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Abstract

We suggest a microscopic model describing the nonlocal ac response of a pair of Majorana states in
fermionic superfluids beyond the tunneling approximation. The time-dependent perturbations of
quasiparticle transport are shown to excite finite period beating of the wavefunction between the
distant Majorana states. We propose an experimental test to measure the characteristic time scales of
quasiparticle transport through the pair of Majorana states defining, thus, quantitative characteristics
of nonlocality known to be a generic feature of Majorana particles.

1. Introduction

Search for Majorana bound states (MBS) has recently become an active topic in the condensed matter
community [1-3]. These exotic states are known to be characterized by the coinciding annihilation and creation
operators. This is why it is quite natural to look for such states in superconducting systems where the order
parameter A is known to mix particles (electrons) and anti-particles (holes) because of the Andreev scattering
processes. Standard singlet superconductivity still does not allow the formation of this kind of excitations while
the more exotic triplet state can host MBS. Among the available superfluids there exist only a few possible
candidates for the triplet pairing such as He-3, SRuQ, and heavy fermion compounds [4, 5]. Alternatively, the
effective triplet pairing can be induced, e.g., in semiconducting nanowires [6, 7] in the presence of rather strong
spin—orbit coupling and external magnetic field. Despite the clear and reliable observation of zero bias peaks
(ZBP) in the differential conductance measurements [8, 9] and on the change in the charge periodicity of
conductance in Coulomb blockade regime [10] consistent with the existence of MBS it would be extremely
important to probe other attributes of these states especially keeping in mind alternative explanations of the ZBP
based on Kondo physics [11].

The goal of this paper is to suggest a test revealing the nonlocal dynamic response of the MBS. This issue has
recently become a subject of intensive debate in the context of so-called quantum teleportation [12—16]. The
Majorana partner states are localized at the length scales of the order of the coherence length € and are usually
strongly separated provided the distance L between them well exceeds this length £ (see figure 1). From the
standard quantum mechanics one could naively expect that the time 7, of the particle transfer between these
localized states should be determined by the inverse tunneling rate roughly proportional to the value Ae /<.
Such scenario can be questioned if we remind that two Majorana states form a single fermionic level and, thus,
the injected particle should appear simultaneously in both partner states [12—14]. This conclusion is in obvious
contradiction with the analysis of the current noise correlations [ 15, 16]: the latter points towards the existence
of a finite charge transfer time between the MBS. Later on the teleportation phenomenon has been argued to be
restored due to the nonlocal coupling via the Coulomb blockage [14]. It was concluded that the key omission of
the previous studies was related to the treating of the superconducting phase as a constant, and not as a dynamic
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Figure 1. Setup of a possible experiment on Majorana dynamics.

variable. According to the work [14] the recovering of the nonlocal coupling between the MBS should occur if we
consider the phase of the superconducting order parameter as a quantum variable canonically conjugate to the
charge of the island.

In the present manuscript we show that the previous studies of the nonlocality in the system of the MBS
suffer from another key omission, namely they do not take into account the nonequilibrium effects responsible
for the mixing of the quasiparticle eigenfunctions with the positive and negative energies in the dynamic
processes. In the remaining part of the paper we consider a model describing the corresponding low frequency
dynamics of the MBS and make clear predictions for the time-dependent experiment suggested above.
Specifically, our analysis demonstrates that the time of the quasiparticle transfer between Majorana states should
be of the order of the inverse energy splitting 7, ~ wj ' caused by their coupling wy. This result imposes
restrictions on the time scales of adiabatic manipulation of the Majorana states giving a criterion of their
topological protection in time-dependent phenomena. For comparison it is interesting to mention here the
work [17] where the dynamics is governed by time of flight of excitations in the normal metal wire coupled to
the MBS.

