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Heterogeneous Data Storage Management 
with Deduplication in Cloud Computing 

Zheng Yan, Senior Member, IEEE, Lifang Zhang, Wenxiu Ding, and Qinghua Zheng, Member, 
IEEE 

Abstract—Cloud storage as one of the most important services of cloud computing helps cloud users break the bottleneck of 
restricted resources and expand their storage without upgrading their devices. In order to guarantee the security and privacy of 
cloud users, data are always outsourced in an encrypted form. However, encrypted data could incur much waste of cloud 
storage and complicate data sharing among authorized users. We are still facing challenges on encrypted data storage and 
management with deduplication. Traditional deduplication schemes always focus on specific application scenarios, in which the 
deduplication is completely controlled by either data owners or cloud servers. They cannot flexibly satisfy various demands of 
data owners according to the level of data sensitivity. In this paper, we propose a heterogeneous data storage management 
scheme, which flexibly offers both deduplication management and access control at the same time across multiple Cloud 
Service Providers (CSPs). We evaluate its performance with security analysis, comparison and implementation. The results 
show its security, effectiveness and efficiency towards potential practical usage. 

Index Terms—Data Deduplication, Cloud Computing, Access Control, Storage Management 

——————————      —————————— 

1 INTRODUCTION
loud computing allows centralized data storage and 
online access to computer services or resources. It 

offers a new way of Information Technology (IT) services 
by re-arranging various resources and providing them to 
users based on their demands. Cloud computing has 
greatly enriched pervasive services and become a 
promising service platform due to a number of desirable 
properties [40, 41], such as scalability, elasticity, fault-
tolerance, and pay-per-use.  

Data storage service is one of the most widely 
consumed cloud services. Cloud users have greatly 
benefited from cloud storage since they can store huge 
volume of data without upgrading their devices and access 
them at any time and in any place. However, cloud data 
storage offered by Cloud Service Providers (CSPs) still 
incurs some problems.  

First of all, various data stored at the cloud may request 
different ways of protection due to different data 
sensitivity. The data stored at the cloud include sensitive 
personal information, publicly shared data, data shared 
within a group, and so on. Obviously, crucial data should 
be protected at the cloud to prevent from any access of 
unauthorized parties. Some unimportant data, however, 
have no such a requirement. As outsourced data could 

disclose personal or even sensitive information, data 
owners sometimes would like to control their data by 
themselves, while on some occasion, they prefer to 
delegate their control to a third party since they cannot be 
always online or have no idea how to perform such a 
control. How to make cloud data access control adapt to 
various scenarios and satisfy different user demands 
becomes a practically important issue. Access control on 
encrypted data has been widely studied in the literature 
[10-17, 33]. However, few of them can flexibly support 
various requirements on cloud data protection in a uniform 
way, especially with economic deduplication management. 

Second, flexible cloud data deduplication with data 
access control is still an open issue. Duplicated data could 
be stored at the cloud [39] in an encrypted form by the 
same or different users, in the same or different CSPs. From 
the standpoint of compatibility, it is highly expected that 
data deduplication can cooperate well with data access 
control. That is the same data (either encrypted or not) are 
only stored once at the cloud, but can be accessed by 
different users based on the policies of data owners or data 
holders (i.e., the eligible data users who hold original data). 
Although cloud storage space is huge, duplicated data 
storage could greatly waste networking resources, 
consume plenty of power energy, increase operation costs, 
and make data management complicated. Economic 
storage will greatly benefit CSPs by decreasing their 
operation costs and reversely benefit cloud users with 
reduced service fees. Obviously, cloud data deduplication 
is particularly significant for big data storage and 
management. However, the literature still lacks studies on 
flexible cloud data deduplication across multiple CSPs. 
Existing work cannot offer a generic solution to support 
both deduplication and access control in a flexible and 
uniform way over the cloud [18, 22-24, 29-38]. 
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In this paper, we propose a holistic and heterogeneous 
data storage management scheme in order to solve the 
above problems. The proposed scheme is compatible with 
the access control scheme proposed in [33]. It further 
realizes flexible cloud storage management with both data 
deduplication and access control that can be operated by 
either the data owner or a trusted third party or both or 
none of them. Moreover, the proposed scheme can satisfy 
miscellaneous data security demands and at the same time 
save storage spaces with deduplication across multiple 
CSPs. Thus it can fit into various data storage scenarios. 
Our scheme is original and different from the existing 
work. It is a generic scheme to realize encrypted cloud data 
deduplication with access control, which supports the 
cooperation between multiple CSPs. Specifically, the 
contributions of this paper are: 
 We motivate to save cloud storage across multiple CSPs 

and preserve data security and privacy by managing 
encrypted data storage with deduplication in various 
situations.  

 We propose a heterogeneous data management scheme 
to support both deduplication and access control 
according to the demands of data owners, which can 
adapt to different application scenarios. Our scheme 
can support data sharing among eligible users in a 
flexible way, which can be controlled by either the data 
owners or other trusted parties or both of them. 

 We justify the performance of the proposed scheme 
through security analysis, comparison with existing 
work and implementation based performance 
evaluation. The results show its security, advantages, 
efficiency and potential applicability. 
The rest of the paper is organized as below. We give a 

brief review on related work in Section 2. In Section 3, we 
present a system and security model, and introduce 
notations and preliminaries that are used in our scheme. 
We present the detailed design of the proposed scheme in 
Section 4, followed by security analysis, comparison with 
existing work and performance evaluation in Section 5. 
Finally, the last section concludes the paper. 

2 RELATED WORK 
2.1 Access Control on Encrypted Data 
Existing researches [1-3] proposed to encrypt data before 
outsourcing it to the cloud in order to prevent data privacy 
from being invaded at CSP. Access control on encrypted 
data requests that only authorized entities can decrypt the 
encrypted data. An ideal approach is to encrypt each data 
once and issue relevant keys to authorized entities only 
once. However, due to the changeability of trust 
relationships, key management becomes complicated due 
to frequent key update. 

Access Control Lists (ACLs) were applied to ensure data 
security in a distrusted or semi-trusted party (e.g., CSP). 
Before uploading data to CSP, the data owner first 
classifies the data into different groups, and then encrypts 
each group with a symmetric key, which is only 
distributed to the users in the ACL of the group. In this 
way, this group of data is only accessible by the users in 

the ACL [4]. The shortcoming of this scheme mainly comes 
from the fact that the number of symmetric keys increases 
linearly with the number of groups. Moreover, the trust 
relationship change between one individual user and the 
data owner could cause essential update of relevant 
symmetric keys, which impacts other users in the same 
ACL. Thereby, this approach is impractical to be applied in 
many real applications where the trust relationship 
between different users changes frequently. Combining a 
traditional symmetric cryptosystem and an asymmetric 
cryptographic system was proposed for cloud data access 
control [5]. However, the computation cost of key 
encryption increases linearly with the number of users in 
the ACL.  

