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Study of Plasmonic Resonances on Platonic Solids

Dimitrios C. Tzarouchis''"’, Pasi Yl&-Oijala', and Ari Sihvola'

1Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, Finland

Abstract In this study we discuss the plasmonic subwavelength scattering resonances of five regular
polyhedra, that is, the Platonic solids tetrahedron, hexahedron, octahedron, dodecahedron, and icosahedron.
A brief discussion regarding their geometrical characteristics and the numerical method used in the study
is given. All results are compared with the benchmark case of a sphere, in order to observe how the
geometry of the solid affects the spectral characteristics. The principal finding is that the shift of the main
dipole resonance exhibits a solid vertex hierarchical order; in other words, the position of the resonance
correlates with the solid angle of the vertex of the given solid. This is in contrast with the hedra-hierarchical
order found for the electrostatic dielectric response of these solids. These results can create new avenues
for applications and devices that require plasmonic particles with on-demand functionalities.

1. Introduction

The optical properties of nanoparticles (NP) have generated increasing research interest due to the recent
advances in nanotechnology. A particularly interesting case of NP are the plasmonic NPs (Lagos et al.,
2017; Mitiche et al, 2017), that is, particles able to support localized charge oscillations, also known as
localized surface plasmons Quinten (2010). These resonances are affected by the specific geometrical and
material characteristics, widely used for radiation control and harvesting applications (Akselrod et al., 2014;
Yang et al., 2017).

In this work the scattering spectrum of plasmonic Platonic solids is numerically investigated. The presented
results are extension of the results (Tzarouchis et al., 2016) presented in the 2016 URSI Electromagnetic
Theory Symposium, Aalto University, Espoo, Finland. There the resonant plasmonic spectrum of rounded
hexahedra and octahedra was numerically evaluated using a surface integral equation technique. Here we
extend these results by including and discussing the plasmonic resonances of the whole family of the Platonic
solids. Platonic solids are a particular case of regular polyhedra that attract the theoretical and experimental
interest regarding their scattering characteristics (Kim et al.,, 2004; Ringe et al., 2012; Ross et al., 2015; Sihvola
et al., 2004).

This article is divided into three parts. First, in section 2 the main material characteristics, the geometrical fea-
tures of the Platonic solids, and the numerical method used are given. Section 3 presents the main results for
each of the solids, with the spectrum of an equivolumed sphere given as benchmark. Section 4 concludes the
discussion by presenting some comparative results between the five polyhedra and an equivolumed spherical
nanoparticle.

2. Problem Preliminaries

The main objective of this work is the study of the resonant plasmonic behavior of subwavelength
nanoparticles. Localized surface plasmon resonances (LSPR or plasmonic resonances) are a particular type of
discrete resonances naturally occurring for metals in the infrared (IR)-optical-ultraviolet (UV) region. These
resonances are due to the collective oscillations of the free conduction electrons in metals (incompressible
plasma gas). This plasma response can be macroscopically described through various material dispersion
models, such as the Drude model, where the material permittivity results as adamped oscillation over a certain
central frequency (plasma frequency) and a certain amount of oscillation losses (damping frequency).

In our case all NPs are modeled with a simple, Drude-like model for silver (Ag), that is,
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Table 1
Key Features of the Platonic Solids

Figure 1. The five Platonic solids (regular polyhedra) presented in a solid vertex hierarchical order. From left to right:
tetrahedron, octahedron, hexahedron (cube), icosahedron, and dodecahedron with 4, 8, 6, 20, and 12 edges,
respectively. The sv-hierarchy is visible in the increasing smoothness of the shapes from left to right.

where ¢, =5.5, 4,=130nm, and 4;=30pm, introduced in (Wallén et al., 2009). This model is a curve fit
on Johnson and Christy (1972) experimental data for bulk silver. Silver is a widely used reference material,
mostly due to its strong plasmonic resonances occurring at the optical-near UV spectrum (Kreibig & Vollmer,
2013). Since the used model is a simple Drude model, all of the presented results can be qualitatively
expanded covering other types of materials modeled by a Drude model, such as gold (Au) and aluminum (Al)
(Palik, 1998).

As a remark, the optical response of small particles is expected to be slightly different from the bulk
limit (Kreibig, 1974), in particular, with respect to the losses. Our analysis concentrates in exploring and com-
paring the general behavior of the main plasmonic resonances in the regime where these size-dependent
effects can be neglected, and a simple Ag-Drude model experiencing low-to-moderate level of dissipative

losses is valid. Note that the volume of each of the NPs considered in this paper is 50° nm3.

