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Alphabet Handwriting Recognition: From Wood-Framed
Hydrogel Arrays Design to Machine Learning Decoding

Guihua Yan, Xichen Hu, Ziyue Miao, Yongde Liu, Xianhai Zeng, Lu Lin, Olli Ikkala,
and Bo Peng*

Handwriting recognition is a highly integrated system, demanding hardware
to collect handwriting signals and software to deal with input data.
Nonetheless, the design of such a system from scratch with sustainable
materials and an easily accessible computing network presents significant
challenges. In pursuit of this goal, a flexible, and electrically conductive
wood-derived hydrogel array is developed as a handwriting input panel,
enabling recognizing alphabet handwriting assisted by machine learning
technique. For this, lignin extraction-refill, polypyrrole coating, and polyacrylic
acid filling, endowing flexibility, and electrical conduction to wood are
sequentially implemented. Subsequently, these woods are manufactured into
a 5 × 5 array, creating a matrix of signals upon handwriting. Efficient
handwritten recognition is then achieved through appropriate manual feature
extraction and algorithms with low complexity within a computing network,
as demonstrated in this work, the strategic choice of expertise-based feature
engineering and simplified algorithms effectively boost the overall model
performance on handwriting recognition. With potential adaptability, further
applications in customized wearable devices and hands-on healthcare
appliances are envisioned.
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1. Introduction

Handwriting recognition is a process, in
which the handwritten input from the
touching panel is handled and identified
into plausible letters, words, and char-
acters. It generically requires the hard-
ware, i.e., a touching pad to collect writ-
ing signals, and the software that enables
recognition.[1] Marveling at sophisticated
commercial handwriting recognition sys-
tems, which embrace the highly integrated
electronic complex and advanced computer
algorithms to discern handwritten inputs,
whereas realizing handwriting recognition
even in the simplest manner with easily
available materials and algorithms remains
grandly challenged.[2]

Apart from commercial touching pads
made of plastic and metallic complexes,
the demand to develop new types of touch-
ing pads that allow the collection of hand-
writing signals is immense.[2b,3] Specifi-
cally, from the viewpoints of environmental

protection, bio-based materials promise tremendous potentials
in constituting electronic devices.[4] Recently, wood-derived ma-
terials have gained a surge of attention, given their abundance,
sustainability, and biodegradability.[5] The pristine woods are in-
herently electrically insulative, while the writing input unit needs
to be electrically conductive and can vary its local electrical prop-
erty upon pressing.[5a,6] The additional features, e.g., flexibility,
are favorable in catering to the practical demand of bioelectron-
ics as haptic sensors.[3,4] Prior attempts in preparing conductive
wood-based devices have shown success through surface decora-
tion with metal nanowires, surface carbonization, and polymer
filling.[7] Nevertheless, the reduced mechanical performance and
inherent rigidity limit their further application in writing input
appliances. In addition, an array of touching pixels is required in
the design of input panels for sufficient recognition resolution.[3]

As technology continues to advance, seeking free alternatives
to costly commercial algorithms become increasingly important
to make handwriting recognition more widely accessible to the
public. With the rapid growth of machine learning (ML) in recent
years, driven largely by its potent computing capability and effec-
tiveness to deal with large databases, it has received irresistible
attention from all fields.[8] The conceptual “Machine Learning”
refers to the learning process inspired by biological cognition.[9]

Particularly, the working principle of artificial neural network
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Figure 1. Design principle and characterization of wood-framed hydrogels. a) A piece of soft wood prepared from tree. b) Key steps of conversing natural
wood to soft wood. c) Formation principle of cellulose/polypyrrole composites by coating pyrrole on cellulose fibers. d) Photograph of soft wood. e–g)
cascaded magnified scanning electron microscopy images of soft wood from the R-view (radially cut wood, normal to its growth direction).

(ANN), a branch of machine learning, resembles that of biologi-
cal neurons, which highly depends on a feedback system, allow-
ing for self-correcting.[10] Regarding recent efforts in the appli-
cation of ANN in various pressure sensors,[11] it might be the
promising algorithmic support for handwriting recognition.[12]

Here, we report a prototype design of wood-derived hydro-
gel arrays to collect the writing tracks, integrated with the read-
ily accessible ML platform in TensorFlow,[13] realizing alphabet
recognition with accuracy and efficacy. First, we demonstrate an
adapted extraction-refill strategy to render wood flexibility and
electrical conduction[14] through sequential removal and refilling
of lignin, polypyrrole coating, and polyacrylic acid infusion. Next,
we devise this wood-framed hydrogel into a 5 × 5 grid of a circuit
and evaluate its capacity to capture handwritten patterns, which
serve as the input for our ML models. Ultimately, after imple-
menting appropriate feature extraction on data processing and
algorithm selection, we achieve high-quality classification results

across different user inputs, showcasing the practical value of our
ecofriendly, cost-effective, and portable solution for handwritten
language recognition and translation. The combination of wood-
framed hydrogel arrays and ML will prompt the development of
a sustainable miniature vocabulary recognition system.