Attribute-Based Encryption (ABE) [6-9] was proposed to 
achieve access control on encrypted cloud data. It specifies 
a set of attributes to identify users and encrypts data based 
on an access structure specified by attributes. Thus, 
encrypted data can only be decrypted by the users that 
hold such attributes that can satisfy the access structure. 
ABE is classified into two divisions: key-policy ABE (KP-
ABE) [7] and ciphertext-policy ABE (CP-ABE) [6, 8] 
according to how the attributes link to ciphertexts and 
decryption keys. ABE has such advantages as scalability 
and high flexibility in terms of attributes based access 
policies and fine-grained access control. It has been widely 
applied to secure cloud data storage in recent years [10-17]. 
However, all above existing solutions about access control 
on encrypted data did not consider how to solve the issue 
of duplicated data storage in cloud computing in a holistic 
and comprehensive manner, especially for encrypted data 
in various data storage scenarios. This issue is practically 
significant for big data secure storage over the cloud. 

2.2 Encrypted Data Deduplication 
It is a hot research topic to reconcile deduplication and 
client-side encryption [18]. Existing industrial solutions fail 
to perform deduplication on encrypted data, e.g., Dropbox 
[19], Google Drive [20], and Mozy [21]. Message-Locked 
Encryption (MLE) was proposed to resolve this tension [22]. 
Convergent Encryption (CE), the most prominent 
manifestation of MLE, was introduced [23, 24]. In CE, a 
user computes the key of data 𝑀 based on its hash code 
𝐾 ← 𝐻(𝑀) and encrypts 𝑀 with 𝐾. Another user holding 
the same data can produce the same encrypted data, thus 
realizing deduplication. The CE suffers from offline brute-
force dictionary attacks. As a result, CE can ensure high 
security only when the underlying data is drawn from a 
large space that is too big to exhaust. In addition, CE 
cannot support data access controlled by data owners, as 
well as other authorized parties. It is hard to support data 
revocation because generating a same new encryption key 
is hard to achieve for both the data owners and the data 
holders to re-encrypt the data.  

A number of schemes were proposed to overcome the 
weakness of CE. Bellare et al. proposed DupLESS to resist 
the above-mentioned brute-force attacks [18]. In DupLESS, 
users encrypt their data using the keys obtained from a 
Key Server (KS). They are generated based on the data with 
an oblivious Pseudo Random Function (PRF) protocol. The 
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KS is separated from a Storage Service (SS). Users 
authenticate themselves to the KS without leaking any 
information about their data. Thus, high security can be 
assured if the KS is not accessible to attackers. Even though 
both KS and SS are compromised, DupLESS can still 
preserve the security of stored data based on the guarantee 
of MLE. But some data owners do not like to authorize a 
third party like KS to control their data, since in some 
specific situations they prefer to manage the storage and 
access of their data by themselves and keep track of data 
storage and usage status. However, DupLESS cannot 
support this desirable feature. Li et al. presented an 
efficient and reliable convergent key management scheme 
by splitting a convergent key and distributing its shares 
among multiple servers [35]. However, it still cannot avoid 
the innate drawbacks of CE. Wen et al. constructed a 
session-key-based convergent key management scheme 
and a convergent key sharing scheme to solve the issue 
that encrypted data blocks and data ownership are 
frequently changed [36]. But this work requests all data 
owners communicate with each other to manage their 
session key. The problem of CE still exists. Liu et al. 
proposed a secure cross-user deduplication scheme that 
supports client-side encryption without requiring any 
additional independent servers by applying a password 
authenticated key exchange protocol [38]. But this scheme 
requests that the data owner is always online for data 
ownership check and deduplication. Thus this approach 
cannot handle the situation that the data owner is not 
available, which is very common in practice. Cross-CSP 
was not discussed in this work. The above schemes cannot 
flexibly manage data deduplication in various situations 
and across multiple CSPs. They cannot solve the issues as 
described in the introduction. Neither can they support the 
management of digital rights.  

Existing schemes realized deduplication in either server-
side or owner-side. Seldom, a hybrid solution was 
proposed to gain advantages of both approaches. In [29], 
the authors proposed a method to solve deduplication 
controlled by data owner only. The access control of other 
data holders is based on predefined metadata that 
describes eligible users and is shared with CSP. Applying 
public key encryption in this method results in high 
computation complexity, which is linearly increased with 
the number of users and lacks flexibility to support various 
data storage scenarios. Hur et al. proposed a novel server-
side deduplication scheme for encrypted data [34]. It 
allows the cloud server to control access to outsourced data 
even when the ownership changes dynamically by 
exploiting randomized convergent encryption and secure 
ownership group key distribution. This scheme prevents 
data leakage not only to revoked users but also to an 
honest-but-curious cloud storage server.  

Yan et al. [30, 31] proposed a deduplication scheme 
based on PRE, but it completely relied on an authorized 
party to control data deduplication. It cannot flexibly adapt 
to different scenarios, especially the data access controlled 
by the data holders. In another line of our previous work 
[32], we applied ABE to realize deduplicated data access 
control managed by data owners. Similarly, this scheme 

cannot solve the issue about flexible data access control 
with deduplication across multiple CSPs, which can be 
managed by any trusted parties based on real application 
demands.  

2.3 Other Related Work 
Yang et al. proposed a scheme called Provable Ownership 
of the File (POF) [25], which allows a user to prove to a 
server that it really possesses a file without the need to 
upload the entire file. Data ownership proof is an essential 
process of data deduplication, especially for encrypted data. 
But this scheme does not consider flexible deduplication 
control across multiple CSPs. Yuan and Yu proposed a 
scheme to achieve data deduplication and secure data 
integrity auditing at the same time [28]. It supports both 
public and batch auditing. This work applied different 
technologies (i.e., polynomial-based authentication tags 
and homomorphic linear authenticators) from ours and 
focused on solving a different research issue. Wu et al. 
developed Index Name Servers (INS) to reduce the 
workload caused by duplicated data. But this work cannot 
support the deduplication on encrypted data. A hybrid 
data deduplication mechanism was proposed by Fan et al. 
[27]. It can deduplicate both plaintext and ciphertext. 
However, this mechanism has such a drawback that CSP 
knows the key that is used for data encryption. Therefore, 
it cannot be applied into such a situation that the CSP 
cannot be fully trusted by data owners. Li et al. formally 
addressed the problem of authorized data deduplication 
[37]. Different from traditional deduplication systems, the 
differential privileges of users are further considered in 
duplicate check besides the data itself in a hybrid cloud 
architecture. All above work focused on solving different 
research issues from ours. 

3 PROBLEM STATEMENT 

 

Cloud Service 
Provider (CSP)

CSP CSP’

Data Holders
Authorized 
Party (AP)

Key Generation 
Center (KGC)

 
Fig. 1. System model 

3.1 System and Security Model 
Figure 1 shows the system that the proposed scheme can 
be applied into. It contains four types of entities:  

1) Key Generation Center (KGC) that is fully trusted and 
responsible for system parameter generation and 
certification issuance. 