2.Model

The low frequency dynamics of quasiparticles (QPs) can be described within the time-dependent generalization
of the BAG equations (see [18])

.0, Ho-pn A ),

la_gn = AT Ak 8 (1)
4 A w — H,

Here H, is the normal state Hamiltonian, fvis the chemical potential, and g, (r, t) = (4a,4> Va,n)- The condition
of adiabaticity naturally assumes that all the characteristic frequencies are much lower than the superconducting
gap A, otherwise a full nonequilibrium description of a superconductor should be applied [19]. The coefficients
U, and v, , are usually interpreted as electronic- and hole- like parts of the QP wave functions defined by the
Bogolubov transformation,

o, 1) = S (au(r, 18, + vE(r, DED, )

B, 1) =SSk (v, D8 + v, 2. 3)

Here o is the spin index and &/, ¢, are the fermionic QP creation and annihilation operators, respectively. The index
enumerates the solutions of time-dependent BAG equations for different initial conditions at t = 0 when the
expressions (2) take the form of expansion over a certain full set of functions. In equilibrium the time dependence of
the wave functions reduces to the standard form u,, ,(r, t) = i, ,(r)e B, v, . (r, t) = 7, ,(r)e B, where E, and
(fa,n(¥), ¥a,n(r)) are the spectrum and eigenfunctions of the stationary BAG equations. Only the states with E,, > 0
contribute to the equation (2) in this limit while in general the time-dependent solutions ¢, (r, ) may contain the
contributions from all positive and negative levels of the stationary Hamiltonian.

The Majorana-type states in the stationary case can appear provided we have an isolated eigenfunction
satisfying the condition v ) = u,, corresponding to zero energy. The inverse transformation for this zero
energy state can specify only the sum of the fermionic operators

Gt g

= 3 [l + o bom). @

This relation does not naturally yield the full fermionic operator & = 4, + 4 butonlyitspart 4, = (&, + &;)/2
which indeed meets the Majorana conditions. Another part (%) of the QP operator remains undefined and in this
sense the ground state of the superconductor with an isolated zero energy mode appears to be degenerate. The
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ambiguity of the operator 4, can be resolved by introducing a coupling mechanism of the above isolated state
either to the second Majorana-type state or to a fermionic bath [ 16, 20]. Both these mechanisms destroy the
symmetry of the isolated level v, = 11, and shiftits energy from zero. Each Majorana pair of states gives one
positive and one negative energy level. In equilibrium it is natural to keep only the positive energy level and the
corresponding hybridized wave function. Considering the nonequilibrium dynamics at a finite time interval r we
can no more disregard the contribution of the negative energy level to the wave function dynamics when the energy
uncertainty 6E ~ /2 /t exceeds the splitting of levels in a Majorana pair. Thus, despite of the obvious fact that both
levels correspond to the only fermion the nonequilibrium time-dependent solutions g, (r, t) of the BAdG equations
contain contributions corresponding to both levels.

3. Nonequilibrium dynamics of a pair of Majorana states

To probe the nonlocal dynamics of coupled Majorana states we suggest to study transport through the wire
hosting these MBS at its ends modulated by the changes in the coupling of the wire to the external normal metal
leads (see figure 1). A natural way to tune this coupling in conditions of the real experiment (see, e.g., [ 10, 21, 22])
is to apply time-dependent voltages at the gate electrodes controlling the transparencies #; g (t) of the barriers
between the wire and the normal lead at the left (L) and right (R) end, respectively. Tuning these transparencies
at the two ends of the wire one can easily determine the spatial correlations in the dynamic response of the
Majorana partners as well as the scale 1 /7, of the frequency dispersion. Considering a possible experimental
setup based on a semiconducting nanowire with induced superconductivity one should take this system in a
topologically nontrivial state [6, 7] which allows to get the subgap quasiparticle states bound to the wire ends.

Further derivation has been carried out by applying a general approach [23] for the solution of the scattering
problem with the quasiparticle waves incoming from the left or right leads at a certain energy € and propagating along
the one-dimensional p-wave superconducting wire hosting two MBS. We focus here on the case of a weak charging
energy of the wire which is different from the situation studied in [14]. The p-wave order parameter is chosen in the
form A(x) ~ e, where , = 0, 7 is the trajectory orientation angle. Assuminglow energies (€, wy < A)and
considering the solution of equation (1) near the left end of the wire one can write it as a superposition

g(r, t) = e ks [gFy D (s) + bw@(s)] + e = kes[gwD(—s) + by wP(—s)] (5)

of two independent solutions

wl(s) = ei&zep/z[e‘D(s)/z(_l ) + i%sign(s)eD(s)/z(})], (6)

i

w@(s) = ei&zep/zeb(s)/z(g’ %)
i
found in [24, 25] for the quasiclassical Andreev equations at the trajectory with the coordinate

s = (L/2)cos 0, + x. Asimilar expression can be written near the right end of the wire by changing the
subscripts L — R and the angle ), from 0 to 7, which shifts the origin x — x — L correspondingto

s(0, = 0) > 0and s(f, = ) < 0.

