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Machine Learning

Accelerated First-Principles Exploration of Structure and Reactivity
in Graphene Oxide

Zakariya El-Machachi, Damyan Frantzov, A. Nijamudheen, Tigany Zarrouk,
Miguel A. Caro, and Volker L. Deringer*

Abstract: Graphene oxide (GO) materials are widely
studied, and yet their atomic-scale structures remain to
be fully understood. Here we show that the chemical
and configurational space of GO can be rapidly explored
by advanced machine-learning methods, combining on-
the-fly acceleration for first-principles molecular dynam-
ics with message-passing neural-network potentials. The
first step allows for the rapid sampling of chemical
structures with very little prior knowledge required; the
second step affords state-of-the-art accuracy and pre-
dictive power. We apply the method to the thermal
reduction of GO, which we describe in a realistic (ten-
nanometre scale) structural model. Our simulations are
consistent with recent experimental findings, including
X-ray photoelectron spectroscopy (XPS), and help to
rationalise them in atomistic and mechanistic detail.
More generally, our work provides a platform for
routine, accurate, and predictive simulations of diverse
carbonaceous materials.

Graphene oxide (GO) is a summary term for a range of
layered materials created by reacting graphite with aggres-
sive agents, such as KMnO4, typically followed by partial
reduction and sometimes functionalisation.[1–4] Today, GO
materials can be controllably prepared[5] and find emerging
applications in catalysis,[6] membranes,[7] electronics,[8] and
photonics.[9] Despite decades of work, however, the precise
chemical structure of these materials has remained elusive.
The ordered regions of GO sheets can be directly visualised
using high-resolution electron microscopy,[10,11] but the
nature of the more disordered regions can only be inferred
from indirect observations, such as vibrational and NMR
spectroscopy. The properties of GO materials cannot be

unambiguously linked to chemical structure if this structure
itself is not precisely known (which functional groups are
present; in what amounts?).

To complement experimental techniques, GO has been
widely studied by computational chemistry methods. For
example, Kumar et al. combined reactive-force-field simu-
lations with density-functional theory (DFT) to show how
varying functional groups affect the stability and electronic
structure of thermally reduced graphene oxide (rGO), and
how rGO forms graphitic and oxidised domains during
thermal annealing.[16,17] Atomistic modelling of rGO further
revealed that defects formed during thermal reduction can
lead to pores for applications in water desalination and
natural gas purification.[18] Explicit water molecules have
been incorporated into computational models of GO
membranes to simulate interlayer separation and water
diffusivity, providing insights for applications.[19–21] Theoret-
ical studies delved into aspects such as the excess surface
charge in hydrated GO and the dynamic evolution of
functional groups, employing ab initio molecular dynamics
(AIMD) for a comprehensive understanding of GO in
water.[22]

Despite these advances, there remains an inherent limit
to the length and time scales accessible to AIMD. Machine
learning (ML) based interatomic potentials provide an
emerging alternative approach that promises much faster
simulations while retaining quantum-mechanical
accuracy.[23–26] In the context of carbon materials, ML-driven
simulations have been used to describe defective[27] and fully
amorphous graphene,[28] the growth of carbon thin films,[29]

and the formation of voids in low-density porous forms.[30–32]

In the present work, we show how one can rapidly
explore a wide range of functional groups and disorder in
GO materials by combining two recent innovations in
atomistic ML (Figure 1). First, we use on-the-fly-accelerated
AIMD[12,33,34] to efficiently sample configurations for an
initial training dataset. Second, we show that this approach
can be used to kick-start a much wider-ranging exploration
using state-of-the-art neural-network potentials. For the first
task, we use CASTEP+ML[12,35] coupled to the Gaussian
approximation potential (GAP) ML framework;[15,36,37] for
the latter, we use an equivariant neural-network architecture
based on the message-passing atomic cluster expansion
(MACE),[38–40] which enables highly accurate predictions
beyond the system-size limits of AIMD. A key point of our
study is that those two principally different methodologies
can be synergistically combined. The predictions of the final
ML model agree remarkably well with experimental obser-
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vations, showing promise for future applications to the
chemistry of carbon-based materials.