2. Results

2.1. Design and Characterization of Soft Wood

We prepare the soft and electrically conductive wood by first delig-
nifying and resetting lignin, followed by filling wood nanochan-
nels with conductive polypyrrole (PPy) and polyacrylic acid (PAA,
Figure 1b). Delignification entails treating balsa wood[15] with a
mixture of NaOH and Na2SO3 solutions for 6 h to remove lignin,
yielding lignosulfonate. Further boiling the wood chips in the
NaClO2 solution bleaches the wood to appear white (denoted as
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“white wood”). Next, we use TEMPO oxidation (24 h) to convert
hydroxymethyl groups to carboxyl groups at the C6 position of
cellulose glucose rings. It makes the wood highly water favorable
and thereby facilitates the subsequent relignification by resetting
lignosulfonate into the microchannels of white wood via hydro-
gen bonds between lignosulfonate and cellulose frame.[16] Note
that the directional porous structure of wood remains after delig-
nification and relignification processes (Figure S1, Supporting
Information), indicating a homogeneous lignin coating.[14,17]

The natural woods are typical electrical insulators.[18] To over-
come this limit, we coat the internal channels of woods with con-
ductive polymers.[19] Hereinto, pyrrole monomers (diluted with
1,4-dioxane) are used and polymerized within relignified woods
(Figure 1c), wrapping up the cellulose frame of woods (denoted as
“conductive wood” in Figure S1 (Supporting Information)). The
homogeneous polypyrrole coating confers electrical conduction
through woods, while preserving their directional porous struc-
ture.

To allow woods with flexible and resilient structures, fill-
ing their internal microchannels with gels is a plausible
solution.[14,17a,20] Inspired by previous reports, where polyacry-
lamide gels are filled in wood,[20b] acrylic acid monomer is used
instead for a favorable affinity to polypyrrole via electrostatic
interaction. In addition to initiator ammonium persulfate, the
preparation involves Fe3+ ions. The dual role of Fe3+ ions are,
1) chelating strongly to phenolic hydroxyl and carboxyl groups
in woods and gels, crosslinking the gel network,[21] 2) enhancing
ionic conductivity. After polymerization, the wood with ≈3 mm
thickness is twistable without rupture (denoted as soft wood,
Figure 1a,d) in contrast to pristine wood that is fractured upon
twisting. Moreover, the wood is translucent because of close re-
fractive indices between the wood frame (cellulose refractive in-
dex ≈ 1.53, lignin 1.61) and polyacrylic acid (refractive index =
1.53).[22] Notably, the transmission at visible and infrared light
regions of soft wood is improved by ≈20% compared to white
wood (Figure S3, Supporting Information).

For a further understanding of soft wood formation, multi-
tools are used to characterize the samples. By Fourier-transform
infrared spectroscopy (Figure S4, Supporting Information),
peaks at 1730 cm−1 corresponding to the C═O stretching vi-
bration indicate the conversion of hydroxyl to carboxyl groups
after the TEMPO modification. The soft wood features absorp-
tion peaks at 800 cm−1 for C─H bending, 1161 cm−1 for C─OH
stretching of phenol in lignin molecules, 1234 cm−1 for C─N
stretching of pyrrole, 1400–1450 cm−1 for C═C skeletal vibration,
1694 cm−1 for C═O stretching vibration of carboxyl in PAA, re-
spectively, indicating the formation of wood-based composite hy-
drogels.