. . .. . ~ L/2
Here vris the Fermi velocity in the wire, A —2 f

—D(s) —_ 21 Nl
e ds, D(s) = o U; A(s")ds
matrices 8y act in the electron—hole Gor’kov—Nambu space. An appropriate matching of the wavefunctions at
the wire ends with the ones in the leads gives us the equations for the coefficients ai" = e™%/2(A; + a;) /2 at

theleft (k = L)andright (k = R) wire ends (see appendix A for details of calculations)

~ %, and Pauli

[k — ie)Ar = Fi, (A — ieli/AN)ay = Fr. ®)

Here for simplicity we neglect the MBS coupling wq ~ Ae L8 T, = A(1 — ) /(1 + n)istherate characterizing
the coupling of wire states to the kth external lead with , = /1 — |tJ* being the real-valued reflection coefficient of

the insulating barrier, ¢, are the scattering phases. F, = Ax, / (1 4 n) x LA arethe tunneling sources
characterizing the incoming QP flows. Applying the Fourier transform with respect to the energy variable € and
considering the parameter wy /A ~ e~L/¢ pertubatively one can obtain the equations describing the dynamics of a
model two-level system in the time frame (see [26, 27]), i.e. the dynamics of the Majorana pair:

0 e

(_8t + TL)AL + woAg = Fre ™, )
9 —iet

a + FR AR — WOAL = FRe . (10)

In the non-stationary regime the localized states at the wire ends (being of Majorana nature in the stationary
regime) can be described by the wave function amplitudes A, which are in fact the quantum mechanical
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amplitudes describing the probability to find the quasiparticle at the kth wire end. The amplitudes a; correspond
to the off-resonant fast-decaying contributions from the states above the gap. The amplitudes A, and gy together
describe in fact the low frequency dynamics of the function g, (r, t) including contributions from positive and
negative levels of the stationary Hamiltonian. Note that in the absence of incoming QP flows, F;, =0,
equations (9), (10) have purely real-valued coefficients corresponding to the Hermitian nature of Majorana
operators 4. In this case the average <\Ilz(r, 1)U, (r, t)) of the electron number operator is conserved since its
change is determined by the sum |A; [> + |Ag|* of probabilities |A|? to find the quasiparticle at the kth wire end.
This conservation fixes, in particular, the quasiparticle parity number in the wire by fixing the parameter
|AL]* + |Ag[? even for non-trivial dynamics of |A|?> themselves. Note that this statement is independent of a
strength of Coulomb interaction as the latter only governs the correlations between tunneling rates. The rates
I} g are determined by the local Andreev reflection processes [16] while the energy splitting of coupled Majorana
states wy = Ae PE/Dsin s related to the probability of the quasiparticle transfer through the system.
Parameters D(L/2) ~ L/{and ¢ = kgL + (¢, — ¢)/2 depend on the wirelength L.

The current flowing from the left and right electrodes can be calculated as [28] (see also appendix B for
details of calculations)

Ir = e/ﬂfgL,R(E)(fT(E — eVpr) — fr(e — eV))de, (11)

where f.(¢) = (e/T + 1)~'is the Fermi—Dirac distribution function with the bath temperature T,

€.(5) ~ 2Re[Ara;] = 2Tk Re(Ael™), (12)

Vi is the potential of the kth electrode, and Vs the potential of a superconductor. Generally, the definition of
the potential V,in a nonstationary problem follows from the solution of the equations describing the particular
electric circuit [29], e.g., the onein figure 1: I; + Iy = CdV;/dt + V; /R, where Cand R are the capacitance and
shunt resistance of the ground connection, respectively. Considering a constant applied bias V = V; — Vg and
putting A r o< e ' we obtain a dc differential conductance peak at eV >~ wy attributed to MBS [8, 9, 30-32].

4, Results

We now proceed with the analysis of the dynamic response of a pair of Majorana partners and consider two
generic examples of the time-dependent transport realized by the modulating tunnel barrier (see figure 1): (i) the
phase-shifted sinusoidal driving with I (t) = Ty + I cos(wt) and Tx(t) = T} + T cos(wt + ®,); (i) pump-
probe driving by At-broadened delta-functional pulses with different amplitudes G} applied with a time delay 7,
ie, with Ti(t) = Goa(t) + G 6 (t — T).