To sample the wide variety of possible GO structures,
we define a space of N parameters, P ¼ p1; :::; pN½ �, that
determines the composition of an initial candidate structure.
Here, in line with existing knowledge in the field,[1–4] we
choose these parameters to be: (1) the ratio of O to C atoms
in the initial sheet, determining the degree of oxidation; (2)
the OH/O ratio, i. e., the concentration of hydroxyl groups
relative to all O atoms; (3) the ratio of functionalised edges
(�OH,�CHO, or�CO2H) to hydrogen-terminated ones. We
explored up to p2 in CASTEP+ML runs (that is, we
functionalised only 2D graphene sheets), and up to p2 and
then p3 in MACE iterations.

We started the process with 25 CASTEP+ML runs, at
300 K for 10 ps each, corresponding to the grid shown in
Figure 1b. Most of those simulations (20 of 25) ran to
completion; five terminated early due to erroneously lost
atoms. The latter results are still valuable, as they contain
high-energy and -force structures which can be used to guide
early models away from unphysical configurations during
iterations. In all, 820 CASTEP+ML structures were used
for the initial training dataset. Next, equivariant MACE
potentials were trained in an iterative fashion that gradually
extended the scope of the model: (i) exploring higher
temperatures in MD runs, gradually increasing from 600 to
1,500 K; (ii) repeating the protocol at 1,500 K for the next
four iterations; (iii) finally, exploring 1D structures at
1,500 K. After a total of 12 iterations, training structures
with any force component >50 eV/Å were filtered out to
further enhance the model. The final training dataset
contains 3,016 simulation snapshots (605,204 atoms) and is
described in detail in the Supporting Information.

We test the performance of our ML models on external
data not seen in training: two AIMD trajectories of
functionalised 2D sheets and 1D nanoribbons, respectively,

as well as single-point calculations for molecular (0D)
fragments taken from Ref. [13]. Figure 2a shows how the
force error—our main performance metric—evolves during
iterations. As more data are added, the errors decrease for
the 2D test set, as expected. For 1D and 0D structures, the
errors are initially high since early models have not “seen”
edges, specifically C�H bonds which are explicitly included
only from model 10 onwards. Adding edge structures rapidly
reduces the corresponding errors (dashed line in Figure 2a).
The final force accuracy is similar across all benchmarks,
just over 0.1 eV/Å.

To illustrate the gradual exploration of chemical and
configurational space, we show four SOAP similarity
maps[15,43] in Figure 2b: the CASTEP+ML seed at 300 K,
the dataset after gradually ramping to 1,500 K, the inclusion
of the first edge structures, and the final dataset. The initial
structures form two distinct clusters on the map; at higher T,
one cluster grows and a third, smaller one appears. Finally,
including edges adds a distinct set of structures (green).

We now describe an application of the final MACE
model to a challenging problem in materials chemistry—
namely, to large-scale MD simulations of the thermal
reduction of GO to rGO. This process involves a vast
number of functional groups which transform and eventually
disappear, accompanied by the evolution of gaseous species
such as CO2. Experimentally, reduction temperatures of
1,100 °C yielded resistivity values of ~10�5W m,[44] on par
with that of graphite.[45] Understanding how functional
groups evolve during thermal reduction could help to
correlate the structure of the sheet with its properties. We
show in the following that our ML-accelerated approach can
provide such an atomic-scale understanding.

Our starting structure is a partially disordered, fully sp2-
bonded graphene sheet with 10,368 atoms (17:7 � 15:3 nm2

in a single layer). The sheet was generated using Monte-
Carlo bond switching driven by ML local-environment

Figure 1. Accelerated exploration of functional groups in GO with machine-learning-driven simulations. (a) Schematic overview of the overall
approach. We initialise the search for structures with CASTEP+ML trajectories, which combine first-principles MD with on-the-fly fitting of ML
potentials[12] (blue). Once this initial generation is complete, iterative training kicks in, exploring increasingly complex structural spaces (green).
The data are then used to train and optimise the final model (yellow). (b) Parameter space of 2D functionalised GO, with a schematic sketch of
how the OH/O ratio controls the ratio of hydroxyl and epoxy groups in the initial structures. (c) Extension of the parameter space to include 1D
structures (edges and ribbons), which can be hydrogen-terminated or functionalised with different groups, R.
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energies, following Ref. [28], and then functionalised with
P ¼ 0:4; 0:5; 0½ �, raising the atom count to 16,645. This
structural model represents features of GO including the
topological disordering of the carbon backbone (presence of
non-6-membered rings), although it is constrained to three-
fold coordination for all carbon atoms, and therefore does
not initially contain large pores.