In addition, X-ray photoelectron spectroscopy is used to ex-
plore the valence state and functional groups in conductive and
soft woods (Figure S5, Supporting Information). For conduc-
tive wood, the C1s spectrum shows peaks at 286.8, 283.9, and
282.4 eV corresponding to C═O peak in cellulose fibers, and
C-OH peak and ring in pyrrole, respectively (Figures S6a and
S8a, Supporting Information. The N1s peaks at 400.7, 399.7, and
398.1 eV are associated with N═O, N─C aromatic, and N─C
bonds, respectively (Figure S7a, Supporting Information). Trans-
ferring to soft wood significantly changes the characteristic peak
intensity and the position of functional groups. For C1s scan,

the peaks’ intensity of both C═O and C─O shows obvious en-
hancement due to the PAA addition and the formation of hy-
drogen bonding between the PAA, lignosulfonate and cellulose
fibers (Figures S6b and S8b, Supporting Information). Compared
to conductive wood, an increase in intensity of the N═O peak
at 399.6 eV is observed in soft wood, while the nonaromatic
N─C at 396.3 eV decreases sharply, hinting more hydrogen bonds
are present (Figure S7b, Supporting Information). Furthermore,
both the aromatic and nonaromatic N─C peaks are shifted due
to the production of hydrogen bonds.

To observe the internal morphologies of soft wood, we per-
form cross-section observations perpendicular (R-view) and par-
allel (L-view) to its grain orientation. Along the radial direction
(R-view), the micro/nanochannels of the wood are filled with the
PAA gel (Figure 1e). A close inspection indicates that the cellu-
lose fibers are wrapped fully by PAA gel (Figure 1f,g). Consistent
results can be seen from the longitudinal view (L-view, Figure
S9a, Supporting Information). Furthermore, scanning electron
microscopy with energy dispersive spectroscopy reveals the uni-
form distribution of C, O, N, and Fe elements within the softwood
(Figure S10, Supporting Information).

2.2. Wood-Framed Devices

Next, we characterize the mechanical properties of soft woods.
The soft wood exhibits a combination of characteristic mechani-
cal features absent in either white wood or pure PAA gel alone.
Specifically, it displays a significantly higher tensile strength than
pure PAA gel when stretched along the longitudinal direction but
a comparable strength to white wood. Moreover, the soft wood
shows a high strain, surpassing white wood while like pure PAA
gel (Figure 2a). This is ascribed to the robust wood frame and
elastic PAA gel filler.

Indeed, every constitutive component in soft wood affects its
mechanical property. As shown in Figure S12a, Supporting Infor-
mation, the relationship between mass ratio of conductive wood
to PAA and ultimate stress is noteworthy. With an equal ratio of
1:1, the highest stress of 2.7 MPa is attained, while as the ratio
increases further, both stress and strain decrease. Moreover, the
tensile-strain curves show the transition from rigid to elastic be-
havior, where the 2:1 ratio is like that of white wood, while the 1:4
ratio resembles that of pure PAA gels. The adjustments in pyrrole
concentration or TEMPO-modification duration have minor im-
pacts on tensile stress. But they do impact the strain levels, i.e., in-
creasing the pyrrole concentration increases the strain (as seen in
Figure S12b,c, Supporting Information). These variations could
stem from the increased amount of hydrogen bonding among
the modified cellulose frame, polypyrrole, and PAA.

Notably, this soft wood can withstand 20 cycles of stretching
at 30% strain without discernible fracture (Figure 2b). The con-
siderable hysteresis during the initial loading and unloading pro-
cess might result from the reconstruction of affinity between Fe3+

ions, lignosulfonate, PAA chains, and cellulose fibers. During the
cyclic testing, the gradual overlap of the stress–strain curves for
soft wood at 5–50% strains suggests the enduring stability of soft
wood under repetitive usage (Figure S13, Supporting Informa-
tion). Nonetheless, there is noticeable energy dissipation once the
strain reaches 100%. This arises from the irreversible rupture of
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Figure 2. Characterization of soft wood. a) The tensile strength measurements of pure PAA gel, white wood, and soft wood. b) Tensile–strain curves of
soft wood over 20 loading–unloading cycles up to 30% strain. c) Compressive stress-strain curves of soft wood over 5 loading–unloading cycles up to
10% strain. d) Relative electrical resistance variation upon stretching. Gauge factors (GF) are calculated based on the regions highlighted with colored
backgrounds. e) Relative electrical resistance variation of soft wood under pressure. The blue curve is the results, and the red line is the guide to eyes. f)
Electrical response of soft wood to a mass (about 10 N of pressure). g) Schematic of dual-mode electrical conduction within soft wood under stretching.
Polypyrrole allows electronic conduction, while ferric ions induce ionic conduction. Upon stretching, polypyrrole is ruptured, leaving ionic conduction
dominating.

covalent bonds. From these results, we conclude that reversible
hydrogen bonds and metal-coordination bonds contribute signif-
icantly to the elasticity of soft wood. In addition, the soft wood
demonstrates exceptional compression resistance along the grain
direction (Figure S14, Supporting Information). Under 5 cycles
of 10% compressive strain, no visible displacement or breakage
occurred, signifying appealing fatigue resistance (Figure 2c).