2.1. Geometrical Features of Platonic Solids

Although there are infinite regular polygons in two dimensions, in three-dimensional space there are only five
(Figure 1), that is, the tetrahedron, octahedron, hexahedron (cube), icosahedron, and dodecahedron, com-
monly recognized as the Platonic solids (these five solids play an instrumental role in Plato’s natural philosophy
Weyl, 2015). From a physical point of view these structures occur either naturally in organic and inorganic
compounds or artificially engineered NPs. Some of the geometrical properties of these solids are given in
Table 1 where we can find the volume and vertex solid angle for each solid. One interesting property is the
duality between these solids. For instance, a hexahedron can be transformed to an octahedron by mutu-
ally interchanging the number of faces and number of vertices (see Figure 1 and Table 1). The same applies
for dodecahedron and icosahedron while tetrahedron is self-dual. These duality relations are a key issue in
understanding and categorizing the plasmonic behavior of the solids.

Classically, the preferred order for categorizing the Platonic solids is by the number of the edges, that is, the

order tetra-hexa-octa-dodeca-icosa, implies the ascending number of faces (hedra) of each solid. We name

this as the hedra-hierarchical order, or h-hierarchy for short. However, instead of the h-hierarchy there is

another way of categorization following the sharpness of a solid, that is, based on its solid angle vertex.

This categorization results in the tetra-octa-hexa-icosa-dodeca scheme, and we call it solid vertex hierarchy,

or sv-hierarchy for short. In this work we adopt an sv-hierarchical order for presenting the results for each NP.
Hence, the analysis will start with a smooth sphere and will follow the
sv-hierarchical order, that is, dodeca-icosa-hexa-octa-tetra, as can be seen
in the next sections.

2.2, Surface Integral Equation Method

In the numerical analysis of this article, all the necessary field and scatter-

Polyhedron Volume Vertex angle (rad) = Edge?a (nm)

NG ing quantities of the Platonic solids are computed with the surface integral
Tetrahedron YLg? 0.551 101.98 . L -

12 equation (SIE) method. This widely used method offers accurate and reliable
Octahedron ‘/TE(F' 1.359 64.245 solutions for many computational electromagnetics problems, a review of
Ferahedion & £=157 50 which is given by Yl&-Oijala et al. (2014). The SIE methods has been recently
lcosahedron 53+\/§ 2 - = extended for t.he modellr:ng of plasmonic scatterers and nanoantennas, by

A Garcia de Abajo and Howie (2002), Hohenester and Krenn (2005), Kern and
Dodecahed 1547v5 3 2.962 2536 ; ;
Bzl — ¢ : L Martin (2009), Taboada et al. (2011), Solis et al. (2015), and others.

e The SIE method is based on Love's equivalence principle, allowing the refor-

3Required edges for equivolumed particles.

mulation of the original problem of solving Maxwell’s equations in the entire
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Figure 2. The volume-normalized (V=503 nm3) scattering and
absorption spectra for a sphere of diameter d=62.035 nm extracted
both analytically using the Lorenz-Mie theory (Bohren & Huffman, 2008)
(dashed lines) and SIE method (solid lines). The inset figures depict the
normalized surface charge distribution for (a) the imaginary part of
charge distribution at A=372.7 nm (electric dipole) and (b) the real

part of the charge distribution at 1=347.1 nm (electric quadrupole).
The charge normalization is in arbitrary units for better visibility

of the results.

3-D space as an equivalent problem of solving equivalent sources (currents)
on the surfaces and interfaces. This numerical method is thus especially well
suited for modeling LSPR, where most of the physical phenomena take place
on the surfaces. Many other numerical treatments of plasmonic nanoparticles
can be found based on a volume-oriented philosophy, such as the Discrete
dipole approximation (DDA) (Grillet et al., 2011; Noguez, 2007), the volume
doundary element method (BEM-3D) (Garcia de Abajo & Howie, 2002), and the
finite element method (FEM) (Grillet et al., 2011). All of the aforementioned
methods are appealing for certain applications, demonstrating strengths
and weaknesses regarding the proper evaluation of the required quantities.
In other words, the proper choice of a numerical method should be always
aligned with the specific simulation needs. For instance, as has been showed
recently by Vartia et al. (2016), SIE can outperform DDA in certain near field
characteristics of small NPs.

