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Abstract: Wavefolders are a particular class of nonlinear waveshaping circuits, and a staple of the
“West Coast” tradition of analog sound synthesis. In this paper, we present analyses of two popular
wavefolding circuits—the Lockhart and Serge wavefolders—and show that they achieve a very
similar audio effect. We digitally model the input–output relationship of both circuits using the
Lambert-W function, and examine their time- and frequency-domain behavior. To ameliorate the
issue of aliasing distortion introduced by the nonlinear nature of wavefolding, we propose the use
of the first-order antiderivative method. This method allows us to implement the proposed digital
models in real-time without having to resort to high oversampling factors. The practical synthesis
usage of both circuits is discussed by considering the case of multiple wavefolder stages arranged
in series.

Keywords: acoustic signal processing; circuit modeling; nonlinear waveshaping; antialiasing;
synthesis; music

1. Introduction

Nonlinear waveshaping is a technique used in sound synthesis to generate complex harmonic
spectra. It consists of processing a signal with low harmonic content (typically a sinusoid) using
a nonlinear mapping function designed to introduce harmonic overtones to the output signal [1].
The first documented use of waveshaping in the digital domain can be traced back to 1969, when
Jean-Claude Risset emulated the sound of a clarinet by distorting a sinusoid with a clipping function [2].
Waveshaping techniques were extensively researched within the context of computer music in the
1970s, with several authors exploring the use of Chebyshev polynomials in particular, as an accurate
and computationally cheap alternative to additive synthesis [1,3–5]. The underlying principles behind
waveshaping synthesis are closely related to other well-known synthesis techniques, such as frequency
modulation (FM) and phase distortion (PD) synthesis [6,7]. These two techniques rely on distorting
the frequency and phase, respectively, of sinusoidal oscillators. Recent research on the topic of
distortion-based synthesis has explored the use of logic operators in lieu of traditional polynomial
waveshapers [8], and proposed extensions to both FM and PD synthesis [9,10].

The use of waveshaping in the analog domain began in the 1950s, when guitar players started
deliberately overdriving their tube amplifiers to alter the timbre of their instrument [11]. In 1961,
Gibson released the “Maestro FZ-1 Fuzz Tone”, the first commercially available fuzz distortion pedal,
which exploited the saturating behavior of transistors to introduce harmonic distortion [12]. Most guitar
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distortion pedals, including popular designs such as the Ibanez Tube Screamer and Electro-Harmonix
Big Muff Pi, operate under this same basic principle [13,14].

In analog synthesizers, the use of distortion-based methods is one of the cornerstones of
“West Coast” synthesis, a paradigm pioneered by California-native Don Buchla during the 1960s.
Buchla’s instruments focused on timbre manipulation at oscillator level by employing a variety of
techniques such as nonlinear waveshaping, oscillator synchronization and pitch modulation [15–17].
This approach to sound synthesis contrasts that of traditional subtractive synthesis, where timbre
is typically controlled by filtering harmonically-rich oscillator waveforms, like sawtooth and square
waves, using resonant filters [18]. In recent years, West Coast synthesis has become increasingly
popular, with contemporary manufacturers such as Make Noise and Verbos Electronics releasing their
own takes on classic Buchla circuits.

This study presents virtual analog (VA) models for two analog synthesizer circuits: the Lockhart
wavefolder and the wavefolder used in the middle section of the Serge Wave Multipliers. Wavefolding
is a type of nonlinear waveshaping common in West Coast synthesis where portions of the input signal
that exceed certain threshold are inverted or “folded back”, hence the name of the effect. The two
circuits considered in this study were chosen because of the strong similarities between their general
behavior. In a similar way to guitar distortion pedals, both wavefolders exploit the saturating behavior
of semiconductor p–n junctions (i.e., transistors/diodes) to implement a folding function.

Wavefolders are amongst the most emblematic building blocks of West Coast synthesis. In spite
of that, they have been mostly overlooked by both VA and digital waveshaping research. We have
recently begun to fill this research gap in [17], which presents a VA model of the wavefolder circuit
in the seminal Buchla 259 module. Previous work on circuit-based VA modeling has researched
the filters found in vintage synthesizers such as those produced by Moog [19–22], Electronic Music
Studios (EMS) [23,24], Korg [25,26] and Buchla [16]. Extensive work has also been done on modeling
guitar distortion pedals [13,27], tube amplifiers [11,28,29], modulation effects [30–33] and the Roland
TR-808 drum machine [34,35]. Measurement-based VA modeling, commonly known as “black-box
modeling”, has also been thoroughly studied within the context of guitar amplifiers and pedals [36–38].
This approach is particularly useful when the original circuit schematics are not available.

A major challenge in VA modeling of nonlinear circuits, and digital waveshaping in general, is
aliasing suppression. Early research on waveshaping synthesis addressed this issue by using low-order
polynomial transfer functions, which not only allowed full parametric control of the produced spectrum
but also ensured that the output waveform was bandlimited [4]. In VA modeling, high oversampling
factors are usually necessary to prevent harmonics introduced by nonlinearities from reflecting into
the baseband as aliases [13]. Oversampling increases the computational requirements of the model, by
introducing additional filtering stages and scaling the number operations required to compute each
output sample. For VA models that require evaluating transcendental functions, as is the case with
the proposed Lockhart and Serge models, these added costs could compromise the integration of the
system within a larger, real-time computer music system.

A sizable portion of VA research has concentrated on designing efficient algorithms to generate
alias-free geometric waveforms like those used in analog subtractive synthesizers, the so-called classic
analog waveforms. Well-known techniques include the bandlimited impulse train (BLIT) family of
methods, which involves the use of bandlimited basis functions and their integrated forms [39–41],
and the use of differentiated polynomial waveforms (DPW) [42–44]. Moreover, Välimäki and Franck
have applied the antialiasing principle behind the DPW algorithm to tackle aliasing in wavetable
oscillators [45]. Recent work on antialiasing techniques has extended the use of the bandlimited ramp
(BLAMP) method, originally proposed to antialias triangular oscillators in [25,41], to special cases of
linear piecewise nonlinearities such as signal rectification, and inverse/hard clipping [17,46,47].

In this work, we propose the use of the antiderivative antialiasing method introduced in [48,49].
This approach can be used to reduce the aliasing caused by arbitrary nonlinear waveshaping functions
and is applicable to the proposed wavefolder models. In its first-order form, the method can be
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derived by analytically convolving a linear continuous-time representation of the input signal with a
rectangular lowpass kernel [48]. As shown in this work, the use of the antiderivative method reduces
the oversampling requirements of the proposed wavefolder models.