To explore the potential application of soft wood in handwrit-
ing electronics, we first prepare a sample with dimensions of
40 mm × 15 mm × 3 mm. We then evaluate its conductivity
through various experiments. Specifically, the strain sensitivity
of soft wood is measured by subjecting it to a stretching speed
of 0.4 mm s−1. For this purpose, the gauge factor (GF) was intro-
duced, defined as the ratio of relative resistance change (ΔR/R0)
to the mechanical strain 𝜖.[23] Figure S15 (Supporting Informa-
tion) shows the data collected upon shifting writing forces of fin-
gers, resulting in varying resistance values. In Figure 2d, the rel-

ative resistance change increases with increasing tensile strain in
two linearly responsive regimes: 0–20% with a GF of 0.1 and 20–
250% with a GF of 2.9. The reason underly this trend lies in the
manner that the soft wood exhibits two modes of electrical con-
duction. As illustrated in Figure 2g, the PPy and Fe3+ ions offer
two types of electrical conduction, i.e., electronic and ionic con-
ductions, respectively. At low strains, both modes operate concur-
rently, leading to proportional increase in resistance according to
the strain (Mode 1). As the strain surpasses 20%, however, the
network of PPy ruptures, resulting in significant resistance am-
plification while preserving the ionic conduction pathway (Mode
2). Moreover, we examine how soft wood responds to longitudi-
nal compression. As depicted in Figure 2e, the resistance-change
decreased substantially with increasing the strain.

We next study the electrical stability of soft wood by re-
peating the compression/stretch-release experiments. The rel-
ative resistance-change decreases upon the application of

Adv. Sci. 2024, 11, 2404437 2404437 (4 of 9) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 3. Working flow of handwritten alphabet recognition on signal collection from hydrogel arrays to data pre-processing by machine learning (ML).
a) Alphabet recognition via artificial neural network (ANN) training. Resistance signals collected from handwriting on an electrically connected 5 × 5
hydrogel array composed of soft wood, as the input for ANN training and output learned alphabet. b-d) Data visualization and feature reduction &
extraction. b) Letter A represented in the 5 × 5 array (Rr is the relative resistance relating to handwriting intensity). c) Feature extraction of the 5 × 5
array by mapping in rows (5 × 1) and columns (1 × 5). d) Alphabet represented by the combination of 5 × 1 & 1 × 5 (transposed) signal patterns.

compression and recovers once the compression is released
(Figure S16, Supporting Information). This responsiveness is
accurate and identical to the same pressure over multicycle of
compression release (Figure 2f). Soft wood also exhibits excep-
tional long-term stability during 500 consecutive cycles of stretch-
releasing at a strain of 20% (Figure S17, Supporting Informa-
tion). Remarkably, it remains stable even under high levels of
strain ranging from 5% to 100% (Figure S18, Supporting Infor-
mation), indicating its suitability in writing pad. These results
collectively suggests that soft woods are well suited for use in
handwriting recognition systems.

2.3. Handwritten Information Collection and Manual Feature
Extraction

To realize a prototype of a handwriting input signal collector, we
devise soft woods with the same shape into an array with a 5 × 5-
pixel resolution. Upon writing, resistance signals are recorded
and arranged into a 5 × 5 matrix according to the time sequence
(Figure 3a). Subsequently, these results are used to train the ML
network, specifically with the ANN algorithm.[10,24] Handwritten

letters often vary in terms of intensity, sequence strokes, and
form, making them difficult to accurately recognize.[25] Our ap-
proach involves recording spatially distributed data in a 5 × 5
matrix as input (Figure 3b) to eliminate the impact of stroke se-
quence on our results. Then we applied manual feature extraction
(MFE) to minimize the influence of letter shapes by mapping the
5 × 5 matrix into 5 × 1 rows or 1 × 5 columns (Figure 3c), in-
stead of the widely adopted automated feature extraction[26] that
excels for the big data or specific data type (e.g., spatial-temporal
data[27]), which might be problematic for the homogenous data
with small volume[28] in this case. Although the applied MFE can
efficiently remove redundant information and improve data com-
patibility, but the other side of the coin with it may impair the
accuracy of model.[29] As shown in Figure S19 (Supporting Infor-
mation), feature integration leads to pattern similarity for either
5 × 1 or 1 × 5 datasets, thereby confusing the processes of alpha-
bet learning and recognition. Hence, we integrated 5 × 1 & 1 × 5
datasets into one set (Figure 3d), effectively improving the alpha-
bet discrimination while simultaneously reducing the feature’s
dimensionality from 25 (5 × 5) to 10 (5 × 1 & 1 × 5). For subse-
quent model construction, we used three datasets (5 × 1, 5 × 1
& 1 × 5, and 5 × 5) to compare and evaluate the performance