The method used here is based on the classical PMCHWT integral equation
formulation described in detail by (Yl&-Oijala et al., 2005). In brief, in that
method Love's equivalence principle is applied in each homogeneous and
isotropic region. Then by enforcing the tangential continuity of the electro-
magnetic fields, a set of coupled surface integral equation is obtained. These
integral equations are converted into a matrix equation by expanding the
unknown electric and magnetic surface current densities with RWG functions
and using Galerkin’s testing procedure is applied to convert the integral
equations to a matrix equation (see, for example, Poggio & Miller, 1973; Rao
et al,, 1982). The singular integrals involved are evaluated with the singularity

subtraction technique available in Yl&-Oijala and Taskinen (2003) and Jarvenpaa et al. (2006) supplemented
with high-order quadrature rules for the numerically evaluated parts.

Accurate evaluation of these integrals is important to maintain the accuracy of the solution, particularly in the
near-field region. Special attention should be paid in the case of sharp corners where the field can become
singular; sharp edges of a 2-D dielectric edge can induce such effects as reported, for example, in works by
Dobrzynski and Maradudin (1972) and Davis (1976), suggesting that the sharp corner should be carefully
treated. For the 3-D case vertices are expected to induce similar convergence issues, especially for very sharp,
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Figure 3. Volume-normalized absorption and scattering spectra

for an equivolumed dodecahedron of side length a=25.36 nm.

The inset figures indicate the surface charge distribution for the two
first absorption resonances, that is, (a) the imaginary part of charge
distribution at A=385.4 nm (electric dipole) and (b) the real part

of the charge distribution at A=354.4 nm.

lossless, and extremely subwavelength plasmonic NPs. However, our study
focuses in relatively large plasmonic particles with realistic losses. A remedy
to this convergence issue for the case of sharp solids, that is, Platonic solids,
requires both the increase of the number of used elements (degrees of
freedom) and the slight rounding of the vertices. In our study the main con-
cern is to capture the qualitative trends of the Platonic solids; hence, we use
increased number of elements but without rounding the corners, sacrificing
the perfect convergence of our results; the sharp-corner effects on the con-
vergence of the plasmonic Platonic solids will be extended in future works.
Finally, once the solution to the matrix equation is available, the scattered and
absorbed power can be efficiently evaluated using the surface currents and
associated SIE matrices as explained by Reid and Johnson (2015).

3. Resonant Plasmonic Spectrum and Properties: Results

We start our analysis by presenting the scattering and absorption spectra, and
the surface charge distributions of the two main resonances, for a sphere of
volume V=503 nm? corresponding to a diameter d ~62.035 nm. Figure 2 dis-
plays the results. It is well known that a spherical Ag particle exhibits its first
dipole resonance approximately at A =370 nm for these size ranges (Kreibig
& Vollmer, 2013). The main resonant peaks exhibit an electric dipole and
quadrupole charge distribution, which is a common characteristic for the
plasmonic resonances (Kreibig & Vollmer, 2013) (see insets in the figure).
Note that the inset figures depict either the real or the imaginary part of the

TZAROUCHIS ET AL. STUDY OF PLASMONIC RESONANCES ON PLATONIC SOLIDS 3
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Figure 4. Volume-normalized absorption and scattering spectra for an
equivolumed icosahedron of side length a=38.55 nm. The inset figures
indicate the surface charge distribution for the two first absorption
resonances, that is, (a) the imaginary part of charge distribution at
4=385.8 nm (electric dipole) and (b) the real part of the charge
distribution at A=360.3 nm.

polarization surface charges (electric flux normal to the surface). This seems
to be a reasonable choice for depicting the main near-field characteristics,
especially with respect to the angular distribution of the enabled resonant
mode. However, a complete picture would require the presentation of both
parts (Raziman & Martin, 2016). For instance, for the spherical case inset pic-
tures in Figures 2a and 2b the strongest parts of the polarization charges are
depicted, that is, imaginary part and real part of the dipole and quadrupole
term, respectively. This convention is followed for every polyhedron pre-
sented hereinafter.

These results were obtained with the SIE method described above for a spher-
ical geometry consisting of approximately 2,000 elements. The number of
elements describes the number of the triangles used for the discretization of
the geometry. The basis functions, used to approximate the unknown equiva-
lent electric and magnetic surface current densities, are related to the edges of
the triangular mesh, introducing in our case 6,000 degrees of freedom in the
system (solid lines Figure 2). The results obtained are in extremely good agree-
ment with the analytic Lorenz-Mie solution (dashed lines, Figure 2), readily
found in classical textbooks, for example, in Bohren and Huffman (2008).