A VA model of the Lockhart wavefolder was originally presented in [50]. This paper extends that
work by introducing a second wavefolding circuit and studying the similarities between both systems.
Additionally, we present a different treatment of the required Lambert-W function and an extended
evaluation of the proposed antialiasing method in terms of computational costs.

This paper is organized as follows. Sections 2 and 3 describe the model derivation of the Lockhart
and Serge wavefolders, respectively. Time-domain simulations of the circuits are also presented in these
two sections. Section 4 deals with two implications of VA wavefolding in the digital domain, namely
aliasing suppression and evaluation of the Lambert-W function. Section 5 presents frequency-domain
results of the Lockhart and Serge wavefolders, as well as an evaluation of the proposed antialiasing
method in terms of perceived sound quality and computational costs. Section 6 discusses the practical
synthesis usage of both circuits and compares the behavior of the middle Serge Wave Multiplier with a
recommended four-stage topology built around the Lockhart wavefolder. Concluding remarks and
perspectives appear in Section 7.

2. The Lockhart Wavefolder

Figure 1a shows a simplified circuit diagram of the Lockhart wavefolder. This circuit was designed
in 1973 by R. Lockhart Jr., who intended it to be used as a general-purpose frequency tripler [51].
Following its publication in Bernie Hutchin’s Electronotes [52], Lockhart’s design was repurposed as
a wavefolder by Ken Stone, who realized its potential as a simple yet interesting waveshaper [53,54].
The Lockhart wavefolder has become ubiquitous in the music synthesizer do-it-yourself (DIY)
community. For example, it is the core processor in Yves Usson’s “Metalizer” module [55].

(a)(a)

IE,2IE,2

IED,2IED,2

↵RICD,2↵RICD,2

↵FIED,2↵FIED,2

IE,1IE,1

IC,2IC,2

IC,1IC,1

ICD,1ICD,1

VBC,2VBC,2

VBC,1VBC,1

IED,1IED,1

VBE,1VBE,1

VBE,2VBE,2

IoutIout

RLRL

VoutVout

RR

RR

VinVin

Q1Q1

Q2Q2

VCCVCC

VEEVEE

↵RICD,1↵RICD,1

↵FIED,1↵FIED,1

(b)(b)

VinVin

Q2Q2

VoutVout

RLRL

RR

RR

VCCVCC

VEEVEE

Q1Q1

PNPPNP

NPNNPN

VBE,1VBE,1

VBE,2VBE,2

ICD,2ICD,2

Figure 1. (a) Simplified schematic of the Lockhart wavefolder circuit (adapted from [53]); and (b) its
Ebers–Moll large-signal equivalent model.
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The main modifications made by Stone to Lockhart’s original design were the addition of an
input potentiometer to attenuate the amplitude of the input waveform, and an inverting amplifier
at the output of the circuit [54]. For the sake of simplifying the analysis, these are not shown in
Figure 1a. The inverting stage at the output is reintroduced in Section 2.3. In our treatment of the
circuit, we introduce the load resistance RL as an additional parameter which can be used to further
control the timbre of the folded waveform.

2.1. Circuit Analysis

The Lockhart wavefolder consists of an NPN and a PNP bipolar junction transistors connected at
their base and collector terminals. In order to model the large-signal behavior of the circuit, we replace
transistors Q1 and Q2 with their corresponding Ebers-Moll large-signal models [23,24]. Figure 1b
shows the large-signal equivalent circuit of the Lockhart wavefolder. We use a double subscript
notation to distinguish the voltages and currents in transistor Q1 from those in Q2. For example, IED,2

denotes the current through the base-emitter diode in Q2. Component values for the circuit have been
compiled in Table 1.

Table 1. Component values for the Lockhart wavefolder circuit.

Component Value (kΩ) Component Value (V)

R 15 VCC 15
RL 1–50 VEE −15

We begin the analysis of the circuit by assuming that the supply voltages are equal but opposite in
sign (i.e., VCC = −VEE), and that |Vin| � VCC. This assumption means that the base-emitter junctions
of both Q1 and Q2 will always be forward-biased and their voltage drops will remain approximately
constant for all expected values of Vin. In Ken Stone’s version of the circuit, Vin is assumed to be
bounded between approximately±1.2 V [53]. Applying KVL around both input–emitter loops gives us

Vin = VCC − RIE,1 −VBE,1 (1)

Vin = VBE,2 + RIE,2 + VEE, (2)

where IE,1 and IE,2 are the emitter currents, and VBE,1 and VBE,2 are the voltages across the base–emitter
junctions of Q1 and Q2, respectively. Solving Equations (1) and (2) for IE,1 and IE,2 gives us:

IE,1 =
VCC −VBE,1 −Vin

R
(3)

IE,2 =
Vin −VBE,2 −VEE

R
. (4)

Next, we apply KCL at the collector node, which gives us

Iout = IC,1 − IC,2, (5)

where

IC,1 = αF IED,1 − ICD,1 (6)

IC,2 = αF IED,2 − ICD,2. (7)

If we then assume that the contributions of the reverse currents αR ICD1 and αR ICD2 to the total
currents associated with the emitter nodes are negligible (i.e., αR ≈ 0), we can establish that



Appl. Sci. 2017, 7, 1328 5 of 23

IED,1 ≈ IE,1 (8)

IED,2 ≈ IE,2. (9)

Assuming αF = 1, as suggested in [23], and inserting Equations (8) and (9) into Equations (6) and
(7), respectively, yields a new expression for the total output current of the circuit:

Iout = IE,1 − IE,2 − ICD,1 + ICD,2. (10)

We then combine Equations (3) and (4) to derive an expression for the difference between
emitter currents:

IE,1 − IE,2 =
VCC + VEE − 2Vin + VBE,2 −VBE,1

R
. (11)

Since VCC + VEE = 0, and voltage drops VBE,1 and VBE,2 are assumed to be constant and equal,
their contribution to this expression disappears. Therefore, we can simplify this result as:

IE,1 − IE,2 = − 2
R

Vin. (12)

Substituting Equation (12) into Equation (10) produces an expression for the total output current
Iout in terms of the input voltage and the currents through the collector diodes:

Iout = −
2
R

Vin − ICD,1 + ICD,2. (13)

The current–voltage (I–V) relationship of diodes can be modeled using Shockley’s ideal diode
equation, defined as

ID = Is

(
exp

(
VD

ηVT

)
− 1
)

, (14)

where ID is the current through the diode, Is is the reverse bias saturation current, VD is the voltage
across the diode, VT is thermal voltage and η is the ideality factor of the diode [56]. For the p–n
junctions inside transistors we can assume a reverse saturation current value Is = 10−17 A and an
ideality factor η = 1. A thermal voltage value VT = 25.864 mV is used throughout this study.