To start with, our consideration of the dynamic response of MBS within equations (9), (10) through a single
fermionic state formed of a superposition of two partner Majorana states. Indeed, the levels +w around the
zero energy can be introduced as a basis of hybridized states with the amplitudes Ay = A; + iAg.In
equations (9), (10) each of quasiparticle sources F excites both amplitudes A simultaneously. Due to the
coupling to the reservoirs both amplitudes evolve then in time as separate quantities and, thus, cannot be
described as an empty and filled state of a single level. As a result, we find beating of the wavefunction between
the edge states at the frequency wy. The above arguments concerning the sources of the injected particles should
be valid irrespective to the strength of the Coulomb effects and for the sake of simplicity we start our
consideration of time-dependent problems from the limit of large capacitance C when these effects can be
neglected.

Starting from the case of sinusoidal driving we consider for simplicity the acamplitude I' < T}y asa
perturbation and solve equations (9), (10). For the zero-bias differential conductance we find

1 dn
Gr dV,

:l—i—L[coswt—l—MZEF”—w Z L, F] (13)
o nto 0 Nento —xp2 |
V=0 0 0 n==+1 n=x=£1

where Gr = (¢?/m)2I'/ (T + wp)s Ly = L/[(w + nwo)* + T,

F(j[ = cos(wt + ¢) + sin(wt + ¢)(w £ wp) / T. One can see that for low-frequencies w < wj the above
expression contains an essential phase ¢, dependence, while with increasing w these contributions decay faster
than the other time-dependent terms.

Indeed, this statement is clearly visible in the most interesting and representative case wg ~ Iy in which dc
results [30-32] (see also (C.1) in appendix C) are already broadened and inconclusive. In this case to clarify the
results we rearrange the functions F(,,i = cos(wt + ¢) + sin(wt + @) (w + wy) / Iy =F; £ Fjto
Fj = cos(wt + ¢) + (w/Ip)sin(wt + ¢)and F; = (wy /Tp)sin(wt + ¢) getting
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Figure 2. Color plot of differential conductance (14) versus time t and phase difference ¢ for (a) w = wyand (b) w = 10wj. The
other parametersare [, = wy = 10 I'. One can see strong phase dependence at w ~ wy, which diminishes as w grows.

A ~ 1+ —coswt + —| =L Y{CoFS — QF} — —X{CoF5 ., — GFS | (14
Grdv; |, _ 20, Fo[ 2 {CoFy 1Fo} wo{ 0L'¢ —m/2 15, /2} (14)
V=0 0

with the dimensionless coefficients C; = (7wj / 2003, - i1(_77)k£n accumulating the w-dependence of the
prefactors as follows

(W? + wi + TPwp
[(w + wo)® + D3[(w — wo)? + L3I
2wwy
[(w + wo)? + TI[(w — wp)> + T'§

Co(w) = (15)

CGw) =

(16)

Now considering two limits: (a) w ~ wy, Iy and (b) w > wy, [ illustrated in the corresponding panels of
figure 2, one can see that in the first limit (a) w ~ wy, Ij the above mentioned coefficients Cy; ~ 1 weakly
depend on the frequency wand the phase dependent corrections (the last line in (14)) are of order of the main

L
In the second limit (b) due to the smallness of Cy ~ wj /w?and C, ~ 2w} /w? the conductance has relatively
small w} /w? phase-dependent corrections to the oscillating terms

1 odn
Gr dvp

r
term o COS Wt.
0

r wi—T}
~ 2—[coswt—|— sz OFs — = sz&o—w/z]- (17)
V=0 0

In figure 2 the (¢, ¢)-dependence of the differential conductance (14) is plotted for the following parameters
wo = I = 10T at (@) w = wyand (b) w = 10w, demonstrating the above mentioned arguments.

In the other limit of wy > I many beating periods pass before a tunneling event occurs leading to the
efficient transport of the charge between the localized states A. This can be in some sense viewed as a signature of
‘teleportation’. If additionally Aw = w — wy ~ Iy < wy one can neglect the contributions from 7 = +1and
obtain

— + —-coswt + — Fo + —F;, p (18)
Wo

mdl g | In r 1 2T
2dvi |,  w} wi 2l Aw? + T} '

Clearly this limit describes the sharp peaks at wy in the frequency dependence of the dynamic response with the
amplitude that depends on the phase shift. In the opposite limit of broad peaks the nonlocal correlations in the
dynamic response are naturally more difficult to observe since their contributions in the dynamic response
become small when wy /T < 1.

