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Abstract
Super-moiré materials represent a novel playground to engineer states of matter beyond the
possibilities of conventional moiré materials. However, from the computational point of view,
understanding correlated matter in these systems requires solving models with several millions of
atoms, a formidable task for state-of-the-art methods. Conventional wavefunction methods for
correlated matter scale with a cubic power with the number of sites, a major challenge for
super-moiré materials. Here, we introduce a methodology capable of solving correlated states in
super-moiré materials by combining a kernel polynomial method with a quantics tensor cross
interpolation matrix product state algorithm. This strategy leverages a mapping of the super-moiré
structure to a many-body Hilbert space, that is efficiently sampled with tensor cross interpolation
with matrix product states, where individual evaluations are performed with a Chebyshev kernel
polynomial algorithm. We demonstrate this approach with interacting super-moiré systems with
up to several millions of atoms, showing its ability to capture correlated states in moiré-of-moiré
systems and domain walls between different moiré systems. Our manuscript puts forward a widely
applicable methodology to study correlated matter in ultra-long length scales, enabling
rationalizing correlated super-moiré phenomena.

1. Introduction

Twisted moiré materials [1] provide a unique play-
ground to engineer artificial states of matter, includ-
ing topological states [2–6], correlated phases [7–12],
and superconductivity [13–17]. Moiré patterns arise
due to the lattice mismatch between two or more
van der Waals layers, leading to several coexisting
length scales. This can naturally occur when two lay-
ers of different van der Waals materials with dis-
tinct lattice parameters are stacked together, or when
layers of the same material are twisted or strained.
Interestingly, when three or more different layers
are stacked, the moiré pattern itself can feature a
long-range modulation, giving rise to a super-moiré
pattern [18–21]. Among super-moiré patterns, for
generic twist angles quasiperiodic patterns emerge,
where recent experiments have demonstrated even
more exotic states [22–24], including competing cor-
related mosaic orders and quasiperiodic correlated
phases, as well as superconductivity [24]. From a

theoretical point of view, understanding the elec-
tronic structure of moiré patterns microscopically at
the atomistic level requires treating interacting sys-
tems with tens of thousands of atoms [25–34], a
task that pushes the limits of conventional methods
[35]. Modeling super-moiré patterns requires solv-
ing systems with millions of atoms and incorporating
electronic interactions in a selfconsistent manner, a
task challenging beyond current atomistic electronic
structure methods.

The problem of dealing with very high-
dimensional objects is well-known in physics, in
particular in the case of quantum many-body
calculations [36–38]. For a quantum many-body
system with L sites, the Hilbert space has a dimen-
sion of 2L, making quantum many-body calculations
extremely challenging even for moderate system sizes
[39, 40]. A very successful strategy to deal with this
problem is to use variational tensor network states
to parametrize quantum many-body wavefunctions
[36, 41–47]. This approach allows us to solve with
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nearly arbitrary precision one-dimensional models,
and it has provided the most accurate solutions for
paradigmatic two-dimensional models such as the
doped Hubbard and frustrated Heisenberg models
[48–50]. In recent years, it has been realized that the
power of tensor networks parametrizing very high-
dimensional objects can be applied beyond the realm
of quantum many-body physics. This has lead to
applications in tensor networks for machine learning
[51–56], quantum computing [57–64], and parsi-
monious function representation [65–68]. In par-
ticular, tensor networks can be used to efficiently
compress and numerically represent functions that
exhibit internal structures. This suggests that this
methodology may enable addressing super-moiré
systems, whose spatially dependent electronic struc-
ture gives rise to phenomena occurring at different
length scales.

Here, we demonstrate a technique capable of
solving interacting super-moiré structures with sev-
eral millions of atoms. Our method combines a ker-
nel polynomial method with a quantics tensor cross
interpolation (KPQTC) with matrix product states.
The methodology maps the super-moiré structure
to a many-body Hilbert space, whose mean-field
Hamiltonian is compressed in a matrix product state.
This tensor network representation of the mean-field
Hamiltonian is learned by applying a tensor cross-
interpolation algorithm, which greatly reduces the
number of real-space correlators which have to be
evaluated with the (expensive) kernel polynomial
method (KPM). With this methodology, we show
that interacting electronicmodels in real space for sys-
tems with millions of atoms can be solved, allowing
us to compute interaction-induced symmetry-broken
states in those systems while treating interactions in
a self-consistent manner. In particular, we show that
this technique allows us to efficiently solve interact-
ing super-moiré models in one and two dimensions,
and even in the presence of super-moiré domain
boundaries. Our results establish a methodology cap-
able of dealing with interacting problems well bey-
ond conventional wavefunction methods, providing
a technique capable of addressing correlated physics
in super-moiré systems from microscopic models.