Applying Shockley’s diode equation to the collector diodes and substituting into Equation (13)
gives us:

Iout = −
2Vin

R
− Is

(
exp

(
VCD,1

ηVT

)
− 1
)

︸ ︷︷ ︸
ICD,1

+ Is

(
exp

(
VCD,2

ηVT

)
− 1
)

︸ ︷︷ ︸
ICD,2

. (15)

Next, we use KVL to derive expressions for VCD,1 and VCD,2 in terms of Vin and Vout:

VCD,1 = Vout −Vin (16)

VCD,2 = Vin −Vout. (17)

Now, the collector diodes in the large-signal model are antiparallel. Therefore, we can make
the further assumption that only one of them will conduct at a time depending on the polarity of
Vin. A similar treatment is presented in [57] for the case of diode pairs in guitar distortion circuits.
This means that

ICD,1 ≈ 0 for Vin ≥ 0 and ICD,2 ≈ 0 for Vin < 0.

By combining these new assumptions with Equations (15)–(17) we arrive at the piecewise expression

Iout = −
2
R

Vin + λIs

(
exp

(
λ (Vin −Vout)

ηVT

)
− 1
)

, (18)
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where λ = sgn (Vin) and sgn () is the signum function

sgn(x) :=


−1 if x < 0
0 if x = 0
1 if x > 0.

(19)

Equation (18) can be further simplified if we consider that the independent constant factor λIs that
results from its expansion will be very small (±10−17 A) and can therefore be neglected. This gives us:

Iout = −
2
R

Vin + λIs exp
(

λ (Vin −Vout)

ηVT

)
. (20)

Finally, we multiply both sides of this expression by RL to derive an input–output voltage
relationship for the Lockhart wavefolder:

Vout = −
2RL

R
Vin + λRL Is exp

(
λ (Vin −Vout)

ηVT

)
. (21)

2.2. Explicit Formulation

Equation (21) describes an implicit relationship between the input and output voltages of the
circuit; it cannot be solved algebraically. Instead, a closed-form solution for Vout can be derived with
the help of the Lambert-W function. The use of the Lambert-W function W() has been previously
researched within the context of VA modeling. Several authors have used it to solve the implicit I–V
relationship of diodes [56,58,59]. Parker and D’Angelo used W() to model the Buchla Lowpass-Gate,
a synthesizer circuit that employs a resistive opto-isolator (also known as a vactrol) in its control
path [16]. Strictly speaking, W() is multivalued; however, in this work, we only utilize the upper
branch of the function. This branch is known as W0() in the literature [56,60].

The Lambert-W function is used to solve equations of the form

(A + Bx) exp (Cx) = D, (22)

which have the explicit solution

x =
1
C

W
(

CD
B

exp
(

AC
B

))
− A

B
, (23)

where A, B, C and D ∈ R [58].
Equation (21) can be arranged in the form described by Equation (22) by first rewriting it as

Vout +
2RL

R
Vin = λRL Is exp

(
λVin

ηVT

)
exp

(
−λVout

ηVT

)
, (24)

and dividing both sides by exp (−λVout/ηVT), which gives us(
Vout +

2RL

R
Vin

)
exp

(
λVout

ηVT

)
= λRL Is exp

(
λVin

ηVT

)
. (25)

Solving for Vout as defined in Equation (23) yields an explicit model for the Lockhart wavefolder

Vout = ληVTW (∆ exp (λβVin))− αVin, (26)

where
α =

2RL

R
, β =

2RL + R
ηVTR

and ∆ =
RL Is

ηVT
.
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Table 2 summarizes all parameter values for the proposed Lockhart wavefolder model.

Table 2. Parameter values for the Lockhart wavefolder described by Equation (26).

Name Value Name Value Name Value

R 15 kΩ Is 10−17 A VT 25.864 mV
RL 1–50 kΩ η 1 – –

2.3. Model Discretization and Evaluation

The voltages inside the Lockhart wavefolder are time-dependent. Therefore, we can describe the
continuous-time model defined by Equation (26) as being of the form

Vout(t) = f (Vin(t)), (27)

where f () is the transfer function of the system and t is time. In the synthesis literature, the term
“transfer function” is commonly used to denote the waveshaping function [4]. It should not be confused
with the s- and z-domain transfer functions used in linear system analysis.

As previously mentioned, Ken Stone’s circuit features an inverting stage before the output which
can be modeled by inverting the polarity of the right-hand side of Equation (26):

Vout = αVin − ληVTW (∆ exp (λβVin)) . (28)

While including this step is not strictly necessary, we have chosen to do so, as it will facilitate the
evaluation of the model. Now, given the form described by Equation (27), the Lockhart model can be
discretized trivially by replacing all continuous-time signals with their discrete-time equivalents, i.e.,

Vout[n] = f (Vin[n]), (29)

where n is the sample index.
The time-domain behavior of the proposed circuit model was validated by comparing it against a

reference simulation obtained using the SPICE (Simulation Program with Integrated Circuit Emphasis)
software LTspice (Version IV, Linear Technology, Milpitas, CA, USA, 2016) [61]. The results of this
simulation are shown in Figure 2a for values of Vin between −1.5 and 1.5 V. Figure 2b shows the
transfer function of the proposed model implemented in MATLAB (Version R2017a, MathWorks,
Natick, MA, USA, 2017) using Equation (28) and MATLAB’s native “lambertw” function. In both
cases, four different values of RL were simulated: 1, 5, 10 and 50 kΩ. From these figures, we can
observe the general behavior of the Lockhart wavefolder. At low input values, the system behaves
linearly, whereas for high input values the circuit inverts the slope of the driving signal. The transition
between non-folded and folded portions of the signal is gradual, which responds to the characteristic
soft saturating behavior of p–n junctions. The region where the transfer function folds the input signal
is indicated with a blue arrow in Figure 2b for the case when RL = 50 kΩ. As shown in these Figures,
increasing the value of RL sharpens the shape of the transfer function.