2) The Cloud Service Provider (CSP) that offers a data 
storage service. Multiple CSPs could exist in the system. 
Thus, a cloud user can choose one of them to manage its 
uploaded data and seek advanced usage experiences. In 
addition, CSPs can cooperate with each other under a 
business agreement to save storage spaces through 
deduplication; 

3) The Data Owner or the Data Holder that uploads and 
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stores data at CSPs. Different CSPs may serve the data 
holders. Multiple eligible data holders or a single cloud 
user could store the same encrypted or plain data at one 
CSP or across CSPs; 

4) The Authorized Party (AP) that is responsible for 
controlling data access as a delegate of data owners as they 
expect to support deduplication. 

In this system, AP is trusted by all entities. All CSPs 
cannot be fully trusted. That is, they are curious about the 
raw data of cloud users but follow system design and 
protocols strictly. We hold such an assumption that the AP 
would never collude with the CSPs due to different 
business incentive and interests. Any collusion would 
worsen the reputation of the CSPs, which lead to final loss 
of their business.  

We additionally hold following assumptions. The data 
holder provides the correct hash code set of its data for 
data ownership verification. The first eligible data holder 
that uploads the data is regarded as the data owner. 
Multiple APs could exist in the system and can be 
supported by the underlying scheme. For simplification, 
we assume one AP in the system for easy presentation. CSP, 
AP and data owners/holders use secure channels to 
communicate with each other. Backup of stored data is 
generally performed by CSP and this kind of data 
duplication for erasing storage risk is out of the discussion 
of this paper. Delegation agreement could be negotiated 
and signed among data holders during ownership check 
for data access management. If a data holder does not want 
any delegation, the procedure of our scheme will go to this 
data holder about data access, which means the access will 
be jointly controlled online by this data holder and the data 
owner. For simplifying system process, we assume 
delegation can be agreed among all data holders. 

3.2 Notations and Preliminaries 

1) Notations 
Table 1 summarizes the notations used in this paper.  

TABLE 1. NOTATIONS  
Key Description Usage 

𝑃𝐾𝑢 The public key of 𝑢 about 

ABE; 

The unique ID of user 𝑢 

and the key for user 

attribute verification; it 

is used to generate 

personalized secret 

attribute key for 𝑢. 

𝑆𝐾𝑢 The secret key of 𝑢 about 

ABE; 

For decryption in ABE. 

𝑃𝐾’𝑢 The public key of 𝑢 about 

Public-Key Cryptosystem 

(PKC); 

For PKC encryption and 

signature verification. 

𝑆𝐾’𝑢 The secret key of 𝑢 about 

PKC; 

For PKC decryption and 

signature generation. 

𝐷𝐸𝐾𝑢 The symmetric key of 𝑢; User data encryption. 

𝐷𝐸𝐾1,𝑢 The partial key 1 of 𝐷𝐸𝐾𝑢;   

𝐷𝐸𝐾2,𝑢 The partial key 2 of 𝐷𝐸𝐾𝑢;  

𝑝𝑘𝐼𝐷,𝑢 The public key of 𝑢 regarding 

attribute 𝐼𝐷; 

For encrypting 𝐷𝐸𝐾2,𝑢. 

𝑠𝑘𝐼𝐷,𝑢,𝑢’ The secret key of 𝑢′ regarding For decryption to get 

attribute 𝐼𝐷 issued by 𝑢; 𝐷𝐸𝐾2,𝑢. 

𝐷𝐸𝐾’𝑢 The renewed symmetric key 

of 𝑢; 

 

𝐻(∗) The hash function;  

𝐶𝑇𝑢 The ciphertext of 𝑢;   

𝐶𝐾𝑢 The cipherkey of 𝑢;  

𝑝𝑘𝑢 The public key of 𝑢 about 

PRE; 

Generation of re-

encryption key for 𝑢. 

𝑠𝑘𝑢 The secret key of 𝑢 about PRE; Decryption in PRE. 

𝑀 The duplicated data;  

𝐻𝐶(𝑀) The hash code set of data 𝑀.  

2) Proxy Re-Encryption (PRE) 
PRE transforms the ciphertext of 𝑚 encrypted with the 

public key of entity A into one that can be decrypted with 
the private key of entity B at a proxy. 

𝑬(𝒑𝒌𝑨, 𝒎)  outputs ciphertext 𝐶𝑖𝑝ℎ𝑒𝑟𝐴 =  𝐸(𝑝𝑘𝐴, 𝑚)  by 
taking input 𝑝𝑘𝐴 and data 𝑚. 

𝑹𝑮(𝒔𝒌𝑨, 𝒑𝒌𝑩) , the re-encryption key generation 
algorithm outputs re-encryption key 𝑟𝑘𝐴→𝐵 for a proxy (e.g., 
CSP) by taking input (𝑠𝑘𝐴, 𝑝𝑘𝐵). 

𝑹(𝒓𝒌𝑨→𝑩, 𝑪𝒊𝒑𝒉𝒆𝒓𝑨) , the re-encryption algorithm 
outputs 𝑅(𝑟𝑘𝐴→𝐵 , 𝐶𝑖𝑝ℎ𝑒𝑟𝐴) =  𝐸(𝑝𝑘𝐵, 𝑚) =  𝐶𝑖𝑝ℎ𝑒𝑟𝐵  by 
taking input 𝑟𝑘𝐴→𝐵 and 𝐶𝑖𝑝ℎ𝑒𝑟𝐴. 𝐶𝑖𝑝ℎ𝑒𝑟𝐵 can be decrypted 
with 𝑠𝑘𝐵. 

𝑫(𝒔𝒌𝑩, 𝑪𝒊𝒑𝒉𝒆𝒓𝑩) outputs plain data 𝑚 by taking input 
𝑠𝑘𝐵 and 𝐶𝑖𝑝ℎ𝑒𝑟𝐵. 

Each user has a key pair for PRE, which is applied when 
AP involves in taking charge of data deduplication and 
access control. PRE allows AP to grant data access right to 
an eligible user through re-encryption at CSP, while the 
plain data cannot be gained by the CSP. 

3) Attribute-Based Encryption 
We also resort to control data access during 

deduplication based on user identity by applying ABE [6-9]. 
The advance of adopting ABE is a data owner only 
encrypts a data encryption key once when it issues access 
rights to a number of eligible data holders. Because the 
issued decryption keys are personalized for the data 
holders, they cannot collude with each other. We can also 
easily realize fine-grained access control with ABE, which 
further enhances the flexibility of our scheme. We can use 
either CP-ABE to simplify key management or KP-ABE to 
gain the efficiency of data encryption. In our 
implementation as described in Section 5.3, we applied 
CP-ABE to demonstrate the scheme. In the proposed 
scheme, each user maintains a secret key 𝑆𝐾𝑢 about ABE. 
𝑆𝐾𝑢 and the identities of other users are used to generate 
the ABE decryption key of the users based on attribute 𝐼𝐷, 
named as secret attribute key. 𝐼𝐷  denotes the identity 
attribute, which can be an anonymous identifier of the user. 
𝑝𝑘𝐼𝐷,𝑢  is the public key used to encrypt a partial key of 
𝐷𝐸𝐾𝑢. Data owner 𝑢 issues a personalized secret attribute 
key 𝑠𝑘𝐼𝐷,𝑢,𝑢’  to eligible data holder 𝑢’  through a secure 
channel for decrypting the part of cipher-key encrypted 
with 𝑝𝑘𝐼𝐷,𝑢.  