For arbitrary bias and drive amplitudes we should get a multiplication of harmonics and considering the
current averaged over the drive period we can expect the appearance of the conductance peaks at voltages
eVi r = nw £ wy due to the resonant effect similar to the Shapiro phenomenon in Josephson junctions [33].
Note that the periodic backgate voltage modulation can give another opportunity to observe the resonant
features on the current—voltage curve controlling the chemical potential of the wire as a whole. This modulation
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Pl

R

7 t

Figure 3. Differential conductance vs delay time 7 in two-pulse pump-probe setup. The second pulse amplitude is shown by solid blue
line.

should cause the change in the energy splitting wy through its dependence on the Fermi momentum k.
Assuming kgL = wt to be linear in time one can obtain resonances at eV g = nw.

In the case of the pump-probe driving the differential conductance of the left electrode contains three
contributions

2” di_ GLoai(t) + GLopi(t — T) + /G G] cos(woT)cos(eVLT) s (t — 7). (19)
e’Ar dVg

Here we impose zero initial conditions on both amplitudes A_.. The terms in the first line of equation (19)

correspond to the local charging of the single fermionic level, while the term on the second line reflects

correlations in the response to two pulses with the time delay 7 and shows the non-trivial dynamics of MBS at

frequencies |eV, £ wy| (see figure 3). The first pulse excites the quantum beatings between the Majorana edge

states at the frequency wy modifying the response of the system to the second pulse.

Taking for the estimate A ~ 2.5K, £ ~ 100 nm for Al,and L 2 1 ymwe find wy < 15 MHz which gives
us a reasonable range of frequencies w ~ wy of the drive and typical time delay 1 /wy ~ 0.06 s for the pump-
probe setup. The conditions on bias for the observation of the beating phenomenon are less restrictive
comparing to the ones of a dc conductance peak (with the restriction of V.~ wy ~ 0.01 4V [32]) asac
measurements are already conclusive at zero bias, see, e.g., equation (13). To get I} < wy we should take the
barriers with resistances Ry g ~ 0.1-1 G2.

5. Discussion and outlook

Certainly, the above dynamic response of the MBS will be modified in Coulomb blockade regime. This
difference arises from the obvious fact that in the case of Coulomb blockade the charge tunneling processes
between the island and left/right electrodes are strongly correlated. The entry and exit of charged particles are
always controlled by the overall charge of the island. However, this correlation does not destroy the beating
phenomenon and cannot cause the formation of a single eigenstate responsible for the non-local transport
through Majorana states (teleportation) for the operating frequencies above the energy splitting of Majorana
partners. Let us take the limit of high Coulomb energy and imposing, thus, the restriction on two possible charge
states of the island and assume the operating frequencies and energy splitting wj to be small comparing to the
tunneling rates I7 g. The latter limit allows one to consider the charging/discharging processes as instantaneous
events changing the fermion parity. On the longer time scales than the injection/ejection rates the fermion
parity is fixed due to the fixed electron charge. However, the beating phenomenon as an internal dynamics of
Majorana states is present due to the nonequilibrium time-dependent nature of the electron injection and
further transformation of the wave function of the injected electron into the Andreev eigenstates both with
positive and negative energies. Therefore the current through the system is fully determined by the interplay of
two time scales, namely, the inverse beating frequency wj, ' and the delay time 7 between the opening of the left/
right junctions. The latter is determined either by the operating frequency fand the phase shift ¢

(t = (n + ¢/2m) /f with an integer n value) for the periodic driving or by the delay time 7 for the pump-probe
experimental setup. Certainly the above comment on the influence of Coulomb blockade on the beating
phenomenon is only qualitative and should be verified by further quantitative analysis based on the use of more
elaborated methods taking account of the interaction effects.