The curves shown in Figure 2a,b indicate a good match between the SPICE simulations and the
proposed digital model. Figure 3 shows the absolute value (in mV) of the difference between both
simulations. From this plot, we can observe that the difference between the curves is indeed very small,
below 1 mV for all values of Vin measured. These small differences are perceptually insignificant and
can be attributed to the simplifications made during the analysis of the circuit and to the way in which
SPICE computes currents flowing through semiconductor devices. For example, SPICE introduces a
small fictitious conductance in parallel with each p–n junction in order to aid the convergence of its
iterative solvers. Additionally, the SPICE diode model will account for the small reverse current that
flows when the voltage across the diode is negative [61].
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Fold
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Figure 2. Transfer function of the Lockhart wavefolder simulated using: (a) SPICE (Simulation Program
with Integrated Circuit Emphasis); and (b) the proposed virtual analog (VA) model. Different colors
indicate different values of RL.

1k

5k

10k

50k

Figure 3. Absolute value of the difference between a SPICE simulation of the Lockhart wavefolder and
its proposed VA model.

Figure 4 shows a time-domain view of the output of the proposed model when driven by a 500-Hz
sinusoidal waveform with a peak amplitude of 1 V for two different load resistance values, RL = 10
and 50 kΩ. A sampling rate Fs = 44.1 kHz was used to generate these figures, which are plotted
against their corresponding SPICE simulations. From these results, we can once again observe the
effect of wavefolding and the impact of RL on the overall shape of the output. For high values of RL

the transition region between folded and non-folded values becomes very small and the resulting
waveform is almost discontinuous (see Figure 4b). In the frequency domain, this will translate to
higher harmonic content, similar to that of a square wave oscillator. A more detailed frequency-domain
analysis of the Lockhart circuit is presented in Section 5 of this study.

Figure 4. Time-domain view of the proposed Lockhart wavefolder model plotted against its SPICE
simulation for a 500-Hz sinusoidal input (peak amplitude 1 V) with load resistance: (a) RL = 10 kΩ;
and (b) RL = 50 kΩ.

3. The Serge Middle Wave Multiplier

The second circuit considered in this study is the middle section of the Serge Wave Multipliers
(often abbreviated as the Serge VCM). The Serge VCM is a synthesizer module designed in 1977 by
West Coast designer Serge Tcherepnin, founder of Serge Modular Music Systems. It offered three
separate and independent analog sound processors, namely the “top”, “middle” and “bottom” sections.
As described in an original 1980 Serge product catalog, “The middle section generates a sweep of the
odd harmonics (1, 3, 5, 7, 9, 11 and 13th) when a triangle wave is applied to its input... This module can
be used to explore timbral areas beyond the range of ring modulation because there are more varied
harmonics than the sum and difference tones” [62].
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The middle Serge VCM is essentially a waveshaping circuit consisting of six identical wavefolding
stages arranged in series. An amplifier at the input of the circuit is used to modulate the gain of
the input waveform and control the amount of folds introduced [63]. In this section we focus on
the analysis of a single folding stage. The transfer function and frequency-domain behavior of the
complete system are presented in Section 6. Figure 5 shows the schematic of a single wavefolding
stage in the circuit. Component information is given in Table 3.

-
+

VinVin

VoutVout
R1R1

R2R2

VxVx

R3R3

Figure 5. Schematic of a single folding cell in the middle section of the Serge Wave Multipliers (VCM).
Figure adapted from [63].

Table 3. Component information for the Serge wavefolder circuit shown in Figure 5.

Component Value (kΩ) Component Description

R1 33 Diodes 1N4148 or similar
R2 100 Op-Amp TL072 or similar
R3 100 – –

To derive the transfer function for the Serge wavefolding circuit, we first assume ideal op-amp
behavior and derive an expression for Vout in terms of Vin and Vx, the voltage at the non-inverting
input of the amplifier. This gives us:

Vout = Vx −
R3

R2
(Vin −Vx) . (30)

Since in this case R3 = R2, we can further simplify this result as:

Vout = 2Vx −Vin. (31)

Next, we derive an expression for Vx by considering the subcircuit shown in Figure 6, which is
essentially a diode pair similar to those found in guitar distortion circuits [13,57,58].

VinVin VxVx

IFIF IRIR

R1R1II

Figure 6. Equivalent view of the diode saturator at the non-inverting input of the op-amp in Figure 5.

Applying KVL around the outer loop of the circuit yields the relation

Vin = R1 I + Vx, (32)
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where I is the current through resistor R1. Then, we apply KCL at the output node of the circuit, which
gives us

I = IF − IR. (33)

Combining Equation (32) with Equation (33) and applying Shockley’s diode equation gives us

Vin −Vx

R1
= Is

(
exp

(
Vx

ηVT

)
− 1
)

︸ ︷︷ ︸
IF

− Is

(
exp

(
−Vx

ηVT

)
− 1
)

︸ ︷︷ ︸
IR

. (34)

As before, we assume the diodes will not conduct simultaneously and arrive at the piecewise
relationship

Vin −Vx = λR1 Is

(
exp

(
λVx

ηVT

)
− 1
)

, (35)

where once again λ = sgn(Vin). To further simplify this expression we neglect the constant factor
λR1 Is that results from its expansion. This gives us:

Vin −Vx = λR1 Is exp
(

λVx

ηVT

)
. (36)

Next, we rearrange this equation in the Lambert-W form described by Equation (22) by dividing
both sides by exp (λVx/ηVT). This yields

(Vin −Vx) exp
(
−λVx

ηVT

)
= λR1 Is, (37)

which can be solved for Vx as:

Vx = Vin − ληVTW
(

R1 Is

ηVT
exp

(
λVin

ηVT

))
. (38)

As a final step, we insert Equation (38) into Equation (31) to derive a complete expression for the
transfer function of a single wavefolding stage in the Serge middle VCM:

Vout = Vin − 2ληVTW
(

R1 Is

ηVT
exp

(
λVin

ηVT

))
. (39)

Figure 7 shows the transfer function of the circuit, evaluated in MATLAB for values of Vin between
−1.5 and 1.5 V. As before, the model was discretized trivially and is presented against its corresponding
SPICE simulation. Parameter values used in this simulation are compiled in Table 4. The value of
parameters Is and η for the 1N4148 diode were matched to those of its corresponding SPICE model [61].
Figure 7b shows the absolute difference between both simulations. These results indicate a good match
between the models, as the maximum difference was once again found to be below 1 mV.