Our scheme is heterogonous and flexible. In some 
scenarios, data owners would like to directly control data 
deduplication, e.g., in the case that they know the data 
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holders, which is also the scenario that was referred by the 
work in [36]. The scheme proposed in our paper is more 
advanced than existing work because it can adapt to 
various application scenarios. For example, the data owner 
can manage deduplication directly or it does not know 
how to manage it thus delegates this task to a third party, 
or it would like to perform dual control or no control. All 
above scenarios can be supported by our scheme. 

Notably, our scheme is a framework that can adapt to 
various user policies on data deduplication. The data 
owner adopts the ABE algorithm to directly manage its 
data deduplication and sharing. In different scenarios, the 
access policy would differ from each other, which is based 
on the data sensitivity and the willingness of the data 
owner. For simplicity, we directly regard user identity as a 
basic attribute in ABE and data owners are responsible for 
the ABE setup and key management. If higher security is 
required and fine-grained access control is expected, more 
complicated access policy can be designed and this can be 
realized based on the properties of ABE. 

4 SYSTEM DESIGN 
4.1 Overview 
We propose a scheme for heterogeneous data storage 
management with deduplication. It can be flexibly applied 
into such scenarios that cloud data deduplication is 
handled 1) only by the data owner; 2) by any trusted third 
party; 3) by both the data owner and the trusted third party; 
4) by nobody (i.e., plain data is stored at the cloud); 5) by 
either the data owner or the trusted third party. 

Concretely, we use the hash code of data 𝑀 to check 
data duplication during data storage at the cloud. The data 
holder signs the hash code of the data for passing the 
originality verification of CSP. Meanwhile, a number of 
hash codes of randomly selected specific parts of the data 
are calculated with their indexes (e.g., the hash code of the 
first 15.1% of 𝑀, the hash code of 21-25% of 𝑀). We call 
these hash codes as the hash code set (𝐻𝐶(𝑀)) of data 𝑀. 

When the data owner/holder stores 𝑀 at CSP, it sends 
the signed hash code of 𝑀 to CSP for duplication check. If 
there is no duplicated data stored at CSP, the data owner 
encrypts 𝑀  with a randomly generated symmetric key 
𝐷𝐸𝐾 to get encrypted data 𝐶𝑇. It separates 𝐷𝐸𝐾 into two 
parts 𝐷𝐸𝐾1  and 𝐷𝐸𝐾2 . It encrypts 𝐷𝐸𝐾1 with 𝑝𝑘𝐴𝑃  by 
applying PRE to get 𝐶𝐾1 and encrypts 𝐷𝐸𝐾2 with ABE by 
using 𝑝𝑘𝐼𝐷 to get 𝐶𝐾2. The encrypted two parts of 𝐷𝐸𝐾 are 
passed to CSP together with 𝐶𝑇.  

If the above duplication check is positive, CSP further 
verifies the ownership of the data holder by challenging 
the hash code set of 𝑀, concretely some specific hash codes. 
If the ownership verification is positive, CSP contacts the 
data owner and/or AP for deduplication. 

During deduplication, the data owner issues a 
personalized secret key through a secure communication 
channel (e.g., public key cryptosystem) to a data holder for 
decrypting 𝐶𝐾2 if eligibility verification is positive (i.e., the 
data holder is allowed by the data owner to store data 𝑀 at 
CSP). Meanwhile, AP issues CSP a re-encryption key that is 
used to re-encrypt 𝐶𝑇1  to make it decryptable by the 

duplicated data holder in order to get 𝐷𝐸𝐾1 . By getting 
both 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2, the duplicated data holder can gain 
𝐷𝐸𝐾  and access 𝐶𝑇  at CSP. Data duplication check and 
data deduplication can be performed among CSPs based 
on their agreement. One CSP can store data for other CSPs. 
Duplicated data access from the eligible users of other 
CSPs can be supported among the CSPs. 

Depending on the data management policy set by the 
data owner, 𝐷𝐸𝐾 can be randomly divided into multiple 
parts, which are taken care by different authorized parties 
(e.g., multiple APs). For simplifying presentation, we 
illustrate our scheme by dividing 𝐷𝐸𝐾  into two parts: 
𝐷𝐸𝐾1 and 𝐷𝐸𝐾2. The following use cases can be flexibly 
supported: 1) when 𝐷𝐸𝐾1  is null and 𝐷𝐸𝐾2 = 𝐷𝐸𝐾 , the 
data owner solely controls data deduplication; 2) when 
𝐷𝐸𝐾1 = 𝐷𝐸𝐾 and 𝐷𝐸𝐾2 = 𝑛𝑢𝑙𝑙, data deduplication is only 
controlled by AP; 3) when 𝐷𝐸𝐾1 ≠ 𝑛𝑢𝑙𝑙, 𝐷𝐸𝐾2 ≠ 𝑛𝑢𝑙𝑙 and 
𝐷𝐸𝐾1 ∥ 𝐷𝐸𝐾2 = 𝐷𝐸𝐾, data deduplication is controlled by 
both AP and the data owner; 4) when 𝐷𝐸𝐾1 = 𝐷𝐸𝐾2 =
𝐷𝐸𝐾, data deduplication is managed by either AP or the 
data owner; 5) when 𝐷𝐸𝐾1 = 𝐷𝐸𝐾2 = 𝐷𝐸𝐾 = 𝑛𝑢𝑙𝑙 , 
plaintext is stored at CSP that handles deduplication 
without any specific control indicated by the data owner.  

4.2 Fundamental Algorithms 
In this sub-section, we introduce a number of fundamental 
algorithms of the proposed scheme.  

1) System Setup 
𝑰𝒏𝒊𝒕𝒊𝒂𝒕𝒆𝑺𝒚𝒔𝒕𝒆𝒎 . This algorithm is conducted at the 

KGC. It generates basic system parameters related to ABE 
and PRE, such as generators and universal attributes, etc. 

𝑰𝒏𝒊𝒕𝒊𝒂𝒕𝒆𝑵𝒐𝒅𝒆(𝒖) . Based on the system parameters, 
cloud user 𝑢 generates its own key pairs including ABE 
master key pair 𝑃𝐾𝑢 and 𝑆𝐾𝑢 used for ABE encryption and 
user decryption key issuance, PKC key pair 𝑃𝐾’𝑢 and 𝑆𝐾’𝑢 
for signing, as well as 𝑝𝑘𝑢 and 𝑠𝑘𝑢 regarding PRE. 

𝑺𝒆𝒕𝒖𝒑𝑵𝒐𝒅𝒆(𝒖). With node identity 𝑢 and public keys 
as input, this algorithm conducted at KGC outputs a 
number of user credentials, 𝐶𝑒𝑟𝑡(𝑃𝐾𝑢) , 𝐶𝑒𝑟𝑡(𝑃𝐾’𝑢)  and 
𝐶𝑒𝑟𝑡(𝑝𝑘𝑢), which can be verified by CSPs and their users. 