Adv. Sci. 2024, 11, 2404437 2404437 (5 of 9) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 4. Learning results using logistic regression (LR) and ANN algorithms, training & predicting on datasets of 5 × 1, 5 × 1 & 1 × 5 and 5 × 5. a–c)
LR results. a) Prediction accuracy of models built by varying the size of training data. b) Model evaluation on cross-validation score and test accuracy of
20% dataset. Error bars represent the five times of random split of dataset into training (75–85%) and testing (15–25%) groups. c) Visualized predictive
results for each letter. d–f) ANN results. d) Model fitting performance on 5 × 1, 5 × 1 & 1 × 5 and 5 × 5, evaluated by accuracy and loss on training
and validation datasets. e) Prediction performance on the test dataset. Error bars indicate the hyperparameters tuning (5 combinations). f) Learning
process of letter “A,” accuracy increases (possibility of A) with increasing epochs (training times). g) Visualization of training (1st row) and new test (2nd

row, half changed) datasets. h) Overall models’ prediction accuracy on the new test dataset (g). The error bars reflect both random split of dataset and
hyperparameters tuning.

of MFE. Classification characteristics of three datasets are exam-
ined beforehand (Figure S20, Supporting Information) with the
overall quality: 5 × 5 > 5 × 1 & 1 × 5 > 5 × 1.

2.4. Modeling and Evaluation

To evaluate the selection of algorithms, we explored the logis-
tic regression (LR) and ANN as the representatives for the tra-
ditional (low-complexity) and advanced (high-complexity) algo-
rithms, regarding to their efficiency and model accuracy. LR
can achieve high accuracy with relatively low computational cost
(Figure 4a–c). Specifically, up to 50% of training data is suffi-
cient to reach a 95% prediction accuracy across all three datasets,
with the best performance using only 20% of the 5 × 5 dataset
(see Figure 4a). Cross-validation score and test accuracy (on 20%
dataset) are also consistently above 95%, demonstrating excep-
tional fitting performance (Figure 4b). Furthermore, the predic-
tion error distributions in Figure 4c (from 5 × 1 to 5 × 1 & 1 × 5),
suggest that appropriate selection of feature extraction enables
effective information integration and better predictions. In con-
trast, either 5 × 1 or 1 × 5 fails to distinguish some certain let-
ters’ signal, e.g., “A&H” and “H”&’M’&’N’&’U’&’W’ (Figure S19,
Supporting Information). But the combination of them results in

unparalleled signal patterns of the alphabet (Figure 3d), thus fa-
cilitating the ML modeling.

In contrast, ANN often performs better than LR at handling
big data with advanced adaptability and accuracy.[30] Figure 4d–f
demonstrates the process and evaluation of the ANN model. As
shown in Figure 4d, 75% of data are used for training and vali-
dation, the fitting process of 5 × 1, 5 × 1 & 1 × 5 and 5 × 5 are
recorded and evaluated with increasing epochs (learning times),
which are all well-fitted with the enhanced performance with the
increasing features. In Figure 4e, it indicates 5 × 1 & 1 × 5 outper-
forms 5 × 1, with the 100% prediction accuracy—an indicative of
potential model overfitting.[31] Continuously, the observed opti-
mization of 5 × 5, indicated by the decreasing test loss, further
validates the on-going model overfitting. In conclusion, the ob-
servation collectively manifests that the choice of 5 × 1 & 1 × 5
proves to best improve the model accuracy while mitigating the
risk of overfitting among the feature groups. Besides, benefit-
ting from the ANN model, monitoring output-change relating
to model adjustment facilitates model optimization, and better
visualizes the learning process.[32] For example, when studying
the letter “A” in 5 × 1 patterns (Figure 4f), the output consists
of 26 probabilities distributed from “A” to “Z.” A proportion is
wrongly assigned to “H” and gradually re-assigned to “A” with in-
creasing learning cycles (Figure 4f, inset). Demonstration of the

Adv. Sci. 2024, 11, 2404437 2404437 (6 of 9) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 5. Demonstration of model generalization and phrase recognition. a) Recognition on five untrained letters “V” with 80% accuracy. b) Handwritten
phrase recognition of “AALTO UNIVERSITY” with 93% accuracy.

letter “B”–“Z” is given in Figure S20 (Supporting Information).
Additionally, the result of K-means clustering suggests appropri-
ate feature extraction could better reserve the data quality in their
distinctiveness, i.e., 5 × 1 & 1 × 5 feature type outperforms 5 × 1
(Figure S21, Supporting Information).