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

SPICE

Model

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.1

0.2

Figure 7. (a) Transfer function of a single wavefolding stage in the Serge middle VCM measured using
SPICE and the proposed model; and (b) the absolute difference between these two curves.
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Table 4. Simulation parameters for a single folding stage in the middle Serge Wave Multiplier.

Name Value Name Value

Is 2.52 nA R1 33 kΩ
η 1.752 VT 25.864 mV

Finally, Figure 8 shows the output of the Serge wavefolder for a 500-Hz sinusoidal input.
As expected, the circuit behaves as a wavefolder, folding portions of the input waveform whose
absolute value exceeds approximately 0.3 V. This behavior is similar to that of the Lockhart wavefolder
(cf. Figure 4a).

Figure 8. Time-domain view of the Serge wavefolder model plotted against its SPICE simulation for a
500-Hz sinusoidal input with peak amplitude if 1 V.

3.1. Model Equivalence

Equation (39) shares a close resemblance with Equation (28), the proposed Lockhart wavefolder
model. In fact, both expressions have the same form, which consists of the difference between a portion
of the input signal and an input-dependent nonlinear element. In the case of the Lockhart wavefolder,
when the RL = R/2 Equation (28) simplifies to

Vout = Vin − ληVTW
(

RL Is

ηVT
exp

(
λVin

ηVT

))
, (40)

which is remarkably close to Equation (39), with the only difference being the missing factor of two
outside the Lambert-W function. This factor accounts for the difference between physical parameters
Is and η in each circuit. Figure 9 shows a comparison of the transfer functions for the Lockhart
(RL = 7.5 kΩ) and Serge wavefolders implemented using the parameter values in Tables 2 and 4,
respectively. From this figure, we can observe that the only significant difference between both
transfer functions is in their sharpness at the folding points. This means the Lockhart wavefolder will
introduce sharper folds which will translate into brighter sounds at the output. From this analysis,
it is clear that both circuits result in a similar audio effect, even though they are produced using
different architectures.

Figure 9. Transfer functions for the proposed Serge and Lockhart (RL = 7.5 kΩ) wavefolder models.

4. Wavefolding in the Digital Domain

In the previous sections, the time-domain behavior of the Lockhart and Serge wavefolder models
was examined via trivial discretization of their characteristic transfer functions. In this section, we move
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on to consider two implications of virtual analog wavefolding: evaluation of the Lambert-W function
and aliasing.

4.1. Evaluating the Lambert-W Function

A particular challenge of using the Lambert-W function in VA modeling, where real-time operation
is paramount, is that of computational efficiency. Optimizing the evaluation of W() is an active
research topic (see, e.g., [64]). For the case of guitar distortion circuits, Paiva et al. proposed the use
of a simplified iterative method which relies on a lookup table for its initial guess [57]. In this work,
we propose approximating the value of W() directly using Fritsch’s iteration, as suggested in [60].
In order to compute wm, an approximation to W(x), where x ∈ R>0, we iterate over

wm+1 = wm(1 + εm), (41)

where

εm =

(
rm

1 + wm

)(
qm − rm

qm − 2rm

)
(42)

rm = ln
(

x
wm

)
− wm (43)

qm = 2 (1 + wm)

(
1 + wm +

2
3

rm

)
, (44)

and m = 0, 1, 2, . . . , M− 1. The value w0 is an initial guess and M is the number of iterations required
for εm to approximate zero within machine-size floating point precision. The special case W(0) = 0 is
defined separately.

The efficiency of Fritsch’s iteration will depend on the choice of initial guess. As explained in [60],
an initial guess within 10−4 of the solution will yield an approximation to W() accurate to within 10−16

in just one iteration. Figure 10 shows the approximate times required to compute W(x) for a set of
values of x between 10−24 and 10300 using Fritsch’s iteration and the previously-proposed Halley’s
method [50]. This range was chosen as it covers all values of interest. For instance, when Vin = 5 V,
the argument of W() in the Serge wavefolder model will be approximately 1.52 × 1044. All times
were computed by averaging the result of 30 iterations implemented under identical circumstances.
A piecewise approximation was used to compute the initial guess, as described in [60]. From this plot,
we can observe that Fritsch’s iteration outperforms Halley’s method by up to approximately 11 times.
A MATLAB implementation of the Lambert-W function used to perform these measurements can be
found in the accompanying website for this article.

Halley

Fritsch

Figure 10. Averaged processing times required to compute W(x) using Halley’s method and Fritsch’s iteration.

4.2. Aliasing Considerations

As discussed in Section 1, nonlinear waveshaping in the digital domain is susceptible to aliasing
distortion due to its frequency-expanding nature. Wavefolding is no exception to this problem. As an
arbitrary input waveform is folded, new harmonic overtones will be added to the frequency spectrum.
Harmonics at frequencies exceeding half of the sampling rate, or the Nyquist limit, will be reflected into
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the audio baseband as aliases. Aliasing is known to cause unpleasant artifacts—such as beating and
inharmonicity—that cannot be tolerated in a music computing scenario. Oversampling is commonly
employed to mitigate this issue; however, this approach increases the computational requirements of
the system by introducing additional operations.

We propose the use of the first-order antialiasing method presented in [48,49]. This method is
designed to reduce aliasing caused by memoryless waveshaping functions with the form described by
Equation (29). The antialiased output of the waveshaping function is defined as

Vout[n] =
F(Vin[n])− F(Vin[n− 1])

Vin[n]−Vin[n− 1]
, (45)

where F() is the antiderivative of f (), the original transfer function. For the case of the Lockhart
wavefolder defined by Equation (28), the integrated transfer function is defined as

F(Vin) =
α

2
V2

in −
ηVT

2β
[Ψ1(Ψ1 + 2)] , (46)

where
Ψ1 = W (∆ exp (λβVin)) , (47)

and α, β and ∆ remain as before. This result showcases an advantageous property of the Lambert-W
function W(); its antiderivative is defined in terms of W() itself. Therefore, computing F() does not
pose a major increase in computational costs with respect to evaluating simply f (). For the case of the
Serge wavefolder defined by Equation (39), the required antiderivative is given by

F(Vin) =
V2

in
2
− (ηVT)

2 [Ψ2(Ψ2 + 2)] , (48)

where

Ψ2 = W
(

R1 Is

ηVT
exp

(
λVin

ηVT

))
. (49)

When Vin[n] ≈ Vin[n− 1], Equation (45) can become ill-conditioned. This is avoided by defining
the special case

Vout[n] = f
(

Vin[n] + Vin[n− 1]
2

)
, (50)

when |Vin[n]− Vin[n− 1]| is smaller than a predetermined threshold [48]. This special case simply
bypasses the antialiased form while compensating for the half-sample latency of the method.