The thermal reduction was studied in three independent
MD simulations at temperatures of 900, 1,200, and 1,500 K,
respectively. The structures were rapidly heated over 100 ps
and then held at the respective annealing temperature for
1.9 ns. We note that experimental protocols for thermal
reduction of GO span a wide range of parameters: temper-
atures from 80 to 1,100 °C[44] and times from 10 minutes[46] to
5 days.[17] Computationally, we are limited by the timescales
accessible to MD (on the order of nanoseconds); thus, more
aggressive heating is used to overcome local energy
barriers.[47] We found that annealing at 1,500 K yields a
structure in good agreement with experiment, which we

discuss below; results for the other MD runs are given in the
Supporting Information.

Figure 3a shows the rGO structural model during
annealing at 1,500 K. “Graphene-like” regions, shown in
dark grey, form small islands embedded within disordered
and porous regions. (We quantify “graphene-like” content
through polyhedral template matching, a method to identify
crystal-like local environments.[41]) This result agrees qual-
itatively with electron microscopy images clearly showing
amorphous regions together with holes and pores in the
structure.[48]

The formation of this structure is accompanied by a mass
loss of >20% as gaseous species leave the surface (Fig-
ure 3b), which can be qualitatively correlated with thermog-
ravimetric experiments.[49] Initially, as the temperature
ramps up over the first 100 ps, nearly all mass loss is due to
H2O (light blue shading in the stacked plot of Figure 3b).
Having reached 1,500 K (dashed line), the first CO2 mole-
cules detach—and this species, indicated by red shading,
quickly begins to dominate the mass loss as the sheet is
reduced. CO was also evolved in notable amounts (magen-
ta); other gaseous species such as OH, C3O2, H2O2, etc.,
were occasionally observed but were mostly rare and short-
lived.

In addition to the mass loss, our simulations allow us to
address the changes in the structure of the GO sheet itself.
Figure 3c shows the fraction of “graphene-like” atoms in
ordered local environments: initially, their percentage
decreases, correlating with the loss of H2O; then, as CO2 is
released, there is a clear and concomitant increase in
graphenic content. These observations agree with experi-
mental findings where CO2 and, to a lesser extent, CO loss
leads to defects in the GO sheet,[49–51] inducing structural
rearrangements and increasingly more graphene-like envi-
ronments. Interestingly, the count of 6-membered rings
containing only carbon decreases slightly (purple in Fig-
ure 3c), whereas if we consider all atoms in the sheet in the
ring analysis, the 6-membered rings increase from just above
65% to � 85% (orange). This analysis suggests that oxygen
atoms take part in substantial rearrangements during
annealing, from sp3 environments perpendicular to the basal
plane such as epoxide and alcohol groups, to sp2 environ-
ments parallel to the plane—for example, ethers and esters
(cf. Figure 3a).

Beyond the overall “graphene-like-ness”, we can also
trace the evolution of individual functional groups, enabling
qualitative comparison with 13C NMR results from Ref. [49].
Figure 3d shows how the Csp2�Csp2 count increases exponen-
tially during the initial 100 ps—in contrast to the graphenic
content, which decreases during this period (Figure 3c). This
observation suggests that as water molecules leave the sheet,
the carbon backbone will initially form defective rather than
ordered sp2 environments. Then, during high-T annealing,
the sp2 count grows more gradually, indicating a trans-
formation to a more graphene-like carbon backbone,
consistent with Figure 3c. The loss of oxygen-based mole-
cules (cf. Figure 3b) is clearly mirrored in a declining
Csp3�O�Csp3 (epoxide) and Csp3�OH (hydroxyl) count during
the first 300 ps of the simulation. Concomitantly, Csp2�O

Figure 2. Training ML models for GO. (a) Root-mean-square error
(RMSE) of forces predicted by iteratively trained MACE models. Errors
are evaluated on an external set of DFT data not included in the
training, comprising 100 snapshots each of a 2D sheet (blue) and a 1D
nanoribbon (green) sampled in separate AIMD trajectories at 300 K, as
well as 0D nanoflake structures (yellow) taken from Ref. [13] and re-
evaluated at the relevant level of DFT. (b) Structural diversity during
iterative training. The different iterations are visualised by UMAP
embedding[14] of a kernel-based structural similarity metric.[15] Points
are colour-coded according to the temperature set in the MD
simulation for 2D structures (blue), whereas they are shown in a single
different colour for 1D edge structures (green).
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groups form, which has been proposed as a mechanism by
which the material drops in resistivity without a significant
change in mass.[49] Once the sp3-bonded epoxide and
hydroxyl groups are removed, the Csp2�O count remains at
an almost steady state. Finally, the Csp2=O (carbonyl) count
peaks at � 250 ps before gently decreasing for the remainder
of the annealing simulation.