As additional special characteristics of the plasmonic sphere, Figure 2 shows
the enhanced absorption values for the quadrupole resonance (Figure 2b),
which is qualitatively very different from the scattering-dominated dipole
regime. The variation of the balance between scattering and absorption is an

indication that dynamic effects play a significant role, thus underlining the need of a full-wave analysis. In fact,
for the Platonic solids the amount of used elements is significantly higher (11,000 to 15,000 degrees of
freedom). This is necessary since SIE exhibits certain convergence issues for sharp cornered plasmonic
scatterers (Helsing & Perfekt, 2013; Klimov et al., 2014; Markowskei & Smith, 2017; Wallén et al., 2008).

In the following subsections we will present the main scattering characteristics of plasmonic Platonic solids.
The order is with respect to increasing solid vertex angle, that is, smoother to sharper solids. The reason is
that since the dodecahedron and icosahedron are intuitively closer to a sphere than a sharp tetrahedron,
their spectra should also be close to that of the sphere. The sphere experiences its scattering and absorption
maxima for wavelengths of A =372.7 nm (dipole) and 4= 347.1 nm (quadrupole), respectively. Note that

0
300 350 400 450 500 550
A [nm]

Figure 5. Volume-normalized absorption and scattering spectra for an
equivolumed hexahedron (cube) with side dimension of a=50 nm.
The inset figures indicate the surface charge distribution for the two
first absorption resonances, that is, (a) the imaginary part of charge
distribution at A=423.1 nm (electric dipole) and (b) the real part of the
charge distribution at A=384.7 nm.

throughout the analysis a plane wave excitation is assumed, while C., C,,
and C,;,; denote the extinction, scattering, and absorption cross sections,
respectively (with m? units).

3.1. Plasmonic Dodecahedron

The smoothest of the Platonic solids, the dodecahedron, exhibits many simi-
larities with the sphere as can be seen in its resonant scattering and absorp-
tion spectrum presented in Figure 3. Experimental studies on subwavelength
regular (Kim et al., 2004; Ringe et al., 2012) and nonregular (rhombic) (Ross
et al,, 2015) version of this plasmonic NP suggested that the main dipole
mode is affected by its plasmonic length. The plasmonic length is defined
as the length between the two vertices; see, for example, Ross et al. (2015).
In our case dodecahedron exhibits both the smallest length and softer vertex
between all five solids.

Turning into the details, a careful comparison between Figures 2 and 3 reveals
a small redshift of the main resonance peak, to approximately A = 386 nm.
Higher-order modes appear in the spectrum, revealing its corner-induced
scattering signature, and hence showing that even small subwavelength fea-
tures have a significant impact to the overall scattering/absorption behavior.

However, these higher-order modes are not the only difference compared to
the spectrum of a sphere. There is a misalignment between the scattering and

TZAROUCHIS ET AL.
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0.4 ; . . ., absorption maximum positions. For example, the first absorption maximum
035 | —gm @ I happens at A=385.6 nm (Figure 3a) and the second maximum at A=356.7 nm
— N (Figure 3b) when the corresponding scattering peaks are 4 = 386 nm and
03+ . A=1355.3 nm, respectively. The inset figures in Figure 3 reveal the charge dis-
oas| tribution on these absorption maxima; a dipole-like behavior is visible in the

L . first resonance and a richer charge distribution for the second one.
E- 2 (b (a ® " The main characteristic of the dipole resonance is that the charge confine-
O o5t ment takes place on the vertices of the particle. For the second resonance, the
o1l 4 ) charge confinement is extended to the edges as well. Due to this effect the
categorization of this higher-order mode is a rather difficult task. Note that
0.05 l_I the above observation holds for all of the studied Platonic solids. Additionally,
0 / . | — we observe that the sharpness of the vertex solid angle can be associated with
300 350 400 : ]45‘3 500 550 the position of the main dipole resonances. This is an evident fact regarding

A [nm

Figure 6. Volume-normalized absorption and scattering spectra for
an equivolumed octahedron with side dimension a = 64.245 nm.
The inset figures indicate the surface charge distribution for the two
first absorption resonances, that is, (a) the imaginary part of charge

the vertex-induced effects; all dipole-like distributions are mainly confined
at the vertices of the Platonic solid.