𝑰𝒏𝒊𝒕𝒊𝒂𝒕𝒆𝑨𝑷. AP initiates itself by generating 𝑝𝑘𝐴𝑃 and 
𝑠𝑘𝐴𝑃. 𝑝𝑘𝐴𝑃 is broadcast to the users of CSPs. 

2) ABE Key Generation 
𝑪𝒓𝒆𝒂𝒕𝒆𝑰𝑫𝑷𝑲(𝑰𝑫, 𝑺𝑲𝒖).  This algorithm checks the 

policies about 𝐼𝐷 and outputs 𝑝𝑘𝐼𝐷,𝑢 for user 𝑢 to allow 𝑢 to 
control its data deduplication and access. 

𝑰𝒔𝒔𝒖𝒆𝑰𝑫𝑺𝑲(𝑰𝑫, 𝑺𝑲𝒖, 𝑷𝑲𝑢’). This algorithm is run by 𝑢 
to issue 𝑠𝑘𝐼𝐷,𝑢,𝑢’ to 𝑢’ if the eligibility check of 𝑢’ is positive. 

Otherwise, it outputs 𝑁𝑈𝐿𝐿. Specifically, user 𝑢 checks the 
attributes of 𝑢′. If they satisfy with the policy defined by 𝑢, 
𝑢 issues a secret key to 𝑢′ for sharing the duplicated data 
storage and allow its future access. Otherwise, it rejects the 
request. 

For simplifying our presentation, we set user identity as 

an example attribute rather than complex attributes herein. 

The access control based on user identity also consists with 

practice since most of data access over the cloud is based 

on user identity. Data owner 𝑢 allows other data holders 
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with 𝐼𝐷 =  𝑃𝐾𝑢’𝑗
 (𝑗 =  1, 2, 3) to share its data storage. It 

encrypts 𝐷𝐸𝐾2 with policy λ: 𝐼𝐷 =  𝑃𝐾𝑢′
1

∨  𝑃𝐾𝑢′
2

∨ 𝑃𝐾𝑢′
3
. 

The encryption key algorithm 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑦  as described 

below iterates over all 𝑗 =  1, 2, 3 , generates a random 

value for each conjunction and constructs 𝐶𝐾2𝑗
. The cipher-

key 𝐶𝐾2 is obtained as tuple 𝐶𝐾2  = < 𝐶𝐾21
, 𝐶𝐾22

, 𝐶𝐾23
>. 

3) Data Encryption and Decryption 
𝑬𝒏𝒄𝒓𝒚𝒑𝒕(𝑫𝑬𝑲𝒖, 𝑴) encrypts 𝑀 with 𝐷𝐸𝐾𝑢 and outputs 

ciphertext 𝐶𝑇𝑢 to protect 𝑀 stored at CSP.  
𝑫𝒆𝒄𝒓𝒚𝒑𝒕(𝑫𝑬𝑲𝒖, 𝑪𝑻𝒖)  decrypts 𝐶𝑇𝑢  with 𝐷𝐸𝐾𝑢  and 

outputs 𝑀. It is executed at the data holders to obtain the 
plain content of 𝐶𝑇𝑢 stored at CSP.  

4) Symmetric Key Management 
𝑺𝒆𝒑𝒂𝒓𝒂𝒕𝒆𝑲𝒆𝒚(𝑫𝑬𝑲𝒖). On input 𝐷𝐸𝐾𝑢, this algorithm 

outputs a number of partial keys, e.g., 𝐷𝐸𝐾1,𝑢 and 𝐷𝐸𝐾2,𝑢 
based on random separation. Separating 𝐷𝐸𝐾𝑢  into 
multiple parts can also be performed if needed. 

𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝑲𝒆𝒚(𝑫𝑬𝑲𝟏,𝒖, 𝑫𝑬𝑲𝟐,𝒖). On input partial keys 
of 𝐷𝐸𝐾𝑢 , e.g., 𝐷𝐸𝐾1,𝑢  and 𝐷𝐸𝐾2,𝑢 , this algorithm outputs 
the full key 𝐷𝐸𝐾𝑢 through combination. 

5) Partial Key Control based on ABE Operated by 
Data Owner 

𝑬𝒏𝒄𝒓𝒚𝒑𝒕𝑲𝒆𝒚(𝑫𝑬𝑲𝟐,𝒖, 𝝀, 𝒑𝒌𝑰𝑫,𝒖)  encrypts 𝐷𝐸𝐾2,𝑢  with 
policy 𝜆 and outputs cipher-key 𝐶𝐾2,𝑢  by taking 𝐷𝐸𝐾2,𝑢 , 𝜆 
and 𝑝𝑘𝐼𝐷,𝑢 as input. This algorithm is conducted at 𝑢.   

𝑫𝒆𝒄𝒓𝒚𝒑𝒕𝑲𝒆𝒚(𝑪𝑲𝟐,𝒖, 𝝀, 𝑺𝑲𝒖′, 𝒔𝒌𝑰𝑫,𝒖,𝒖’)  decrypts cipher-
key 𝐶𝐾2,𝑢 and outputs 𝐷𝐸𝐾2,𝑢  if the policy 𝜆 under which 
𝐷𝐸𝐾2,𝑢 was encrypted can be satisfied; otherwise it outputs 
NULL. This algorithm is conducted at 𝑢′. 

6) Partial Key Control based on PRE Operated by AP 
We employ PRE to enable AP to perform the re-

encryption of 𝐶𝐾1 . During ciphertext re-encryption, CSP 
learns nothing about 𝐷𝐸𝐾1. The algorithms related to PRE 
are represented as below: 

𝑬(𝒑𝒌𝑨𝑷, 𝑫𝑬𝑲𝟏,𝒖)  outputs 𝐶𝐾1 =  𝐸(𝑝𝑘𝐴𝑃, 𝐷𝐸𝐾1,𝑢)  by 
taking 𝑝𝑘𝐴𝑃 and 𝐷𝐸𝐾1,𝑢, as input. 

𝑹𝑮(𝒑𝒌𝑨𝑷, 𝒔𝒌𝑨𝑷, 𝒑𝒌𝒖’) outputs re-encryption key 𝑟𝑘𝐴𝑃→𝑢’ 
for the proxy CSP by taking 𝑝𝑘𝐴𝑃, 𝑠𝑘𝐴𝑃, and 𝑝𝑘𝑢’ as input. 

𝑹(𝒓𝒌𝑨𝑷→𝒖’, 𝑪𝑲𝟏)  takes input 𝑟𝑘𝐴𝑃→𝑢’  and 𝐶𝐾1 , and 
outputs 𝑅(𝑟𝑘𝐴𝑃→𝑢’, 𝐶𝐾1) =  𝐸(𝑝𝑘𝑢’, 𝐷𝐸𝐾1,𝑢) =  𝐶𝐾′1 , which 
can be decrypted with 𝑠𝑘𝑢’.  

𝑫(𝒔𝒌𝒖, 𝑪𝑲’𝟏) outputs 𝐷𝐸𝐾1,𝑢  by taking 𝑠𝑘𝑢  and 𝐶𝐾’1  as 
input. 