Limited data resource poses significant challenges for ML
applications at the laboratory level, leading to suboptimal fit-
ted models and poor predictions.[33] In this study, we explo-
ratively collected data solely from one individual’s handwritings.
Whereas, to evaluate the generalization ability of the model, we
check the prediction performance of the overall built models with
LR and ANN on a new test dataset, in which half of the let-
ters were designed clearly different from those of training data
(Figure 4g). Figure 4h shows the prediction accuracies for 5 × 1,
5 × 1 & 1 × 5, and 5 × 5 are 71.4, 84.4, and 80.8% respectively,
demonstrating the optimal generalization ability of 5 × 1 & 1 × 5.
Further complementary analysis on LR models (Figure S22, Sup-
porting Information) validated the utmost effectiveness of 5 × 1
& 1 × 5, where 5 × 1 proved to be underfitted and 5 × 5 was
overfitted as indicated in Figure S22b, Supporting Information.
For both algorithms, 5 × 1 & 1 × 5 performs the best, suggesting
the appropriate MFE could efficiently enhance the model gener-
alization ability. As complementary, we also compared the pre-
diction performances between 5 × 1 & 1 × 5 and principal com-
ponent analysis (PCA), the latter is a common ML technique of
automated feature extraction. For the classification task on the
training and testing data shown in Figure 4g, the prediciton ac-
curacy of 5 × 1 & 1 × 5 is overall higher than PCA., i.e., 4.85%
accuracy enhancement for LR and 10.00% for ANN (Figure S23,
Supporting Information), which demonstrates the optimal MFE
could be a better choice than automated ML approach for small-
data tasks, with improved model interpretability and prediction
accuracy.

2.5. Phrase Recognition

Further practical demonstration based on alphabet learning ver-
ified the model robustness. As visually depicted in Figure 5, the
transition from handwriting to synchronized resistance signal
recording has extracted key features, showcasing the transforma-
tion from handwriting to digitalized form. Then with the model

built on the combination of ANN and 5 × 5 feature type, the pre-
diction on 5 groups of untrained handwritten letters “V” achieves
an accuracy of 80% (Figure 5a). Moreover, for handwritten long
phrases “AALTO UNIVERSITY,” with the model built on LR and
5 × 1&1 × 5 feature, the prediction accuracy could reach up to
93% (Figure 5b). It needs to be pointed out those predictions are
made based on a handful of training data, to demonstrate the ef-
fectiveness of the MFE-directed ML networks with reduced com-
plexity.

3. Discussions

Woods, a renewable resource, have been utilized as the starting
materials for fabricating “green” flexible electronics capable of
dual conductivity modes, serving as touchpads for handwriting
recognition assisted by ML. To achieve this, we first demonstrated
an extraction-refill strategy to prepare highly flexible and elec-
trically conductive haptic sensors based on wood. Then, these
sensors were manufactured into arrays with a 5 × 5 resolution
and integrated into a circuit for collecting handwriting input. By
employing ML techniques with effective MFE and simplified al-
gorithmic structure, we thoroughly evaluated the performances
of different ML networks. Detailed outputs were presented, and
the generalization ability of optimal models was assessed. In-
spiringly, emphasizing on data-preprocessing other than algo-
rithms facilitates model optimization, making it appealing to ex-
perimentalists (Table S2, Supporting Information), particularly
in the domain of handwriting recognition and their applications
into wearable devices. Moreover, our work promotes the design
of “tiny ML”[34] by simplifying the model structure, and envi-
sions the promising integration of MFE with automated feature
extraction to help improve model interpretability and prediction
performance, to meet the increasing computing demand of ad-
vanced applications (e.g., healthcare, mobile and wearable de-
vices). In summary, this work showcases the fabrication of wood-
framed haptic sensor arrays, enabling the recognition of alpha-
bet handwriting through ML encoding. It promotes sustainability
and public participation in the design of integrated systems pow-
ered by embedded ML.[35] As an onset, this work holds promis-
ing prospects for further development in sustainable healthcare,
smart homes, and digital sports.