3.2. Plasmonic Icosahedron
The vertex angle of the solid icosahedron is slightly sharper with respect to

distribution at A = 431.4 nm (electric dipole) and (b) the real part of its dual-partner particle, the dodecahedron (see Table 1). For experimental
the charge distribution at 4 = 389.1 nm. studies of this plasmonic NP, mostly regarding its manufacturing process, see

04 T T

Kim et al. (2004), Ringe et al. (2012), and Keunen et al. (2014), with certain
attention to its resonant characteristics. Figure 4 gives its scattering signatures. The main dipole resonance
is approximately in the same position with its equivolumed dual (dodecahedron); however, the absorption
lines are enhanced. Here the same scattering/absorption resonance misalignment is observed as before.
The main scattering peaks are observed at A=385.2 nm and A=361.1 nm, while the absorption maxima are
at A=386.3 nm and A=360.1 nm, respectively. Finally, the two first maximum absorption charge distributions
reveal a similar vertex-induced (for the dipole) and vertex-edge (for the higher modes) characteristics, as was
observed for the dodecahedron.

3.3. Plasmonic Hexahedron

The hexahedron, or commonly known as cube, is the most studied geometrical shape of the whole Platonic

family. Several attempts have been made for the determination of its electrostatic (polarizability) and elec-

trodynamic response during the last 50 years. Gelder et al. (1972) and Fuchs (1974) are probably the first

who studied the resonances of cubic clusters and inclusions. Indicative numerical studies (Avelin et al., 2001;
Hohenester & Krenn, 2005; Klimov et al., 2014; Ruppin, 1996; Sihvola et al.,
2004; Tzarouchis et al, 2016a, 2016b), and several experimental studies
(Akselrod et al., 2014; Cortie et al., 2012; Lagos et al., 2017; Zhang et al., 2011),

o (e

035 F |—=Clpa
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reveal a vibrant interest for the resonant behavior of the cube.

(a) :
@ I Figure 5 depicts the resonant spectra of the cube. The redshifted dipole mode
exhibits enhanced (both in amplitude and linewidth) scattering and absorp-
‘ ) I tion characteristics as compared to the aforementioned solids. The sharper
vertex corner (xz /2) is the reason behind this redshift. In this case also the
minimum scattering valley is expanded and the edge effects of the second
absorption maximum are clearly observable. The main scattering resonances
take place at A=423.8 nm and 4=384.3 nm, with its absorption peaks shifted
to A=422.5 nm and 4=385.3 nm, respectively.

3.4. Plasmonic Octahedron

Figure 7. The volume-normalized absorption and scattering spectra

4;0
A [nm]

500 550 600 The octahedron, the dual shape of the cube, is a less studied particle. Its solid
angle is sharper than that of the cube. Therefore, its plasmonic resonances
are expected to occur for lower energies (higher wavelengths) which also

of an equivolumed tetrahedron of side a = 101.98 nm. The inset figures  can be seen in Figure 6. However, there are a some differences between the

indicate the surface charge distribution for the two first absorption responses of octahedron and cube, such as the linewidth of the resonances.
resonances, that is, (a) the imaginary part of charge distribution at . o . . .
4 = 549.2 nm (electric dipole) and (b) the real part of the charge The hybrid vertex-edge mode exhibits a highly symmetric pattern with

distribution at A = 461.5 nm.

enhanced absorption peaks. Specifically, the first scattering and absorption
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0.6

Figure 8. Comparative chart depicting the volume-normalized
extinction of the five equivolumed Platonic solids and the sphere.
Each line corresponds to one solid.

Figure 9. The scattering albedo for a sphere and the five Platonic solids.
A minimum albedo can be identified for the region between the first

two modes for all particles.

peaks are at A=431.9 nm, A=389 nm, 41=430.7 nm,and 1=389.4 nm. Itis
interesting to observe that the minimum scattering valley is wider than that
of the cube.

3.5. Plasmonic Tetrahedron

The sharpest member of Platonic solids is the tetrahedron (Kim et al.,, 2004),
with a vertex solid angle of ~ 0.551 and an edge length of a= 101.98 nm.
The main dipole resonance of the tetrahedron occurs at much lower energies
than for the previous solids: A=549.7 nm, while the second vertex-edge mode
occurs at 4 = 461.4 nm. Since these resonances are strongly redshifted, the
relative size of the tetrahedron compared to the wavelength is much smaller
than in the other Platonic NPs. This is why terahedron experiences enhanced
absorption, as depicted in Figure 7.