With a quantum-mechanically accurate description of
the chemical structure in hand, the newly created structural
models can now be analysed with advanced X-ray spectro-
scopy predictions,[52,53] as we have previously exemplified for
small-scale GO models (with DFT-level predictions at the
time).[54] Here, applying the ML spectroscopy model of Ref.
[52] reveals two peaks in the predicted X-ray photoelectron
spectroscopy (XPS) data for the initial structure (Figure 4a).
The first peak corresponds to unmodified “sp2” carbon
atoms, whilst the second relates to oxygen/hydrogen-based
functional groups, with the largest contribution arising from
Csp3�O�Csp3 (epoxide, dark blue) and Csp3�OH (alcohol,
light blue) groups. The core electron binding energies
(CEBEs) of all functional groups are shifted upwards from
experimental reference energies due to the electronegativity
of oxygen. The eventual removal of these oxygen-based
groups during annealing reduces the magnitude of the
aforementioned CEBE shifts: all motifs decrease in CEBE.

Comparison with experimental data from Ref. [49],
shown in Figure 4b, reveals good agreement between theory
and experiment for rGO at 300 K (in air). Experimentally,
XPS spectra use a fixed reference value for deconvolution,
which does not take into account the effect of local
interactions from electronegative species. As a result, the
spectra are shifted accordingly to align well with experimen-
tal data. We refer the reader to Refs. [52] and [53] for a
detailed discussion on this matter.

In conclusion, we have reported a computational
approach to modelling and understanding the highly diverse
chemical structure of GO, and we have shown an initial
application to the thermal reduction of this material. Our
work combines two recent developments in atomistic ML.
For CASTEP+ML, we view its main advantage in this
context to be in saving “human time”: it allows the
researcher to create, from scratch, a chemically diverse
training dataset to seed a new ML potential with minimal
manual input.[12] For MACE, our work builds on recent
capability demonstrations,[55,56] showing that this architecture
can be combined with efficient dataset-building workflows
to readily deploy to new, challenging modelling problems in
chemistry.

Looking forward, we expect this combined methodology
to provide a powerful platform for further studies of GO
materials. For example, the present proof-of-concept for

Figure 3. A large-scale structural model of reduced graphene oxide (rGO) generated through simulated thermal reduction. (a) The rGO structure
after 1.5 ns of simulation time (3 million timesteps). The dark grey regions highlight graphene-like regions identified using polyhedral template
matching (PTM).[41,42] Insets show close-ups with C atoms in grey, O in red, and H in white. (b) The change in mass of the GO sheet as it is
thermally reduced in the 1,500 K simulation. The three most common leaving molecules (H2O, blue; CO2, red; CO, purple) are tracked in the
stacked plot, along with other species (grey). (c) Evolution of structural indicators: the count of 6-membered rings (shown separately for only C-
based rings, purple, and for all rings, orange), and the count of graphene-like atoms identified by PTM. (d) Evolution of functional groups bonded
to sp2 and sp3 carbon atoms, respectively, obtained using a topological bond-counting algorithm.
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XPS prediction during (simulated) structural transforma-
tions could motivate future in situ experiments—as an
example of advanced, experimentally-compatible modelling
in which both the simulation and the XPS model are based
on machine-learned quantum-mechanical data. Beyond the
simulations of GO in vacuum reported here, the interaction
of the material with water has been studied using
empirical[19,20] and DFT methods,[22] and it would now be
interesting to use ML-accelerated modelling to more fully
explore the nature of water between GO sheets—building
on combined experimental and simulation studies in this
area,[57] and also on recent ML-driven work on unconven-
tional phases of water “sandwiched” between sheets of
pristine graphene.[58] A long-term vision could be to use
predictive ML-driven simulations to find ways to optimise
the nanoscale structure and thus the properties of GO
materials—for example, porosity or catalytic activity—
directly informing the preparation of samples in the
laboratory.
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