The paper is organized as follows. We first intro-
duce and describe the KPQTC methodology that we
have developed in this work. In the next two sections,
we apply the KPQTC to the study of super-moiré
1D models and 2D materials. Finally, we provide the
discussion and conclusion sections highlighting the
results and the broad applicability of the KPQTC
method.

2. Methods

In the following, we elaborate on the methodology
to solve interacting super-moiré systems. We will

focus on interacting fermionic models solved at the
mean-field level, where the individual mean-field
parameters can be computed with a kernel poly-
nomial algorithm. The tensor cross interpolation
algorithm allows us to reconstruct the whole mean-
field Hamiltonian by iteratively selecting the mean
field parameters to be computed.

2.1. Interactions in super-moiré
TheHamiltonian of a super-moiré system in the pres-
ence of electronic interactions takes the form

H=
∑
ijs

tijc
†
i,scj,s +

∑
ijss′

Vijc
†
i,sci,sc

†
j,s ′cj,s ′ (1)

where tij are the hopping parameters in the sys-
tem and V ij parametrizes the electronic interac-
tions. To find the ground state of the Hamiltonian
above, the interacting term can be decoupled with
a mean-field ansatz of the form Vijc

†
i,sci,sc

†
j,s ′cj,s ′ ≈

Vij⟨c†i,sci,s⟩c
†
j,s ′cj,s ′ + . . .where ... is a shorthand for the

remaining Wick contractions. The previous decoup-
ling gives rise to a mean-field Hamiltonian of the
form

HMF =
∑
ijs

tijc
†
i,scj,s +

∑
ijss′

χijss′c
†
i,scj,s ′ (2)

with χijss′ ≡ χijss′(Vij, |GS⟩) the mean-field paramet-
ers, where |GS⟩ is the variational many-body ground
state HMF|GS⟩= EGS|GS⟩. The variational ground
state is taken as a product state of the form |GS⟩=∏

αψ
†
α|Ω⟩, with ψ†

α variational single-particle states
and |Ω⟩ the vacuum state, ψα|Ω⟩= 0. As HMF

depends on the |GS⟩, and |GS⟩ depends on HMF, the
previous problem can be solved with a conventional
iterative self-consistent algorithm. From the compu-
tational point of view, the most demanding step con-
sists of computing the mean-field parameters χijss′

at each step of the self-consistent procedure. In par-
ticular, for a super-moiré system with N sites, con-
ventional algorithms based onmatrix diagonalization
as implemented in electronic structure codes scale as
N3, whereas a full Chebyshev expansion reduces the
computational cost to N2. This sets the maximum
number of sites computable with typical computa-
tional resources with diagonalization on the order
of N= 104 atoms, and with Chebyshev expansion in
N= 106 atoms. Modeling interacting states in super-
moiré materials requires solving problems with sev-
eral millions of atoms, well above the capabilities of
the previous two methods.

2.2. Interactions with a kernel polynomial
expansion
We now address how a Chebyshev kernel polynomial
expansion can be used to solve self-consistent mean-
field systems. In each iteration of the self-consistent

2
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Figure 1. (a) Schematic of the mapping between an interacting super-moiré and an auxiliary many-body spin model. A
many-body pseudo spin model with p spins allows us to encode the mean-field of a tight binding model with 2p sites. (b) The
interacting mean-field is encoded as the amplitude of a many-body spin model as a matrix product state. Panel (c) shows the
compression of the mean-field for different system sizes achieved by the algorithm. Panel (d) shows a comparison between our
algorithm (KPQTC), a pure KPMmethod and exact diagonalization (ED).

procedure, the variational parameters of the mean-
fieldHamiltonianχijss′ can be calculated once the cor-

relators ⟨c†i,scj,s ′⟩ ≡ ⟨GS|c†i,scj,s ′ |GS⟩ are known. These
correlators can be computed as