4.3 Flexible Deduplication Scheme 

1) Data Deduplication 
Figure 2 shows the procedure of data deduplication with 
heterogeneous control handled by both the data owner and 
AP. User 𝑢1 is the data owner that stores data 𝑀 at CSP by 
encrypting it with 𝐷𝐸𝐾𝑢1

, while user 𝑢2  tries to store the 
same data at CSP. We assume that both the data owner and 
AP are indicated for deduplication control based on the 
encryption behavior of 𝑢1. Both 𝑢1 and 𝑢2 are the users of 
the same CSP. 

Step 1 - System Setup: After system parameter 

generation, each node 𝑢𝑖  calls 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑁𝑜𝑑𝑒  to generate 

three key pairs 𝑃𝐾𝑢𝑖
 and 𝑆𝐾𝑢𝑖

; 𝑃𝐾’𝑢𝑖
 and 𝑆𝐾’𝑢𝑖

; 𝑝𝑘𝑢𝑖
 and 

𝑠𝑘𝑢𝑖
 (𝑖 = 1, 2, … ) . Meanwhile, 𝑢𝑖 gets the certificates of 

public keys 𝐶𝑒𝑟𝑡(𝑃𝐾𝑢𝑖
) , 𝐶𝑒𝑟𝑡(𝑃𝐾’𝑢𝑖

)  and 𝐶𝑒𝑟𝑡(𝑝𝑘𝑢𝑖
)  from 

KGC. AP calls 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐴𝑃 to generate its key pair 𝑝𝑘𝐴𝑃 and 

𝑠𝑘𝐴𝑃. 

 
Fig. 2. Data deduplication with heterogeneous control 

Step 2 - Duplication Check: User 𝑢1 stores data 𝑀 at CSP. 
It calculates 𝐻(𝑀) , signs 𝐻(𝑀)  with 𝑆𝐾’𝑢1

 and sends 

package 𝑃1 = {𝐻(𝑀), 𝑆𝑖𝑔𝑛(𝐻(𝑀), 𝑆𝐾’𝑢1
) , 𝐶𝑒𝑟𝑡(𝑃𝐾𝑢1

) , 

𝐶𝑒𝑟𝑡(𝑃𝐾’𝑢1
), 𝐶𝑒𝑟𝑡(𝑝𝑘𝑢1

)} to CSP. CSP checks if the same 

data has been stored already by verifying the signature and 
checking if 𝐻(𝑀) has existed. The duplication check across 

multiple CSPs can be supported, refer to next sub-section for 
details. If the check is positive, go to Step 5. Otherwise, go to 
Step 3 to request data package.  

 
Fig. 3. Data deduplication at CSP controlled by AP 

Step 3 - Data Storage: When CSP requests the data 
package, user 𝑢1 encrypts 𝑀 with a random symmetric key 

𝐷𝐸𝐾𝑢1
 to get 𝐶𝑇𝑢1

= 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐷𝐸𝐾𝑢1
, 𝑀). If 𝐷𝐸𝐾𝑢1

= 𝑛𝑢𝑙𝑙 , 

𝐶𝑇𝑢1
= 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑛𝑢𝑙𝑙, 𝑀) = 𝑀 . It then calls 

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝐾𝑒𝑦(𝐷𝐸𝐾𝑢1
) to get two random parts of 𝐷𝐸𝐾𝑢1

: 

𝐷𝐸𝐾1,𝑢1
 and 𝐷𝐸𝐾2,𝑢1

. User 𝑢1 encrypts 𝐷𝐸𝐾1,𝑢1
 with 𝑝𝑘𝐴𝑃  to 

get 𝐶𝐾1,𝑢1
 by calling 𝐸(𝑝𝑘𝐴𝑃, 𝐷𝐸𝐾1,𝑢1

) and encrypts 𝐷𝐸𝐾2,𝑢1
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with 𝑝𝑘𝐼𝐷,𝑢1
 by calling 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑦(𝐷𝐸𝐾2,𝑢1

, 𝜆, 𝑝𝑘𝐼𝐷,𝑢1
)  to 

get 𝐶𝐾2,𝑢1
, where 𝑝𝑘𝐼𝐷,𝑢1

 is generated according to data 

policy 𝜆 of 𝑢1. In addition, it randomly selects a number of 
indexes: 𝐼𝑁 = {𝐼𝑛1, 𝐼𝑛2, … , 𝐼𝑛𝑘} that indicate the special parts 
of 𝑀 (e.g., 𝐼𝑛1 indicates first 1% of data; 𝐼𝑛2 indicates first 3% 
of data), where 𝑘  is the total number of indexes. 
Furthermore, 𝑢1 calculates the hash codes of partial 𝑀 based 
on the indexes as 𝐻𝐶(𝑀) = {𝐻(𝑀1), 𝐻(𝑀2), … , 𝐻(𝑀𝑘)}. Then 
𝑢1 sends the data package to CSP for storage: 
𝐷𝑃1 =

{𝐶𝑇𝑢1
, 𝐶𝐾1,𝑢1

, 𝐶𝐾2,𝑢1
, 𝐼𝑁, 𝐻𝐶(𝑀), 𝑆𝑖𝑔𝑛(𝐻𝐶(𝑀), 𝑆𝐾’𝑢1

)}. 

Step 4 - Duplicated Data Upload: Later on, user 𝑢2 wants 
to store the same data 𝑀 at CSP by sending CSP the data 

package 𝑃2 = {𝐻(𝑀), 𝑆𝑖𝑔𝑛(𝐻(𝑀), 𝑆𝐾’𝑢2
), 𝐶𝑒𝑟𝑡(𝑃𝐾𝑢2

),  

𝐶𝑒𝑟𝑡(𝑃𝐾’𝑢2
), 𝐶𝑒𝑟𝑡(𝑝𝑘𝑢2

)}. 

Step 5 - Deduplication: CSP performs duplication check 
as in step 2. It further checks the correctness of 𝐻𝐶(𝑀) by 
randomly selecting an index 𝑥  in 𝐼𝑁 , and challenging 𝑢2 . 
The purpose of performing this additional check is to ensure 
the data ownership in case that 𝐻(𝑀) is eavesdropped or 
gained by some malicious party. A number of indexes in 𝐼𝑁 
can be selected with regard to the hash code set challenge in 
order to enhance the security of the ownership check. If the 
verification of challenge response is positive, CSP performs 
data storage with deduplication.  

If AP is involved into the control of deduplication, CSP 

contacts AP with 𝐶𝑒𝑟𝑡(𝑝𝑘𝑢2
)  (that contains 𝑝𝑘𝑢2

). If the 

verification on the data storage policy regarding 𝑢2  is 
positive, AP generates 𝑟𝑘𝐴𝑃→𝑢2 if not performed before by 

calling 𝑅𝐺(𝑝𝑘𝐴𝑃, 𝑠𝑘𝐴𝑃, 𝑝𝑘𝑢2
) and issues it to CSP to allow it 

to re-encrypt 𝐶𝐾1,𝑢1
 by calling 𝑅(𝑟𝑘𝐴𝑃→𝑢2, 𝐶𝐾1,𝑢1

). CSP sends 

𝐸(𝑝𝑘𝑢2
, 𝐷𝐸𝐾1,𝑢1

)  to 𝑢2  for decryption with 𝑠𝑘𝑢2
 to get 

𝐷𝐸𝐾1,𝑢1
.  