To conclude the solution of the above dynamic problems allows us to predict a beating effect at the
frequency wy which is a hallmark of the topologically nontrivial state of the nanowire. We show that due to the
exponentially small coupling w, the MBS are strongly sensitive to any external perturbation. According to our
consideration any driving of Majorana states with the typical operating frequency w exceeding wy brings the
system to the non-equilibrium regime imposing, thus, an important restriction on the operating frequencies of
such a device The Majorana nature of these states needed for quantum calculations recovers only in the adiabatic
regime w < wy. On the other hand, the measurement of the characteristic frequency threshold w, separating
the regimes of weak and strong perturbations of the Majorana pairs could be considered as their hallmark
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characterizing the nonlocality of these pairs. Certainly the beating phenomenon similar to the one discussed in
our work should appear in other superconducting systems with subgap Andreev states. To distinguish the
beating phenomenon in topological situation from the one caused by the presence of usual Andreev states it may
be helpful to study the behavior of the beating frequency as a function of system parameters, gate potentials and
magnetic field so that to reveal the features peculiar to the topologically protected levels. The beating
phenomenon may also affect non-stationary Josephson-type transport in systems with MBS studied in recent
experiments [34, 35].
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Appendix A. Derivation of equations (9), (10)

In this section we present the derivation of the equations (9), (10) from the main text for an exemplary system
consisting of a one dimensional (1D) p-wave superconducting (S) wire of the length L connected to the left and
right one-dimensional normal-metal leads. We choose the x axis along the wire, the origin to be in the middle of
the wire and the order parameter in the form A ke + ilg),. Such system is known to host the subgap edge states
at rather small energies +-w, ~ +Ae /¢, To describe these localized states we start from the quasiclassical
version of the Bogolubov-de Gennes equations, i.e., Andreev equations for the envelopes w = (u, v) of the
electron and hole waves propagating along the quasiclassical trajectory k = kg(cos 0, sin f,)

—ivFﬁng + 5. A(s)w = ew, (A.1)
s

where vpis the Fermi velocity in the wire, s = (L/2)cos 6}, + x is the coordinate in the wire along the trajectory,
and Pauli 6; matrices act in the electron—hole Gor’kov—Nambu space, Considering the p-wave symmetry of
superconducting order parameter one can put A(x) ~ ei%. Note thatin 1D geometry of the p-wave S wire it is
natural to align the trajectory in the positive or negative direction of the x axis which correspond to 6, = 0, =.
The phase 6, can be removed from the gap operator A by the standard transformation u(x) — u(x)el%/2

and v(x) — v(x)e i%/2,

A.1.Low energy modes inside the wire
Considering the low energy modes with ¢ < A ~ A inside the wire one can take the sum of two independent
solutions w(1? (s) of Andreev equation (A.1) found in [24, 25]

w(s) = eiﬁZOP/Z[eD(s)/Z(_l ) n i%sign(s)eD“)“G)], (A2)

i

WO (s) = eiazop/zen(svz(i)) (A.3)

) . - L/2
where ¢ is the energy variable, A" = 2 fo /2 oD ®)ds/vpand

D(s) = fo TAG) S| ~ % (A4)

2

VF
The full wave function near the left end of the wire being an eigenfunction of the stationary version of

Bogolubov-de Gennes equations (1) in the main text can be written as a combination of the above envelopes

with the corresponding oscillating factors e “*** for the left and right movers with certain coefficients aj"
and b

g(r, t) = e ks [g P (s) + b w@(s)] + e ke [qrwD(—s) + by wP(—s)]. (A.5)

A similar expression can be also written near the right end of the wire by changing the subscripts L — R and the
angle 6, from 0 to 7, which shifts the origin x — x — L correspondingto s(¢), = 0) > 0and s(¢), = 7) < 0.
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left normal lead superconducting wire right normal lead
[ a, ) M (T, +Rla; +b;) a; +b; M (—aRRRu/rg+n(ag+b;)]
~iT; (@, =b/) —i(a, —b/) iRy (a; —by) 0
_>
(—aLRJL/THTL(ambL)J ((wbﬁ ] [TRaﬁRR(aﬁb;)] (aR j
0 ~ iR, (a; —b{) —i(a; —b;) ~iT, (a; —b;)
%
X

Figure Al. The scheme shows the electron (upper lines in the brackets) and hole (lower lines) amplitudes in the left and right leads and
in the vicinity of the interfaces of the superconducting wire in the scattering problem with the amplitudes o (ar) of incoming
electronic waves from the left (right) normal lead. Right (left) arrows correspond to the factors e™®*F in the full wave function (A.8).
By matching the amplitudes in the latter equation with those shown in this figure one can obtain the matching conditions (A.9),
(A.10).