⟨c†i,scj,s ′⟩=
ˆ ϵF

−∞
⟨Ω|cj,s ′δ (ω−HMF) c

†
i,s|Ω⟩dω (3)

where ϵF is the single particle Fermi energy and
δ(ω−HMF) is the Dirac-delta function operator.
Taking ⟨c†i,scj,s ′⟩=

´ ϵF
−∞ gijss′(ω)dω, with gijss′(ω) =

⟨Ω|cj,s ′δ(ω−HMF)c
†
i,s|Ω⟩, where gijss′(ω) is the

dynamical correlator between sites i and j with spin
s and s′, and |Ω⟩ is the empty many-body state.
For the sake of concreteness, we now take that the
Hamiltonian HMF has a single particle spectrum
bounded in the interval (−1,1). The function gijss′(ω)
can be efficiently computed with a Chebyshev kernel
polynomial expansion [69] of the form gijss′(ω) =

1
π
√
1−ω2 [γ0T0(ω)+ 2

∑
n>0 γnTn(ω)], where Tn(ω)

are the Chebyshev polynomials and γn are the coeffi-
cients of the expansion. Thanks to the Chebyshev
recursion relation, the moments of the expan-
sion can be computed as γn = ⟨Ω|cj,s ′ |vn⟩, where
|vn+1⟩= 2HMF|vn⟩− |vn−1⟩, with |v1⟩=HMF|v0⟩
and |v0⟩= c†i,s|Ω⟩. The calculation of a single correl-

ator ⟨c†i,scj,s ′⟩ scales linearly with the number of atoms
N. To compute the self-consistent Hamiltonian, the
number of correlators that have to be evaluated is
proportional to the number of atoms N, so that a

Chebyshev kernel polynomial expansion allows us
to perform self-consistent calculations [70] with a
scaling N2, in contrast the scaling N3 for ED.

2.3. Quantics tensor-network representation of the
mean-field Hamiltonian
The most expensive part of the algorithm is to eval-
uate the variational parameters χijss′ of the mean-
field Hamiltonian. The χijss′ ’s depend on the cor-

relators ⟨c†i,scj,s ′⟩= ⟨GS|c†i,scj,s ′ |GS⟩, and where each

⟨c†i,scj,s ′⟩ has to be found by performing a full run of
the KPM algorithm. Therefore, to perform the full
mean-field calculation, a large number of KPM’s has
to be executed. In the following, we will apply the
tensor cross interpolation algorithm to construct an
approximation of the function χijss′({⟨c†i,scj,s ′⟩}) as a
matrix product state:

χijss′ ≈Ms1
1 M

s2
2 . . .M

sp
p . (4)

Themain benefit of this method is, that it allows us to
construct a high-fidelity approximation ofχijss′ , while
only requiring an exact evaluation for a very small
number of arguments ⟨c†i,scj,s ′⟩. All other correlators,
that are not called during the construction of χijss′ ,
do not need to be calculated in the first place, which
greatly reduces the number of individual KPM runs,
the most expensive part of the algorithm. A schem-
atic of the mapping used by the KPQTC is shown in
figure 1.

3
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The kernel polynomial tensor cross interpola-
tion method relies on exploiting the natural struc-
ture and length scales of the mean-field Hamiltonian
in a super-moiré system. The large number of
components of χijss′({⟨c†i,scj,s ′⟩}) can be refor-
mulated as a rank-R tensor χσ1...σR , with R∝
log(number of correlators). This tensor can be re-
expressed as a much cheaper matrix product state,
using the tensor cross interpolation algorithm, which
learns a quasi-optimal approximation of χσ1...σR by
evaluating it exactly for only a small subset of its
entries [65, 71–76]. Therefore, only a small subset of
the full list [⟨c†1c1⟩, . . .,⟨c

†
2pc2p⟩] of real-space correlat-

ors has to be calculated in practice. Furthermore, the
architecture of the underlying matrix product state
and the update strategy is dynamically optimized dur-
ing the self-consistent loop, where at each iteration
we optimize for the strategy that requires the least
amount of evaluations of the mean-field of the previ-
ous iteration. The dynamically optimized parameters
include the matrix product state bond dimension,
the number of orbitals for which independent matrix
product states are created, the initial pivot, the choice
of a rook or accumulative optimization method, and
the number and location of global pivots. The con-
vergence of the MPS representation of the mean-field
Hamiltonian is controlled by two main parameters:
the maximum bond dimension and a per-tensor sin-
gular value decomposition-compression error. Our
methodology sets a value of the compression error
and lets the algorithm make evaluations until the
matrix product state constructed has enough accur-
acy. This is thus an iterative procedure that is only
halted when the mean-field is accurate enough. The
threshold we set in the matrix product state con-
struction is taken as one order of magnitude below
the target error of the selfconsistency loop, guar-
anteeing that the mean-field features high enough
accuracy.