5. Results

This section examines the frequency-domain behavior of the Lockhart and Serge wavefolders
and their proposed antialiased forms. Next, we evaluate the computational costs of the antiderivative
method with respect to oversampling for the case of the Lockhart model.

5.1. Frequency-Domain Behavior

The spectrogram in Figure 11 shows the effect of increasing the value of RL in the Lockhart
wavefolder model for a constant 150-Hz sinusoidal input. As expected, the level of harmonic distortion
introduced by the circuit is proportional to the value of this resistance. Therefore, this parameter can
be used for additional timbral control. It should be noted that due to the antisymmetric nature of
the folding function, the system introduces odd harmonics only for input signals centered around
zero. Since the level of harmonics introduced by the Lockhart wavefolder depends on the choice
of RL, we consider the highest recommended case RL = 50 kΩ as a worst-case scenario in terms of
aliasing distortion.
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Figure 11. Spectrogram of the Lockhart wavefolder under 150-Hz sinusoidal input for values of RL

between 1 and 50 kΩ.

Figure 12 shows the spectrograms of a linear sweep from 20 Hz–5 kHz with peak amplitude of 1 V
processed by the proposed Lockhart and Serge wavefolder models. This frequency range was chosen
as it covers all fundamental frequencies of musical interest. A sample rate Fs = 1 MHz was used to
generate these figures in order to simulate an ideal alias-free continuous-time behavior. These results
will be used as a reference when evaluating the performance of the proposed antialiased forms. From
these spectrograms we can observe how the Lockhart wavefolder is capable of generating brighter
sounds. This perceptual attribute can be varied by changing the value of RL.
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Figure 12. Spectogram for a linear sweep from 20 Hz to 5 kHz processed using: (a) the proposed
Lockhart wavefolder model (RL = 50 kΩ); and (b) the proposed Serge wavefolder model. A sample
rate Fs = 1 MHz was used to simulate analog behavior.

Figure 13a shows the result of processing the same linear sweep using the trivial (i.e., non-antialiased)
Lockhart model at a standard audio rate of Fs = 44.1 kHz. When compared to Figure 12a, we can clearly
observe the high levels of aliasing distortion introduced by the model. This is somewhat ameliorated
in Figure 13b, where the sweep has been processed at a sample rate of Fs = 88.2 kHz (i.e., two-times
oversampling). Figure 13c,d shows the result of processing the sweep using the proposed antialiasing
method at audio rate and with two-times oversampling, respectively. As shown in these spectrograms,
there is a significant reduction in aliasing, particularly below the fundamental frequency. This behavior is
advantageous in music applications because at low frequencies the audibility of aliasing distortion
is only limited by the hearing threshold. On the other end of the spectrum, the masking effects of
harmonics will help suppress the audible effects of high-frequency aliases [65].

The spectrograms in Figure 14a,b show the outcome of processing the 1 V linear sweep with the
proposed Serge wavefolder model at audio rate and with two-times oversampling, respectively. When
compared with Figure 13a,b it is evident that the Serge wavefolder model is less susceptible to aliasing
distortion. This can be attributed to the fact that its transfer function is not as sharp as that of the
Lockhart, particularly when RL = 50 kΩ. Figure 14c,d shows the result of processing the linear sweep
using the antiderivative method at audio rate and with oversampling by two. In this case, operating at
audio rate yields very effective results as there are very few visible aliases left below the fundamental.
When combined with oversampling by two the antiderivative method produces a nearly alias-free
spectrum for the measured frequency range.
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Figure 13. Spectrogram for a 1 V linear sweep from 20 Hz–5 kHz processed with the proposed Lockhart
wavefolder (RL = 50 kΩ) model: (a) at audio rate; (b) using two times oversampling; (c) with
antialiasing at audio rate; and (d) with antialiasing and oversampling by two.
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Figure 14. Spectrogram for a 1 V linear sweep from 20 Hz–5 kHz processed with the proposed Serge
wavefolder model: (a) at audio rate; (b) using two times oversampling; (c) with antialiasing at audio
rate; and (d) with antialiasing and oversampling by two.

The performance of the proposed antialiasing method was further evaluated by computing
the A-weighted noise-to-mask ratio (ANMR) for a set of sinusoidal input signals processed by both
wavefolder models. The ANMR has been previously researched as a perceptually-informed measure
to evaluate the audibility of aliasing distortion [41,65]. The algorithm computes the power ratio in
decibels between the wanted harmonics and aliased components, but takes into account the masking
effects of the former. An A-weighting filter is applied to all signals prior to the evaluation of the ANMR
in order to account for the frequency-dependent sensitivity of hearing for low-level sounds. Signals
with an ANMR value below −10 dB are considered to be completely free from perceivable aliasing.
A detailed account of this method can be found in [65].

Figure 15a compares the measured ANMRs for a set of sinusoidal inputs with fundamental
frequencies between 1 and 5 kHz processed by the Lockhart model at different sampling rates.
The ideal alias-free signals required to compute these values were synthesized using Fourier analysis
and additive synthesis, as suggested in [41]. All signals were downsampled back to audio rate
(i.e., 44.1 kHz) prior to evaluation. A dashed horizontal line has been used to indicate the −10 dB
hearing threshold for aliasing distortion. In Figure 15a we can observe the significant increase in
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signal quality obtained by the proposed antialiasing method when applied to the Lockhart wavefolder,
even when operating at audio rate. Moreover, these measurements show that the performance of the
proposed method, when combined with two-times oversampling, is on par with oversampling by a
factor of 8. For all fundamental frequencies below approximately 4.2 kHz, the ANMR lies below the
−10 dB line. This range can be regarded as sufficient for musical applications if we consider that the
highest fundamental frequency on a standard grand piano is 4186.01 Hz (MIDI note C8).

Figure 15. Measured A-weighted noise-to-mask ratios (ANMRs) for a range of sinusoidal waveforms
processed: (a) using the Lockhart wavefolder model (RL = 50 kΩ) under six different sampling rates;
and (b) using the Serge wavefolder model under two different sampling rates, with and without the
proposed antialiasing method. Values below the −10 dB threshold indicate lack of perceivable aliasing.