Matching the wave functions of the left and right movers one can find the equations for the coefficients

. i €
bt = afe PW/2EKL £ & gF (A.6)

A

. i €
—1be _ a}gie—D(L/Z)Ilka T TtlLi. (A.7)

Here for simplicity we assume the following symmetry D(x + L/2) — D(L/2) = D(L/2) — D(x — L/2)
originated from the assumption of a symmetric order parameter A(L — s) = A(s). Asaresult, we geta smooth
function describing the solution within the interval |x| < L/2

g(x) — Z ei€t+ir]kpx|:a£]einkFL/ZeD(x+L/2)/2( 1) + iageinkFL/ZeD(xL/2)/2(¥>:|. (AS)
—1 1
n==x1

At the ends of the wire we should put

_ afl + b ) icrring
g(—=L/2)= > (_Wﬂbn emiet+ing, (A.9)
n==+1 i L
n bl . .
g/ =i S| KR eietring, (A.10)
22 iag — by

where we marked the left (right) movers by the exponents e*I. One can see that in the vicinity of the wire ends
the wave function exhibits a jump’ which occurs at the length scale of the coherence length £ [24, 25].

A.2. Scattering problem

As anext step we use the scattering matrix approach to get the solution of a scattering problem for an electron
plane wave oy (z) e*** incident from the left or right normal electrode. Note that it is enough to consider only
incoming electrons, but not holes, if one integrates over the whole energy interval of the Fermi distribution to
calculate the current. Moreover all the sources should be considered separately by putting only one of them to be
non-zero at the same time and summing over all contributions in the observable to avoid any fake interference
effects. Assuming the absence of the electron-hole conversion in the barriers and using the electron—hole
symmetry in a superconductor one can separate complex conjugate electron and hole blocks in the total

Sk

scattering matrix of the kth barrier $ = (0

52 ) We take a standard representation of the unitary matrix
k

S = ( ;ik - Rk*;;k/ - ) which transforms the incoming electron plane waves from the superconductor (e.g.,
a; + by fork = L)and from the normal reservoir (o) to the outgoing ones (a; + b;" and
w = —aqR Ty /T] + Ti(aj + by)fork = L)atboth interfaces (see figure A1 for all notations). Here
Ry = rpel%, Ry = rge %= and Ty are the reflection and transmission matrix coefficients, . = /1 — |T;/* and
¢, are reflection amplitude and phase.

The scattering matrices impose the following boundary conditions on the plane wave amplitudes

TLOLL —+ RL(EIE —+ b{) = af + bLJr, (All)
Rf(af — b)) =a; — by, (A.12)
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Trar + Re(ag + by) = ag + by, (A.13)
Ri(ag — by) = ag — by. (A.14)

Substituting equations (A.6), (A.7) and introducing the notations a;* = e*"%«/2(A; + a;)/2 one can obtain
the following set of equations

FL — i€ Wo 0 iajo pPLor
— Wy FR — ie i(:J() 0 AL PRrOR
~2 ~
e A . AR - A 1
A = Al Lo (A.15)
0 10y o i€ Wo ar oL >
X2 a 1
e A . R —
i@y 0 —wy — — e o OR
IR R

where [} = Api, pr=(1—=n)/(1 + n),w = Ae P/ Dsin p, 0y = Ae PEDcos g, p = kpL + (¢ —
¢r) /2. The phase ¥, of the transmission coefficients T = |Tz|e™+ does not affect any measurable quantity,
therefore we choose it equal to x, = ¢, /2 for the sake of simplicity.

A standard recipe to describe the low-frequency (w) dynamics is to replace the energy € by the time
derivative i0/0t. In the isolated wire, p, — 0, the fast decaying modes a; ~ oy p,, disappear as they correspond
to the states of the continuous spectrum in the wire and do not satisfy the boundary conditions. Resulting
equations in the closed wire give two energy levels ¢ = +w;and correspond to the beating between A; and Ag in
the time domain (see equations (A.16), (A.17) below). Assuming naturally that [} w < A? one can find that fast
decaying modes a; ~ axp, — i@ piAk/ F wy pi P oy corresponding to the continuous spectrum
contributions give small corrections in e /¢ to the equations for the low-decaying ones A;. Here and further
k" = R(L) for k = L(R).Indeed, this leads to a relative renormalization of the decay rates I} and sources p;, by a
small values ~wj / A” and to the addition of the Op(r) source proportional to &y / A ~ e L/¢to the equation for
Ay (r)- All these terms corresponds to a direct tunneling of electron(s) from the lead to the opposite end of the
wire. Further we neglect these contributions taking into account only a local tunneling from the kth leads to the
kth end of the wire and considering therefore only first two equations for the amplitudes Ay r of Majorana states
in (A.15) without ay.