Adv. Sci. 2024, 11, 2404437 2404437 (7 of 9) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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4. Experimental Section

Materials and Chemical Reagents: Balsa wood was bought
from Jufashion Co. Ltd., China, and cut to the dimensions of
1 × 20 × 60 mm3. Sodium hydroxide (NaOH), sodium sul-
fite (Na2SO3) (analytical grade, Sigma-Aldrich), hydrogen perox-
ide solution (H2O2, 30 wt%), 3,4-ethylenedioxythiophene (EDOT,
99%, Acros Organics), pyrrole, sodium persulfate (Na2S2O8),
iron(III) chloride (FeCl3), acrylic acid (AA), and ammonium per-
sulfate (APS) were used as received. Deionized (DI) water was
used for the preparation of all solutions.

Fabrication of Wood-Based Hydrogel—Bleaching the Natural
Wood: Basswood was cut along or perpendicular to the growth
direction with 1 × 50 × 50 mm (thickness, length, and width).
The wood was boiled in a 2.5 m NaOH and 0.4 m Na2SO3 so-
lution for 6 h. Then, the wood slices were separated from the
brown mixture and were transferred to the boiling NaClO2 so-
lution until they became sufficiently white (denoted as “white
wood”). The white wood was then rinsed repeatedly in ethanol
and deionized water to remove the residual chemicals. The as-
synthesized brown mixture was dialyzed with deionized water for
48 h and freeze-dried, yielding brown powder (denoted as “ligno-
sulfonates”).

Fabrication of Wood-Based Hydrogel—TEMPO Modification:
The cellulose modification solution was prepared by mixing
chemicals of 0.016 g TEMPO, 0.1 g NaBr and 3 mL NaClO aq.
The wood samples were immersed thoroughly in the solution
at room temperature for 5 h, accompanied with ultrasound for
30 min at 1 h intervals. Then, the wood samples were immersed
into ethanol to stop reaction, and then washed by deionized wa-
ter to pH 7.0. The freeze-dried sample at −80 °C was denoted as
“TEMPO-modified white wood.”

Fabrication of Wood-Based Hydrogel—Synthesis of Conductive
Wood: For PPy coating, the white woods and 1 mL of pyrrole
monomer were sealed in a beaker at 2–8 °C for 7 d, respectively.
Then, the wood samples were immersed in a mixture of ligno-
sulfonates solution including Na2S2O8 and FeCl3. The mixture
stayed at room temperature for 8 h and the polymerization was
carried out. Finally, the obtained wood samples were freeze-dried
again for 24 h.

Fabrication of Wood-Based Hydrogel–Preparation of Soft Wood:
Acrylic acid (AA), ammonium persulfate (APS), and ferric chlo-
ride (FeCl3) were added in a breaker placed in an ice bath. The
soft wood was obtained after heating the mixture with conduc-
tive woods at 75 °C for 30 min. In contrast, the control groups
with different lignin content and pyrrole content were prepared
following the same procedures. The detailed formulation of each
sample is listed in Table S2 (Supporting Information).

Characterization: The functional groups of wood samples
were recorded by PerkinElmer FT-IR with ATR. The microstruc-
ture images of samples were monitored using a scanning elec-
tron microscope (FE-SEM, Sigma VP, Zeiss, OtaNano Nanomi-
croscopy Center) observing an SE2 pattern and 15 kV. The ten-
sile strength of samples was performed by a Instron 5567 ma-
terials testing system at room temperature. Olive oil applying to
the surface of soft wood was applied to reduce the loss of wa-
ter, and then tested at 1 cm min−1 stretching speed. The sens-
ing test was performed by an LCR meter (TH2829A, Tonghui,
China).

ML Networks: Two algorithms (LR and ANN) and three types
of datasets (feature types of 5 × 1, 5 × 1&1 × 5, and 5 × 5) were
used throughout the model construction. The resistance data are
recorded by constantly pressing the wood gel with a finger. The
total samples are 520 with the 75% for training and the 25%
for testing. Accordingly, the overall datapoints used in different
model network are 2600, 5200 and 13 000, corresponding to three
feature types of 5 × 1, 5 × 1 & 1 × 5, and 5 × 5. For the letter
“V” recognition, there are 5 distinct inputs (Figure 5a) with each
5 repeating measurements, 25 testing samples in total. For the
phrase recognition of “AALTO UNIVERSITY,” 15 samples (let-
ters) were used as the input. The test models were built on ANN
with 5×5 and LR with 5 × 1 & 1 × 5 feature types for above two
recognitions. Besides, K-means clustering algorithm was applied
to evaluate the data quality for classification task, for the three fea-
ture types of 5 × 1, 5 × 1 & 1 × 5, and 5 × 5.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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[16] a) F. Ajjan, N. Casado, T. Rębís, A. Elfwing, N. Solin, D. Mecerreyes,
O. Inganäs, J. Mater. Chem. A. 2016, 4, 1838; b) Q. Chen, L. Feng, H.
Cheng, Y. Wang, H. Wu, T. Xu, W. Zhao, C. Zhao, J. Mater. Chem. B.
2021, 9, 2221; c) X. Han, G. Xiao, Y. Wang, X. Chen, G. Duan, Y. Wu,
X. Gong, H. Wang, J. Mater. Chem. A. 2020, 8, 23059.