If the control of data owner is applied to the stored data, 

CSP contacts 𝑢1  by sending 𝐻(𝑀)  and 𝐶𝑒𝑟𝑡(𝑃𝐾𝑢2
)  (that 

contains 𝑃𝐾𝑢2
) for deduplication. If the verification on 𝑢2’s 

eligibility for data storage at CSP is positive, 𝑢1 generates 

𝑆𝐾𝐼𝐷,𝑢1,𝑢2
 by calling 𝐼𝑠𝑠𝑢𝑒𝐼𝐷𝑆𝐾(𝐼𝐷, 𝑆𝐾𝑢1

, 𝑃𝐾𝑢2
), and issues it 

and 𝐶𝐾2,𝑢1
 to 𝑢2 . Then 𝑢1  informs the success of data 

deduplication to CSP. After getting this notification, CSP 
updates corresponding deduplication records.  

Through data deduplication, both 𝑢1  and 𝑢2  can access 
the same data 𝑀 that is stored only once at CSP. User 𝑢1 uses 
𝐷𝐸𝐾𝑢1

 directly. While 𝑢2 gets 𝐷𝐸𝐾2,𝑢1
and 𝐷𝐸𝐾1,𝑢1

by calling 

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑦(𝐶𝐾2,𝑢1
, 𝜆, 𝑆𝐾𝑢′, 𝑠𝑘𝐼𝐷,𝑢1,𝑢2

) and 𝐷(𝑠𝑘𝑢2
, 𝐶𝐾1,𝑢1

) , 

respectively. It then combines 𝐷𝐸𝐾1,𝑢1
 and 𝐷𝐸𝐾2,𝑢1

 to get 

𝐷𝐸𝐾𝑢1
 by calling 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐾𝑒𝑦(𝐷𝐸𝐾1,𝑢1

, 𝐷𝐸𝐾2,𝑢1
). 

Figure 3 describes the procedure of data deduplication at 
CSP with the control of AP. Figure 4 shows the procedure of 
data deduplication at CSP with the control of the data owner. 
The main differences of these two procedures from the one 
described in Figure 2 are:  

1) The separation of 𝐷𝐸𝐾  is different: in Figure 2, 
𝐷𝐸𝐾1|| 𝐷𝐸𝐾2 = 𝐷𝐸𝐾, where 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2 are not null. In 
Figure 3, 𝐷𝐸𝐾1 = 𝐷𝐸𝐾  and 𝐷𝐸𝐾2  is null. In Figure 4, 
𝐷𝐸𝐾2 = 𝐷𝐸𝐾 and 𝐷𝐸𝐾1 is null.  

2) CSP requests both the data owner and AP for 

deduplication in Figure 2, while CSP only requests AP for 
deduplication in Figure 3 and CSP only requests the data 
owner for deduplication in Figure 4.  

 
Fig. 4. Data deduplication at CSP controlled by the data owner 

 
Fig. 5. Data deduplication at CSP without any control of AP or the 
data owner 

Figure 5 shows the procedure of data deduplication at 
CSP without any control provided by AP and the data 
owner. In this case 𝐷𝐸𝐾 is null. Plaintext is stored at CSP. If 
some data holder would like to store encrypted data at CSP 
later on, system process is similar to 𝐷𝐸𝐾 update, which will 
be described below. Note that re-encryption key 𝑟𝑘𝐴𝑃→𝑢2 
and 𝑠𝑘𝐼𝐷,𝑢1,𝑢2

 should be issued if they are not available by 
CSP and eligible user 𝑢2 in the case of 𝐷𝐸𝐾 update. 

Though deduplication can help save storage cost, the data 
owners or holders may prefer to store replicated data in the 
CSP. A flag is signed by the user to indicate its preference 
with regard to deduplication, which is checked by CSP 
before performing any duplication check. On the other hand, 
CSP can also issue different privileges to its users.  Some 
users could hold a specific privilege to store replicated data 
in the CSP, but they could be charged more than normal 
users by the CSP. For this type of users, the data duplication 
check should be waived.  

2) Deduplication Across CSPs 
Figure 6 shows the process of deduplication across 

multiple CSPs.  
Step 1. The user requests its local CSP for data storage.  
Step 2. The local CSP checks data duplication. If yes, the 

local CSP performs deduplication by contacting the data 
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owner and/or AP based on the way of data encryption for 
deduplication. Corresponding keys are generated by the 
data owner and/or AP and issued to the user if it is an 
eligible data holder. 

 
Fig. 6. Data deduplication across multiple CSPs 

Step 3. If the local duplication check is negative, CSP will 
check with other CSPs if the same data is stored by 
broadcasting the data storage request of the user. If there is 
no any positive reply from other CSPs, the local CSP 
performs data storage by requesting data package from the 
user. 

Step 4. If there is a remote CSP’ replying that the same 
data has been stored therein, the local CSP forwards the data 
storage request to CSP’ and records user data deduplication 
information locally. The remote CSP’ performs 
deduplication by contacting the data owner and/or AP. 
Corresponding keys are generated by the data owner 
and/or AP and issued to the user through the cooperation of 
CSP and CSP’. Meanwhile, CSP’ records the deduplication 
information of the user. 

3) Data Deletion 
Figure 7 shows the procedure of data deletion by a data 

holder in the context of data deduplication.  

 
Fig. 7. A procedure of data deletion 

Step 1. User 𝑢 sends a request of data deletion to its local 
CSP by providing 𝐻(𝑀), 𝑆𝑖𝑔𝑛(𝐻(𝑀), 𝑆𝐾’𝑢).  

Step 2. The CSP verifies the ownership of 𝑢 by randomly 
selecting an index  𝑥  in 𝐼𝑁  and challenging expected hash 
code set. It deletes the storage record of 𝑢 and blocks its 
future access to data 𝑀 if the verification is positive. 

Step 3. The CSP further checks if the data is locally stored. 
If not, go to Step 4. If yes, it will delete the data in case that 
the data deduplication record is empty (i.e., no user stores 
such data in CSP any more). It could contact the data owner 
about 𝐷𝐸𝐾 update in case that the deduplication record is 
not empty. Further deduplication control is also required if 
the underlying user 𝑢  is the data owner when the 
deduplication record is not empty. 

Step 4. The local CSP contacts remote CSP’ that really 
stores the data. The CSP’ deletes the storage record of 𝑢 and 
blocks its future data access. It also checks the data 
deduplication record. If it is empty (i.e., no user stores such 
data in CSP’ any more), CSP’ deletes the data. Otherwise, it 
contacts the data owner about 𝐷𝐸𝐾  update (refer to 
Continuous Deduplication Control as described below). 

4) Continuous Deduplication Control 
Figure 8 illustrates the procedure when CSP inquires a 

data owner for continuous deduplication control if the data 
owner deletes its data at CSP, but still there are other eligible 
data users storing the same data at CSP. 

 
Fig. 8. A procedure of continuous deduplication control  

Step 1. CSP inquires a data owner about continuous 
deduplication control. 