3. Interactions in super-moiré 1Dmodels

We now use the KPQTC method to address one-
dimensional models. First, we will focus on a system
that features two incommensurate moiré patterns,
also incommensurate with the lattice. Second, we
will address a system featuring an interface between
two moiré patterns, to show that the methodo-
logy is able to deal with inhomogeneous problems.
While 1D models are not the most relevant use case
for van der Waals materials, they provide an excel-
lent testing ground for the KPQTC algorithm to
show that calculations with millions of atoms can be
performed.

3.1. Incommensurate 1D super-moiré
We first consider a model featuring two moiré pat-
terns, incommensurate with each other and with

the original lattice. Super-moiré models can be real-
ized in artificial platforms including engineering
optical resonators and cold atom systems [77, 78].
Furthermore, within van der Waals materials, the
electronic properties of multi-walled nanotubes are
effectively described by a one-dimensional super-
moiré Hamiltonian [79]. We take a Hamiltonian of
the form

H=
∑
ij,s

tijc
†
i,scj,s +U

∑
i

[
c†i,↑ci,↑ −

1

2

][
c†i,↓ci,↓ −

1

2

]
,

(5)

where the hopping is modulated by two incommen-
surate moiré patterns as

tn,n+1 = t0 + t1 cos(k1Xn,n+1)+ t2 cos(k2Xn,n+1),
(6)

with Xn,n+1 = (xn + xn+1)/2, k1 and k2 the
wavevectors of the twomoirés and xn is the location of
site n. We take k1 = 2π/5

√
2 and k2 = 2π 5/2p−1

√
3,

which leads to two incommensurate modulations,
also incommensurate with the lattice. The modu-
lation in the local hopping gives rise to a different
competition between electronic interactions and kin-
etic energy in different regions in the system. We
solve the model with the QTCI for a system with
L= 222 sites, approximately 4 million atoms. The res-
ults of our calculation are shown in figure 2, where we
show themoirémodulation of theHamiltonian at the
two length scales, together with the non-interacting
(figure 2(b)) and interacting (figure 2(c)) local spec-
tral function. In particular, we observe that interac-
tions give rise to a spatially dependent gap opening,
as shown by comparing the density of states in the
absence (figure 2(b)) and presence (figure 2(c)) of
electronic interactions. Interestingly, on the largest
length scale, the gap opening fully follows the moiré
length scale, whereas, on the shorter length scale,
the spectrum shows a modulation of the spectral
weight. This stems from the fact that at the smaller
moiré length scale, the correlation length associated
with the electronic order is of the same order as the
moiré length scale, which gives rise to the lowest
electronic excitation to extend in the whole moiré. In
contrast, for the biggestmoiré length scale, the correl-
ation length associated with the order ismuch smaller
than the length scale of the moiré, which leads to the
spectral gap being modulated exactly following the
moiré.

The performance of the KPQTC method [80, 81]
as compared to the current techniques is highlighted
in figure 1. Figure 1(c) shows the compression of the
mean-field components achieved by the KPQTC. The
fraction of real-space correlators required as com-
pared to the pure KPM is plotted as a function of
the system size. We can clearly observe the advantage

4
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Figure 2. Correlated super-moiré for L= 222 sites (above 4 million sites). Panel (a) shows the super-moiré modulation of the
Hamiltonian, featuring a moiré pattern at short scales, and another at long length scales. Panel (b) shows the density of states in
the system at long and short length scales, showing how its spectral properties are modulated. Panel (c) shows the spectral
function of the interacting super-lattice solved selfconsistently with KPQTC. It is observed that the interaction-induced gap in the
spectral function is modulated in the long length scale, whereas its intensity is modulated at the short length scale.

