtained the crystal structure of clinochlore from the American
Mineralogist Crystal Structure Database49. First, we simulated the hydration
structures exposed on each region as shown in Fig. 2 (see Supplementary Fig. 6a, b
for the snapshots). Based on the unit cell data, we constructed a simulation cell
with lateral dimensions in the (001) plane of roughly 2.1 × 3.7 nm2. In the [001]
direction (in terms of our Cartesian simulation cell, this is the z direction), we
repeated sufficient layers of clinochlore to make sure that the internal part of the
crystal is under no additional stress caused by the nearby free surfaces. A typical
system contained ~2800 atoms for the clinochlore crystal and over 3000 water
molecules.

Next, we simulated the hydration structures exposed on a step region as shown
in Fig. 5 (see Supplementary Fig. 6c for the snapshot). In this case, we cleaved the
surface along the (001) plane and removed one-half of the B layer to form the step
edge running in the [100] direction, thus exposing the underlying layer as the lower
terrace. In order to avoid a lateral dipole effect on the step edge, we created a larger
system with the lateral dimension of 4.3 × 7.4 nm2. Step edges created this way were
neutral. In order to investigate all possible edges that might appear in the real
system, we modelled another step edge by cutting the B layer along the zigzag line
(Supplementary Note 6). This way, we have created a step that matches triangular
structures seen in experiments. This type of step edge was negatively charged due
to the protruding oxygen atoms along the edge. In order to maintain a neutral
system, an opposite triangle pit was introduced, consisting of exposed metal ions
and therefore positively charged. In general, MD simulations showed that the
triangular systems were not stable, with significant desorption of OH. Hence, we
decided to focus on the stable (neutral) step edges in our simulations, but the
results for the other steps are discussed in Supplementary Note 6. On either side of
the clinochlore sample, water molecules were placed to solvate the system and to
make sure that far away from the solid–liquid interfaces, water behaves as in the
bulk. The system with the exposed step contained 4600 crystal atoms and ~13,000
water molecules.

All interactions between the atoms were described by two force fields. The
CLAYFF force field51 was used to describe all interactions between the clinochlore
atoms, water and ions present in solution. This force field has been successfully
used in the past in many clay mineral MD simulations24, 52, 53. Although CLAYFF
force field was developed to fully describe the properties of clay minerals, small
modifications (<3%) of the partial charges were required in order to maintain an
electrostatically neutral system for the surfaces and steps considered here
(octahedral magnesium in the B layer +1.37 new/+1.36 CLAYFF; bridging oxygen
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with tetrahedral substitution in the T layer −1.16875/−1.1688 and hydroxyl oxygen
in the B layer −0.9775/−0.95). However, these small deviations are consistent with
charge-balancing approach in CLAYFF. As a water model in our simulations, we
used the flexible TIP3P54 model. All parameters for this model were optimised to
reproduce experimental thermodynamic and structural properties of liquid water
as well as vibrational spectra. We also checked all simulations using the nonbonded
three-body harmonic potential energy term for Mg–O–H interactions55 and
modified charges56. These made no significant difference to our results on the
standard step edge. However, the included nonbonded three-body term for
Mg–O–H bending interactions significantly improved the stability of the triangle
step structure (changing the charges did not), but not fully, as we still observed the
desorption of some hydroxyl groups during simulations.

For visual inspection, VMD57 was used and most of the analysis was performed
using the Python library MDAnalysis58. The 2D water density maps presented in
Figs. 2 and 5 were created after smoothing the time-averaged 3D trajectory data
using a Gaussian kernel filter with a standard deviation of 0.021 nm in all three
directions and a linear interpolation.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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