Transforming the equations to the Schrédinger representation one can obtain equations (9), (10) from the
main text

(% + FL)AL + woAr = Fre ', (A.16)
9 —iet
5 + FR AR — LL)OAL = FRC 5 (A17)

with the choice of sources Fy = Ap, oy appropriate to the replacement ¢ — 19/t Beyond the stationary
regime one can consider the parameters wy, I} and p;, to be time-dependent keeping the equations (A.16),
(A.17) intact for the typical frequency w of the drive small compared to the gap w < A.

Note that the equations of motion for Majorana amplitudes A in the Heisenberg representation (see the first
two lines in equation (A.15)) correspond to the scattering matrix through a scatterer with an internal structure
described in [36] and applied for the p-wave superconducting wire, e.g., in the [16, 27].

Appendix B. Expression for the differential conductance

In this section we consider for simplicity only the case of the non-zero left source oy, since the results for the
right source can be derived using the symmetry L < R. According to [28] the energy resolved contribution to
the differential conductance g of the kth interface can be written as a sum of the quasiparticle flows of the left
and right moving electrons and holes with the corresponding signs

g(©) =1 — R{ + R = laj + b + lay — b — lag + b — lag — b (B.1)

We used here the conservation of the quasiparticle flow at the interface which results in the unitarity of the
scattering matrix. Substituting the expressions for b" (A.6), (A.7) and for ai = eF%/2(A; + a;) /2 through the
amplitudes Ay and gy into the equation (B.1) one can obtain

2 < .
g(e) = ERe[Aka,j‘(Az + €2) — ArAfewo — iApaswg

— apafey — iArapewy + Apag(wi + @d)]. (B.2)

Onmitting the terms which are small in the parameters wy / A, &y /A ~ e L/¢ (seethe previous section) one can
keep only the first term in the latter equation
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g.(6) = 2Re[Araf] + O(A,f%e”f). (B.3)

In the stationary regime one can express both A and g, from equations (A.15)

~ I —1 QU
Ay = ALl 19 F wppaw (B.4)
(FL — 15)(FR — 16) + Wy

A = O Py (B.S)

and show that equation (B.3) transforms into equation (C.1) of the next section, due to incoherence of the left
and right sources (az oy — 0). Note that we neglect here all the direct tunneling processes in the wire which give
the exponentially small corrections to the equation (B.3) in the parameter L/€.

In general to calculate the zero temperature differential conductance gi(eV') of the kth interface of the wire in
the system with time-dependent parameters one should solve equations (A.16), (A.17) and substitute the
solutions Ay into the equation (B.3) together with the expression (B.5) for ay.

Appendix C. Dc differential conductance

Here we consider the dc transport for a constant applied bias V = V; — V; using the formalism of the previous
section and putting Ay r oc e ', Asaresult we obtain

2L r(Trws + Tr(e? + Txp))

. (C.D
(e? — w§ — Tprlrp)? + 2Lk + Trp)?

gL,R(E) =

It is convenient to discuss separately the limits R — ocoand R — 0. For the first limit the zero-temperature
differential conductance of the device in the symmetric case [} = [ and Vg = — V] takes the form

dI/dV = e%g (eV /2) [2mwith I = I} = —Irand g (¢) = g, (¢). Inthe oppositelimit of R — 0 similar
formulas for the differential conductances hold for each interface separately, i.e., dIj g / dVir = eZgL’ €VLR) / .
Thus, in both limits we obtain the conductance peak near the zero bias at eV ~ wy. Itis this peak which is usually
considered [8, 9] as an experimental evidence for the Majorana states in semiconducting wires with the induced
superconducting order. The nonlocal nature of the Majorana pair reveals itself in the zero bias dip which is of
course smeared due to finite rates I'; r of tunneling to the fermionic baths. As a result, for the exponentially small
splitting wy the dip completely disappears for I} ~ Iz ~ wpand can survive only in a rather exotic limit of
strong asymmetry between the couplings to the left and right reservoirs. The latter situation can be realized, in
particular, for the dip in the curve dI; /dV; for R — 0and Iy = 0[30-32]. A more realistic case with both
nonzero tunneling rates and the peak broadening due to the finite temperature and inelastic effects can make the
experimental observation of the wj scale in dc transport difficult.
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