introduced by the KPQTC method for large sys-
tems above 105 sites, where the fraction of correlat-
ors required decreases as the system size grows. The
convergence time of the self-consistent mean-field
calculation for the KPQTC method is reported in
figure 1(d). We show the estimated calculation times
for the pure KPM and the ED methods are shown
for comparison. We can observe that our KPQTC
allows solving systems ofmillions of atoms in less than
one day, while the traditional KPM requires around
50 days. KPM and KPQTC become faster than exact
diagonalization once the system size goes above 103.
sites, and KPQTC becomes substantially faster than
KPM for systems above 105 sites. Therefore, these
results demonstrate the advantage of the KPQTC
method to study correlated states in super-moiré
materials composed of millions of atoms.

3.2. Super-moiré domain wall in 1D
An alternative situation that appears in super-moiré
systems is a domain wall between different length
scales. This emerges in situations where structural
relaxations strongly prefer specific stacking or moiré
length scales, a phenomenon that gives rise to domain
walls appearing between different regions. We will
here consider a system where the shortest moiré

length scale is the same in the whole system, whereas
the biggest one features two domains. We take
the hopping tn,n+1 to be modulated in space by
two wavelengths k1 and k̄2, one of them spatially
dependent

tn,n+1 = t0 + t1 cos(k1Xn,n+1)

+ t2 cos
(
k̄2 (Xn,n+1)Xn,n+1

)
, (7)

with the wavelength of the modulation featuring a
domain wall:

k̄2 (Xn,n+1) = k̄2 (1+ δ tanh(Xn,n+1/W)) . (8)

Here, W describes the width of the domain wall
and δ parametrizes the mismatch between the length
scales of the moiré modulations in the two domains,
that in the asymptotic limit are k2(1− δ) and k2(1+
δ). In our calculations, we have used δ= 0.2, W=
2p/40, k2 = 2π 5/2p−1

√
3 and k1 = 2π/5

√
2. This

Hamiltonian therefore describes a system break-
ing translational symmetry regardless of the moiré
length. In figure 3, we show the solution of the inter-
acting model for 221 sites, or approximately 2 mil-
lion atoms. The impact of the electronic interactions
can be observed by comparing the non-interacting
(figure 3(b)) and interacting (figure 3(c)) spectral

5
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Figure 3. Correlated super-moiré domain wall for L= 220 sites (above 1 million sites). Panel (a) shows the super-moiré
modulation featuring a domain wall, featuring different super-moiré modulations at the left and right boundary. Panel (b) shows
the density of states in the system at long and short length scales, showing how its spectral properties are modulated according to
each domain. Panel (c) shows the spectral function of the interacting system solved selfconsistently with KPQTC. The
interaction-induced gap in the spectral function is modulated in the long length scale following the super-moiré at each domain,
whereas at the domain wall its intensity is modulated following the local moiré.

functions. The gap in the spectral function follows the
moiré pattern both in the left and right domains at the
longest length scale. As in the case studied previously,
this phenomenology stems from the fact that both
moiré length scales aremuch longer than the localiza-
tion length associated with the correlated state, which
leads to a spectral gap reflecting the large-scale moiré
modulation. At shorter scales, the spectrum is modu-
lated according to the moiré, but leading to a spectral
gap that is uniform due to the comparable correlation
and moiré length scales.

4. Interactions in super-moiré 2D
materials

Wenow consider interacting super-moirématerials in
two dimensions, which is the most physically relev-
ant scenario for van derWaalsmaterials.Wewill focus
on the Hamiltonian of a purely two-dimensional sys-
tem of super-moiré graphene monolayer. moiré pat-
terns in monolayer graphene can emerge from peri-
odically modulated strain from buckling [82–86], or
from a moiré pattern with boron nitride. For the sake
of concreteness, we will focus on the case of period-
ically buckled monolayer graphene, which has been

demonstrated to lead to a variety of correlated states.
The Hamiltonian of the system thus takes the form