Figure 15b shows the measured ANMRs for the Serge wavefolder. When implemented at audio
rate, the output is free from perceivable aliasing for fundamental frequencies up to approximately
2 kHz. These measurements go in accordance with the Spectrogram in Figure 14a, which shows
aliasing is significantly more evident above this frequency. The use of the antiderivative method
yields results comparable to those of oversampling by a factor of two, with all measured fundamental
frequencies below approximately 4.6 kHz lying below the −10 dB aliasing threshold. Overall, these
results indicate the proposed Serge wavefolder model can operate at audio rate with the help of the
antiderivative method, therefore avoiding the need for oversampling.

5.2. Computational Costs

The computational costs of the antialiased Lockhart wavefolder model were measured by porting
the algorithms into C code using the 128-bit long double data type. Table 5 shows the computation
times for a 1-s 100-Hz sinusoidal input processed using the proposed model for different peak
amplitude values. These results were computed by averaging the processing times of one hundred
implementations. All tests were performed under identical circumstances, using a fixed resistance
value of RL = 50 kΩ, the highest recommended value. From these results we can observe that
the complexity of the model does not depend on the input and that the overhead of implementing
the antialiasing method is minimal. When operating at audio rate, the added computation time is
approximately 1 ms for a 1-second simulation. Moreover, these time measurements show that the
antialiased Lockhart model, implemented at a sample rate Fs = 88.2 kHz, is approximately 3.5 times
faster than oversampling by a factor of 8 (i.e., Fs = 352.8 kHz) and nearly twice as fast as oversampling
by a factor of 4. Changing the value of RL did not affect the execution times of the algorithms.
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Table 5. Averaged computation times (in milliseconds) for the proposed Lockhart wavefolder model
(RL = 50 kΩ) implemented in C for a 1-s 100-Hz sinusoidal input sampled at different oversampling
(OS) rates and with different peak amplitude levels.

Amplitude (V) Audio Rate Audio Rate OSx2 OSx4 OSx8 OSx2
(ms) w/Antialiasing (ms) (ms) (ms) (ms) w/ Antialiasing (ms)

1 11.5 12.5 23.4 46.6 92.9 25.4
5 11.6 12.6 23.3 46.8 92.7 25.3

10 11.5 12.6 23.7 46.7 92.9 25.5
15 11.5 12.7 23.5 46.5 92.9 25.5

For high values of RL, long double representation is necessary to account for the large values that
will result at the argument of the Lambert-W function. For smaller values, 64-bit precision will be
sufficient to accommodate most input levels of interest. For instance, when RL = 7.5 kΩ the signal at
the input of the proposed Lockhart wavefolder model can have a peak amplitude of up to 9 V.

The measurements in Table 5 were conducted by synthesizing all input signals at the target rates.
In practical implementations, oversampling will require additional pre- and post-filtering stages that
will further increase the computational costs of the system. The complexity and costs of these filtering
stages will be directly proportional to the required oversampling factor. This constitutes another
advantage of the proposed antialiasing method.

6. Practical Synthesis Usage

In practical sound synthesis applications, a single folding stage is rarely used, as the timbral variety
it can produce is quite limited. Most analog designs, for example the Intellijel µFold and the
aforementioned Yusynth Metalizer, employ several wavefolding stages arranged in series. The number
of stages varies according to the design, but typically cascades of two to six stages are used.
As mentioned in Section 3, the Serge middle VCM utilizes six identical folding stages. Figure 16
shows a simplified block diagram representation of the Serge middle VCM based on the original
design [63]. Blocks labeled “SWF” correspond to the proposed Serge wavefolder model. An ad hoc
gain factor of four, not present in the original circuit, has been added to compensate for the scaling of
the signal introduced by the cascade of wavefolders.

Vin[n]Vin[n] SWFSWF SWFSWF

GSGS

SWFSWF

dc o↵setdc o↵set

SWFSWF SWFSWF SWFSWF Vout[n]Vout[n]

44

Figure 16. Block diagram representation of the Serge middle VCM. Blocks labeled “SWF” indicate the
Serge wavefolder model.

In cascaded wavefolder structures like the one shown in Figure 16, timbral control can be achieved
in two manners. The first is by adjusting the gain of the input waveform (using GS in this case).
This parameter controls the amount of folds introduced, allowing the overall brightness of the sound
to be varied. It can be modulated in real-time to provide articulation to a sound similar to filtering
in subtractive synthesis or modulation index in FM synthesis. The second way to control timbre
is by adding a dc offset to the input of the wavefolder. This breaks the aforementioned symmetry
of the folding function and introduces even harmonics. When modulated by using, for example, a
low-frequency oscillator, this parameter provides an effect reminiscent of pulse-width modulation.
Figure 17a shows the transfer function of the Serge middle VCM model for the case of zero dc offset.
This plot was generated by defining Vin to have a constant value of 1 V and sweeping through values
of GS between −8 and 8. Figure 17b shows the output of the Serge middle VCM when driven by a
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100-Hz sinusoid with GS = 6. For simplicity, in this section, we assume the range of Vin to be fixed at
±1 V; therefore, all gain modulation is done using GS only.

Figure 17. (a) Transfer function of the proposed Serge middle VCM; and (b) its output when driven by
a 100-Hz sinewave for GS = 6 and zero dc offset.

The spectrogram in Figure 18a shows the effect of increasing GS from 0 to 6 for a 150-Hz sinusoidal
input. This plot effectively depicts the rich harmonic patterns introduced by the system, which are
far more complex than those introduce by traditional waveshaping methods and offer a wide timbral
palette for sound synthesis. The fluctuations in energy at the fundamental and first few harmonics
indicate the gain values at which each new fold is introduced. Figure 17b shows the effect of introducing
a dc offset at the input of the system for a constant 200-Hz sinusoidal input. This result shows how
the use of a dc offset can extend the timbral possibilities of the system even further, by introducing
complex patterns consisting of both even and odd harmonics.
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Figure 18. Spectrogram of: (a) a 150-Hz sinewave with peak amplitude 1 V processed by the proposed
Serge middle VCM with varying gain GS from 0–6; and (b) a 200-Hz sinewave processed with varying
gain GS from 0–3 and dc offset from 0–3 V.