[17] a) W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel, C. Chen, G. Chen,
S. He, H. Huang, J. Zhang, Adv. Mater. 2018, 30, 1801934; b) J. Li, C.
Chen, J. Y. Zhu, A. J. Ragauskas, L. Hu, Acc. Mater. Res. 2021, 2, 606.

[18] G. I. Torgovnikov, Dielectric Properties of Wood-Based Materials,
Springer, Berlin 1993.

[19] W. Gan, C. Chen, M. Giroux, G. Zhong, M. M. Goyal, Y. Wang, W. Ping,
J. Song, S. Xu, S. He, Chem. Mater. 2020, 32, 5280.

[20] a) C. Chen, Y. Wang, Q. Wu, Z. Wan, D. Li, Y. Jin, Chem. Eng. J. 2020,
400, 125876; b) G. Yan, S. He, S. Ma, A. Zeng, G. Chen, X. Tang, Y.
Sun, F. Xu, X. Zeng, L. Lin, Chem. Eng. J. 2022, 427, 131896.

[21] Y. Ma, H. Huang, H. Zhou, M. Graham, J. Smith, X. Sheng, Y. Chen,
L. Zhang, X. Zhang, E. Shchukina, J. Mater. Sci. Technol. 2021, 95, 95.

[22] J. E. Mark, Physical Properties of Polymers Handbook, Vol. 1076,
Springer, New York 2007.

[23] B. Anothumakkool, R. Soni, S. N. Bhange, S. Kurungot, Energy Envi-
ron. Sci. 2015, 8, 1339.

[24] a) A. Kirtis, M. Aasim, R. Katırcı, PCTOC: J. Plant Biotechnol. 2022,
150, 141; b) S. Ray, in 2019 Int. Conf. on Machine Learning, Big Data,
Cloud and Parallel Computing (COM-IT-CON) (Ed.: S. S. Tyagi), IEEE,
Piscataway, NJ 2019, pp. 35–39.

[25] H. Tan, Q. Tao, I. Pande, S. Majumdar, F. Liu, Y. Zhou, P. O. Persson,
J. Rosen, S. van Dijken, Nat. Commun. 2020, 11, 1369.

[26] a) Y. Liu, F. Zhuo, J. Zhou, L. Kuang, K. Tan, H. Lu, J. Cai, Y. Guo, R.
Cao, Y. Q. Fu, H. Duan, ACS Appl. Mater. Interfaces 2022, 48, 54276; b)
H. Zhang, D. Zhang, H. Luan, Z. Wang, P. Zhang, G. Xi, X. Ji, Langmuir
2023, 39, 16199; c) Y. Ma, D. Zhang, Z. Wang, H. Zhang, H. Xia, R.
Mao, H. Cai, H. Luan, ACS Appl. Mater. Interfaces 2023, 15, 29413.

[27] B. Dou, Z. Zhu, E. Merkurjev, L. Ke, L. Chen, J. Jiang, Y. Zhu, J. Liu, B.
Zhang, G. W. Wei, Chem. Rev. 2023, 123, 8736.

[28] M. Kuhn, K. Johnson, Feature Engineering and Selection: A Practical
Approach for Predictive Models, Chapman and Hall/CRC, Boca Raton,
FL 2019.

[29] N. Bruneau, S. Guilley, A. Heuser, D. Marion, O. Rioul, in Trans-
actions on Cryptographic Hardware and Embedded Systems (Eds.: N.
Jankowski, W. Duch, K. Grabczewski), Springer, Berlin 2015, pp. 22–
41.

[30] a) M. Green, J. Björk, J. Forberg, U. Ekelund, L. Edenbrandt, M.
Ohlsson, Artif. Intell. Med. 2006, 38, 305; b) H.-T. Pao, Expert Syst.
Appl. 2008, 35, 720.

[31] X. Ying, J. Phys.: Conf. Ser. 2019, 1168, 022022.
[32] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A.

Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins, Inf. Fusion
2020, 58, 82.

[33] a) N. Jankowski, W. Duch, K. Grąbczewski, Meta-Learning in Compu-
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