H=
∑
⟨ij⟩,s

tijc
†
i,scj,s +U

∑
i

[
c†i,↑ci,↑ −

1

2

][
c†i,↓ci,↓ −

1

2

]
,

(9)

where the sites ij form a honeycomb lattice and ⟨ij⟩
runs over the first neighbors in the graphene honey-
comb lattice. In the presence of buckling, the hopping
parameters tij of graphene aremodified as [83, 85, 86]

tij = t0ij
(
1+ δ sin

(
Ωuij ·Rij

))
, (10)

where Rij = (ri + rj)/2 is the location of the bond,
uij is the vector linking sites i and j, and Ω para-
metrizes the frequency of the buckling. The previous
modulation gives rise to a direction-dependent mod-
ulation of the hopping of wavevector Ω. The previ-
ous bucklingmodulation gives rise to pseudo-Landau
levels due to the emergence of a non-uniform artifi-
cial gauge field. The pseudo-Landau levels get local-
ized in an emergent honeycomb lattice structure due
to the modulation of the gauge field. In the presence

6
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Figure 4. 2D super-moiré: Panel (a) shows the profile of strain in the super-moiré system, showing a modulation of the strain
both at a large length scale and at a shorter one. Panel (b) shows the self-consistent magnetization computed with KPQTC
algorithm. We observe that the order parameter is modulated both at the super-moiré and moiré length scales, giving rise to
localized regions of space with electronic order. Panels (c), (d) show the spectral function in the absence and presence of
electronic interactions, both at the center of the super-moiré pattern (c) and averaged over the super-moiré pattern (d). We
observe that interactions give rise to a gap in the spectral function, associated with a correlated insulating state in the buckled
super-moiré. Self-consistent calculations are performed in systems with more than 200 000 sites (N= 218).

of interactions, those localized modes give rise to a
correlated state.

We will study two cases where super-moiré phys-
ics emerges in this system. First, we will consider the
case where two different bucklings at different length
scales emerge, with relative frequencies ΩM and ΩSM

and strengths δM and δSM. Afterwards, we will con-
sider an interface between two bucklingmodulations.

4.1. Correlations in a 2D super-moiré
We start first with themoiré ofmoiré buckling. In this
scenario, the hoppings of the graphenemonolayer are
modulated as

tij = t0ij
(
1+ δM sin

(
ΩMuij ·Rij

))
×
(
1+ δSM sin

(
ΩSMuij ·Rij

))
, (11)

where δM and δSM correspond to the strength of
the buckling at the moiré and super-moiré length
scales, and ΩM, ΩSM are the wavevectors of the
moiré and super-moiré buckling. We take ΩM =
2π

√
2/30,ΩSM =ΩM/7,U= 2t, δM = 0.2 and δSM =

0.1. In figure 4(a), we show the strength of the local
strain field at each point in space, defined as the
average value of the neighboring hopping s(ri)∼∑

j tij. We solve a system with 218, or approximately
200000, sites, where the self-consistent magnetiza-
tion is shown in figure 4(b). We observe that the
symmetry broken order clearly follows both moiré
patterns, giving rise to an emergent honeycomb lat-
tice modulated at the super-moiré length scale of
magnetic order. We can now compare the spectral

function of the system both with and without inter-
actions, as shown in figures 4(c) and (d). In particu-
lar, in figure 4(c) we show the local spectral function
right at the center of the super-moiré pattern. In the
absence of interactions, a zero energy peak emerges,
which in the presence of interactions gives rise to a
gap (figure 4(c)). Such zero energy mode is precisely
the one responsible for the spatially localized mag-
netic order as shown in the shortest length scale of
figure 4(b). Figure 4(d) shows the comparison of the
spectral function computed in the whole length scale
of the super-moiré pattern. We observe that in the
absence of correlations, the system features a gapless
electron gas with a van Hove singularity at charge
neutrality, whereas in the presence of interactions a
full band gap opens up (figure 4(d)). Such a vanHove
singularity corresponds to the localizedmodes in spe-
cific regions of the moiré pattern, which in the inter-
acting regime give rise to a correlated insulator in the
full system.