Now, although the Lockhart wavefolder was originally designed to operate as a standalone
unit, it can be adapted into a series topology with relative ease. Here, we propose using the
wavefolding structure shown in Figure 19 to expand the synthesis capabilities of the Lockhart
wavefolder. This design, while not based on any existing circuit, is comparable to that of the Yusynth
Metalizer which also utilizes four Lockhart circuits in series [55]. The following paragraphs describe
the sections of this proposed topology. Its frequency-domain behavior is then examined and compared
with that of the Serge middle VCM.

The blocks labeled “LWF” in Figure 19 correspond to the proposed Lockhart wavefolder model.
In order for this cascade of Lockhart wavefolders to behave as expected, we need to make sure that the
individual folding stages satisfy two criteria. Firstly, the individual folders must provide approximately
unity gain for small input values, i.e., below the folding point, and approximately negative unity gain



Appl. Sci. 2017, 7, 1328 19 of 23

beyond the folding point. Secondly, each stage should start folding at the same point with respect to
its individual input.

tanh()tanh() LPFLPFVin[n]Vin[n] Vout[n]Vout[n]

1/31/3 33

fcfcRLRL

LWFLWF LWFLWF LWFLWF LWFLWF

GLGL

dc o↵setdc o↵set

Figure 19. Block diagram for the proposed VA cascaded Lockhart wavefolder topology. Blocks labeled
“LWF” and “LPF” indicate the Lockart wavefolder model and lowpass filtering, respectively.

We can meet these criteria with the proposed Lockhart model by selecting an appropriate value
for RL and adding static gain stages before and after the folding stages. These gain blocks will also
help compensate for the attenuation introduced by the folding operation. First, we choose a value of
RL for which the Lockhart wavefolder exhibits unity gain for small input values. Having found this
resistance value, the pre- and post-gain stages can be determined by measuring the value of |Vout|
at exactly the folding point. The pre-gain is taken to be approximately this value, and the post-gain
is taken to be its inverse. In Section 3.1, it was shown that for RL = 7.5 kΩ the Lockhart wavefolder
exhibits approximately unity gain below the folding point. This value leads to pre- and post-gains of
approximately 1/3 and 3, respectively.

Figure 20a shows the transfer function of the proposed structure measured at the output of the
post-gain block. We can observe how the folds introduced by this structure are evenly distributed,
unlike those in Figure 17a. As with the Serge middle VCM, timbral control is achieved by modulating
the value of GL and by adding a dc offset. The static gain blocks ensure the amplitude of the folded
output is bounded between approximately ±1 V for values of GL between −10 and 10 (assuming once
more that Vin has a peak amplitude of 1 V). Figure 20b shows the time-domain result of processing a
100-Hz sinusoidal input with the proposed structure for GL = 10 and zero dc offset. In this particular
design, additional timbral control can be achieved by modulating the value of RL.

Figure 20. (a) Transfer function of the proposed cascaded Lockhart wavefolder structure measured
after the post-gain block; and (b) its output when driven by a 100-Hz sinusoidal input for GL = 10 and
zero dc offset.

Lastly, we add two optional blocks. The first is a tanh() function after the post-gain block to
model the behavior of an output buffering stage and to limit the range of the output waveform.
This tanh() block can also be antialiased using the antiderivative method described by Equation (45).
The antiderivative of the tanh() function is given by log(cosh()) [48]. The second optional block is a
static one-pole lowpass filter with a cutoff at fc = 1.3 kHz whose purpose is to act as a simple tone
control. A similar static filtering stage can be found at the output of the Buchla 259 wavefolder [17].
The s-domain transfer function of this filtering stage is defined as

H(s) =
wc

s + wc
, (51)

where wc = 2π fc.
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Finally, we examine the time-varying behavior of the proposed structure by considering the case
of a 150-Hz input sinewave with variable gain GL and dc offset. Figure 21 shows the spectrogram that
results from varying GL from 0 to 15. As expected, the system introduces complex harmonic patterns
similar to those shown in Figure 18a. Likewise, Figure 18b demonstrates the effect of varying GL from
0 to 10 while simultaneously increasing the level of dc offset from 0 to 5 V. This response is comparable
to that of the Serge middle VCM (see Figure 18b).
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Figure 21. Spectrogram of: (a) a 150-Hz sinewave with peak amplitude 1 V processed by the proposed
cascaded Lockhart topology with varying gain GL from 0 to15; and (b) a 200-Hz sinewave processed
with varying gain GS from 0 to 0 and dc offset from 0 to 5 V.

A real-time demo of the proposed Lockhart wavefolder topology implemented using Max/MSP
and Gen is available at http://research.spa.aalto.fi/publications/papers/smc17-wavefolder.

7. Conclusions

In this work, we have explored the behavior of two West Coast synthesizer circuits: the Lockhart
and Serge wavefolders. By means of circuit analysis, we have derived closed-form expressions for the
characteristic transfer functions of both systems. These transfer functions were validated against SPICE
simulations implemented using LTspice. The results obtained indicate a good match between the
proposed models and their corresponding SPICE simulations. In addition to this, we observed that the
behavior of both circuits is very similar, despite the fact that their designs are fundamentally different.

The issue of aliasing caused by wavefolding in the digital domain was treated by incorporating
the first-order antiderivative method. Within the context of the Lockhart wavefolder, it was shown
that the proposed antialiased model is perceptually free from the effects of aliasing distortion when
implemented at a sampling rate of Fs = 88.2 kHz. A thorough evaluation of the proposed Lockhart
model indicates that this configuration yields a signal quality equivalent to that of oversampling by
a factor of eight (i.e., Fs = 352.8 kHz) at nearly a fourth of the computational expenses. For the case
of the Serge wavefolder, the use of the antiderivative method produces an increase in signal quality
equivalent to that of oversampling by a factor of two (i.e., Fs = 88.2 kHz).

Furthermore, a recommended synthesis topology built around the Lockhart model consisting of
four cascaded wavefolding stages, a saturator and a lowpass filter was presented. This topology
was compared against a model of the Serge middle VCM built using six wavefolding stages.
These structures illustrate the capabilities of wavefolding in a synthesis environment. However,
it should be noted that the discussed topologies are not unique, as they can be modified according to
the needs of the particular application. This effectively showcases the flexibility of VA models.

Supplementary Materials: The following are available online at http://research.spa.aalto.fi/publications/
papers/smc17-wavefolder: a real-time Max/MSP demo of the proposed Lockhart wavefolder topology
implemented using Gen~and a MATLAB implementation of the Lambert-W function using Fritsch’s iteration.
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