Interestingly, there are two wide minimum scattering valleys around 500 nm
and 425 nm. Therefore, one could say that the scattering spectrum of the
tetrahedron is quantized. This kind of scattering signature might be useful for
scattering tagging and low-scattering/camouflage purposes. It could be con-
jectured that the appearance of such scattering minima requires the existence
of sharp corners in the NP.

4. Discussion and Conclusions

As an overall comparison, Figure 8 shows the extinction of all treated particles. Since the evaluated charac-
teristics are expressed in volume-normalized quantities, a comparative chart of the extinction spectrum is
meaningful. Figure 8 reveals the trends behind the scattering spectrum of the sphere and the five Platonic
NPs. The development of the main scattering features, that is, the first and second resonances and scattering
minima, follow the sharpness of the NPs, especially for the three last cases (tetrahedron, octahedron, and
hexahedron).

In particular, the main resonant peaks of the tetrahedron, octahedron, and hexahedron occur at
Atetra = 549.7 nm, A, =430.7 nm, and Ay, = 422.5 nm, respectively. The vertex angles are 0.551, 1.359, and
% ~ 1.571, and the edge lengths are 101.98, 64.245, and 50 for the tetrahedron, octahedron, and hexahedron,
respectively. The statistical correlation between the dipole absorption maximum peak and the vertices is
approximately 0.988, while the wavelength-edge correlation is somewhat smaller, exhibiting roughly a value
of 0.977. Due to the fact that the plasmonic resonances follow an sv-hierarchical order in terms of the lowest
to highest resonant energies (lowest resonant wavelength), it stands to reason that the main plasmonic
resonance is straightforwardly affected by the sharpness of the vertex. Note
that previous experimental work done by Ross et al. (2015) indicate that the
edge length (plasmonic length) is the main resonant affecting mechanism.
By fixing the type of solid and its volume, the edge length and vertex sharp-
ness are mutually defined. However, in our perspective, the vertex catego-
rization is more universal, since it is defined only by the type of solid and not
its volume. This categorization follows the same philosophy as with its 2-D
counterparts, where sharper corners induce resonances at lower energies, as
can be found in works by Dobrzynski and Maradudin (1972), Kottmann et al.
(2001), and Sturman et al. (2013).

On the other hand, earlier studies on dielectric solids, for example, in Avelin
and Sihvola (2002) and Sihvola et al. (2004), revealed an hedra-hierarchical
order regarding the strength of the calculated electrostatic polarizabilities.
This difference can be explained by the fact that different physical mecha-

< 300 A [nm] nisms are involved for plasmonic response than in the quasistatically explain-

able dielectric response. In particular, sharp corners and edges facilitate the
accumulation and radiation of the energy carried by the free conduction
electrons, which is the main radiation enhancement mechanism behind the
plasmonic resonances.
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Another figure of merit of the qualitative characteristics of the extinction landscape is the albedo. Albedo
(here denoted as w) is defined as the ratio between the scattered and the extinct total power (Tzarouchis
etal,, 2016b). Between the pure scattering (w = 1) and pure absorption (w = 0), it measures the composition
of extinction in these two mechanisms for single or multiple NPs. For example, albedo values smaller than
0.5 indicate a dominance of the absorption mechanisms. The albedo chart in Figure 9 can be readily used for
the evaluation of the scattering and absorptive characteristics for each case.

In our case almost all solids exhibit an albedo minimum valley close to their second absorptive resonance as
can be seen in Figure 9. This is an indication that close to the regions of minimum scattering the absorption
mechanism prevail. The most interesting case is observed for the tetrahedron since its albedo is below
0.5 almost for the entire spectrum. This can be explained again from the fact that a tetrahedron is consid-
erably in the subwavelength region at these wavelengths, since its side is of the order 4/5 at its first dipole
resonance.

As a conclusion, the resonant spectra of small regular plasmonic polyhedra have been presented. Our efforts
focused on the study of the Platonic solids and their scattering characteristics. It was shown that certain
features can have large impact to the scattering spectra, such as the sharpness of the corners and edges.
This observation can be exploited either for design or for growth control purposes in nanotechnology applica-
tions. We estimate that this study will inspire further investigations regarding the correlation of the particular
NP symmetries and the exhibited resonances. New research pathways can also include the connection of the
vertex-/edge-induced effects of three-dimensional solids for both plasmonic and dielectric materials.
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