4.2. Correlations betweenmoiré domains
In the presence of twomoiré patterns stemming from
several twisted two-dimensional materials, structural
relaxations can lead to relatively uniform moiré
regions separated from each other by domain walls
[21, 87–89]. This phenomenology observed exper-
imentally requires that computational methods be
capable of dealing with geometries lacking transla-
tional symmetry and hosting a very large amount of
atoms.We now show that the KPQTCmethodology is
able to capture correlated states emerging in the pres-
ence of moiré domains. For the sake of concreteness,
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Figure 5. 2D moiré domain wall: Panel (a) shows the profile of strain in a domain wall in the moiré system, featuring a different
moiré on the left and on the right. Panel (b) shows the self-consistent magnetization computed with KPQTC algorithm. The
order parameter follows the moiré at the two domains, while also featuring a modulation at the domain wall. Panels (c), (d) show
the spectral function in the absence and presence of electronic interactions, both at the center of the domain wall (c), and
averaged over a length scale around the domain wall on the order of the super-moiré length scale (d). Interactions give rise to a
gap in the spectral function at the domain wall, that coexists with the correlated state in the two domains. Self-consistent
calculations are performed in systems with more than 200 000 sites (N= 218).

we will focus on studying a domain wall between two
different bucklings in graphene. In this scenario, the
hopping of the graphene systemwill be modulated as

tij = t0ij
(
1+ δ sin

(
Ω
(
Rij

)
uij ·Rij

))
, (12)

where now the buckling wavevector changes in space
and features a domain wall of the form

Ω
(
Rij

)
=Ω0

(
1+ γ tanh

(
Xij/W

))
. (13)

HereW parametrizes the width of the moiré domain
wall and γ controls the difference between the two
moiré buckling frequencies, which asymptotically
inside the domain become Ω0(1− γ) and Ω0(1+ γ).
We takeΩ0 = 2π

√
2/23, γ= 0.3,U= 2t, and δ= 0.2.

The spatial modulation of the strain is shown
in figure 5(a) at different length scales. At the right
and left domains the strain profile corresponds to
a buckled monolayer, yet featuring different mod-
ulation length scales. When introducing electronic
interactions (figure 5(b)), a moiré correlated state
emerges, featuring an order parameter following the
modulation of the strain in the left and right domains.
Interestingly, certain regions develop a correlated
order at the interface between the two domains,
whereas in other regions of the domain wall, the cor-
related order is quenched (figure 5(b)). This phe-
nomenology is due to the mismatch in the non-
uniform strain between the two domains in different
regions of the domain wall. With the correlated state,
the spectral function of the system can be computed
both at the center of the domain wall (figure 5(c)),
or averaged over a large length scale (figure 5(d)). In

the absence of interactions, the system remains gap-
less, featuring a linear dispersion close to the domain
wall (figure 5(c)). In the presence of interactions, the
whole system develops a correlated insulating state,
including the domain wall, thus giving rise to a full
spectral gap in the system (figure 5(d)).

5. Discussion

We have shown that the kernel polynomial tensor
cross algorithm enables us to solve interacting super-
moiré models with several millions of atoms. While
our calculations focus onHubbardmodels, ourmeth-
odology can be used to compress and infer a gen-
eric mean-field Hamiltonian, including in the pres-
ence of non-local interactions. In particular, beyond
themagnetic orders we have considered in ourmanu-
script, it is worth noting that a similar strategy can
be used to capture charge order, superconducting or
valley coherent states [10], which are especially rel-
evant for twisted graphene multilayers. The energy
resolution of our algorithm is set by the number
of Chebyshev polynomials. Symmetry-broken states
with very small energy scales, such as superconduct-
ing order, require a higher number of Chebyshev
polynomials. A key step is that the models we con-
sidered have a certain structure, both in the single-
particle Hamiltonian and its mean-field. The tensor
cross interpolation algorithm relies on the existence
of a compressibility in the mean-field Hamiltonian.

While this is true for generic twisted van derWaals
materials, even in the presence of domain walls, sys-
tems with strong disorder may represent a challenge

8
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for our algorithm. This stems from the fact that in
the presence of strong disorder, the compressibility of
the mean-field is lost due to randomness, thus sub-
stantially increasing the required number of evalu-
ations to reconstruct the mean-field. This is how-
ever not a limitation in the presence of a finite dilute
amount of impurities, and thus the KPQTCmethod-
ology would allow us to tackle super-moiré systems
with a small amount of impurities. It is important to
note that the choice of pivots and update strategy of
tensors can strongly influence the required number
of evaluations required to converge the tensor net-
work. As work in quantics tensor cross interpolation
methods is progressing rapidly, we foresee that fur-
ther improvements in these algorithms will enable
us to address more complex and bigger interacting
super-moiré systems.

In ourmanuscript, we have used amatrix product
state representation of the mean-field terms, yet the
Hamiltonian is still stored as a sparse matrix. With
this algorithm, the maximum system size is determ-
ined by the required kernel polynomial expansion
with vector forN sites, which requires storing vectors
of size N, where memory becomes the bottleneck. A
potential step in the future is to store theHamiltonian
itself as a matrix product operator, such that the ker-
nel polynomial expansion is done directly with tensor
networks. This would allow us to reach system sizes
beyond N= 108. It is also worth noting that since
the evaluations of each individual correlator with the
kernel polynomial algorithm are fully independent,
our approach can be massively parallelized to thou-
sands of cores almost with linear scaling [90]. This
should be contrasted with electronic structure meth-
ods based on diagonalization, where diagonalization
tasks show a worse than linear scaling with paral-
lelization. While our calculations have focused on
correlated states in tight binding models, a similar
approach to the one presented here can be implemen-
ted in conventional Hartree–Fock quantum chem-
istry codes and density functional theory, in partic-
ular, those based on describing the electronic density
and Hamiltonian on real space grids [91–95].

While our demonstration above focuses on a
super-moiré pattern in a graphene monolayer, our
methodology can be readily extended to twisted mul-
tilayers. Experiments in moiré systems are rapidly
developing [96, 97], with notable demonstrations
including super-moiré twisted multilayer graphene
and other van der Waals heterostructures [18–21].
In particular, twisted graphene trilayers provide
an exceptional platform to observe the effects of
super-moiré patterns in the case where different
twisting angles are taken between the top and
bottom layers [24]. Spectroscopic measurements
with scanning tunneling microscopy have been per-
formed in a variety of correlated twisted graphene
heterostructures [16, 98–100], and it is expected

that future experiments will enable probing the
unique physics of super-moiré patterns in real-space.
Scanning probe experiments are particularly prom-
ising for directly validating symmetry broken states,
as a comparison of the local reconstruction of the
spectral function in different regions of the super-
moiré provides a highly non-trivial test for a cor-
related state [16, 100]. This can be especially inter-
esting to characterize incommensurate Kekule sym-
metry broken states in twisted graphene multilayers
[10]. We expect that our methodology will enable
understanding of a variety of symmetry-broken cor-
related states in super-moiré systems, whose system
sizes are well beyond the capabilities of conventional
methods. We finally note that our methodology has
no fundamental limitation to considering other sys-
tems that can be captured with mean-field theory,
and it is not limited to van der Waals materials.
In particular, our method can be used for generic
symmetry-broken states that have very long length
scales, such as incommensurate charge density waves
in high temperature superconductors [101, 102] or
incommensurate charge density waves in transition
metal chalcogenides [103–105].

6. Conclusion

Solving interacting models in super-moiré materials
represents a formidable theory challenge to under-
standing emerging phenomena in van der Waals
materials, due to the unprecedented system sizes
required to capture their physics. Here, we have
presented a kernel polynomial tensor cross interpola-
tion algorithm, that can solve interactingmodels with
several millions of atoms, considerably outperform-
ing the current state-of-the-art. Our strategy relies on
mapping the mean-field Hamiltonian of a large elec-
tronicmodel to an auxiliarymany-bodyHilbert space
that is compressed using a many-body tensor net-
work. The tensor network is constructedwith a tensor
cross interpolation algorithm, which greatly reduces
the number of individual evaluations performed with
a KPM. This demonstrates how a quantum-inspired
methodology enables massive speed-up of the cal-
culation of mean-field interacting ground states of
tight-bindingmodels. We have applied our algorithm
to both one- and two-dimensional models, showing
that this approach allows us to deal with interacting
problems with multiple long-range modulations and
domain walls. In particular, we have demonstrated
that this methodology can describe correlated states
in super-moiré buckled graphene, capturing both the
electronic reconstructions and symmetry-breaking at
the moiré and super-moiré length scales. Our meth-
odology enables tackling the interacting models with
a number of sites required to rationalize the physics
of a whole new family of artificial materials based on
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twisted van der Waals heterostructures. In particu-
lar, it can be readily extended to account for charge
order, bond-ordered, topological and superconduct-
ing states, providing the required computational tool
to study super-moiré quantum matter.
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