Step 2. If the data owner’s decision is positive, the data 
owner continues deduplication control by issuing access 
keys to eligible users. Else, go to Step 3. 

Step 3. The data owner generates a new key 𝐷𝐸𝐾’ =
𝐷𝐸𝐾’1, encrypts it with 𝑝𝑘𝐴𝑃, and sends 𝐷𝑃’ = {𝐶𝑇’, 𝐶𝐾′1} to 
CSP. CSP performs re-encryption on 𝐶𝐾′1  using the re-
encryption keys of all eligible users and updates the 
deduplication record of the underlying data. When any 
eligible data user accesses the data, CSP provides 𝐶𝑇’ and 
the re-encrypted 𝐶𝐾′1. 

Herein, we only illustrate one solution of continuous 
deduplication control. Other data holders can also take over 
the control. In this case, CSP will request a new delegate 
from existing data holders and select one of them (e.g., based 
on the duration of data storage and user willingness). The 
new delegate will perform storage update by applying a 
newly generated key 𝐷𝐸𝐾’. The process is similar to 𝐷𝐸𝐾 
update as described below. 

5) DEK and CT Update 
Figure 9 illustrates the procedure of 𝐷𝐸𝐾 and 𝐶𝑇 update, 

which is essential for enhancing system security. The data 
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owner (or an eligible data holder) 𝑢1 generates a new key 
𝐷𝐸𝐾’𝑢1

and encrypts data 𝑀  with 𝐷𝐸𝐾’𝑢1
. It separates 

𝐷𝐸𝐾’𝑢1
 into 𝐷𝐸𝐾1,𝑢1

′  and 𝐷𝐸𝐾’2,𝑢1
, and encrypts 𝐷𝐸𝐾’1,𝑢1

 
with 𝑝𝑘𝐴𝑃 , and 𝐷𝐸𝐾’2,𝑢1

 with 𝑝𝑘𝐼𝐷,𝑢1
. Then data package 

𝐷𝑃’1 = {𝐶𝑇’𝑢1
, 𝐶𝐾’1,𝑢1

, 𝐶𝐾’2,𝑢1
, 𝐻(𝑀), 𝑆𝑖𝑔𝑛(𝐻(𝑀), 𝑆𝐾’𝑢1

)}  is 
sent to CSP. The CSP validates the eligibility of 𝑢1 and stores 
𝐷𝑃’1 . CSP requests AP to get the re-encryption keys of 
current eligible data holders (e.g., 𝑢2) if the re-encryption 
keys are not available. CSP performs re-encryption on 
𝐶𝐾’1,𝑢1

, with e.g., 𝑟𝑘𝐴𝑃→𝑢2
 to get 𝐸(𝑝𝑘𝑢2

, 𝐷𝐸𝐾’1𝑢1
). 

 
Fig. 9. A procedure of DEK and CT update 

Meanwhile, 𝑢1  also needs to issue 𝑠𝑘𝐼𝐷,𝑢1,𝑢2
 through a 

secure channel if it is not ever sent to eligible users. Any 
eligible user, e.g., 𝑢2 , can get 𝐷𝐸𝐾’1,𝑢1

 with 𝑠𝑘𝑢2
 and gain 

𝐷𝐸𝐾’2,𝑢1
 with 𝑠𝑘𝐼𝐷,𝑢1,𝑢2

 in order to generate 𝐷𝐸𝐾’1,𝑢1
 for 

accessing newly encrypted data 𝐶𝑇’𝑢1
. 

5 PERFORMANCE EVALUATION 
5.1 Security Analysis 
The security of our scheme relies on ABE theory, PRE 
theory, symmetric key encryption and PKC. The security 
of PRE and ABE was proved in our previous work [33]. 
Symmetric key encryption and PKC theory play as a 
security foundation in many security schemes. We 
assume that the applied key sizes of these two 
cryptosystems are long enough to satisfy the security 
requirements of our system. In what follows, we analyze 
the security of our scheme regarding data ownership 
verification and data deduplication. 

Proposition 1. To pass data ownership verification, a 
cloud user must really hold data 𝑀. 

Proof. A cloud user can generate correct 𝐻(𝑀) with 
real data 𝑀 , thus it can pass duplication check. For 
ownership challenge, stolen 𝐻(𝑀)  is useless since an 
ineligible data holder is hard to provide correct 𝐻(𝑀𝑥) 
since 𝑥  is randomly selected and 𝐻()  is non-invertible. 
Eavesdropping previous transmitted 𝐻(𝑀𝑥′) is useless to 
pass the current challenge. The user holding the real 𝑀 can 
get 𝑀𝑥 and generate correct 𝐻(𝑀𝑥), thus pass the challenge. 
The security level of data ownership verification links to the 
maximum number of 𝑘  in 𝐼𝑁 = {𝐼𝑛1, 𝐼𝑛2, … , 𝐼𝑛𝑘}  and the 
number of indexes used to challenge the ownership. In 
practice, these parameters can be set according to the 
sensitivity of the stored data and the security requirement of 
the data owner. 

Proposition 2. Data 𝑀 can be deduplicated in a secure 
way and only eligible users can access it if data owner 𝑢, 

CSP and AP cooperate without collusion. 
Proof. During data deduplication, data confidentiality 

is ensured by ABE, PRE and symmetric key encryption 
(e.g., AES). Data 𝑀  could be disclosed in two ways: 
obtaining it from 𝐻(𝑀)  and breaking 
𝐶𝑇 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐷𝐸𝐾, 𝑀) . First, the hash function is 
assumed hard to suffer from collision attacks. Therefore, 
it is impossible to obtain 𝑀 through its hash code. Second, 
if we select a long enough key size for the symmetric key 
encryption, breaking 𝐶𝑇 is hard. Thus, 𝐷𝐸𝐾 becomes the 
attack point of data security. In our scheme, 𝐷𝐸𝐾  is 
divided into two parts: 𝐷𝐸𝐾1  and 𝐷𝐸𝐾2 , which are 
encrypted with 𝑝𝑘𝐴𝑃  through PRE and 𝑝𝑘𝐼𝐷,𝑢  through 
ABE, respectively. Because AP does not collude with CSP, 
CSP cannot gain 𝐷𝐸𝐾1 since it knows nothing about 𝑠𝑘𝐴𝑃 
although it stores 𝐶𝐾1 . Through the re-encryption with 
𝑝𝑘𝐴𝑃→𝑢′, 𝐶𝐾1 under 𝑝𝑘𝐴𝑃 is transformed into the cipherkey 
under 𝑝k𝑢′, during which CSP cannot get to know 𝐷𝐸𝐾1 
since CSP knows nothing about 𝑠𝑘𝑢′ and 𝐷𝐸𝐾1 is always 
in encrypted forms. AP has no way to access 𝑀 because 
CSP blocks its access. Even though AP obtains 𝐷𝐸𝐾1 by 
colluding with CSP, it is still impossible for AP to get 𝑀 
because another part of 𝐷𝐸𝐾 (i.e., 𝐷𝐸𝐾2) is controlled by 
the data owner. The data owner and holders have no 
incentive to collude with CSP considering their personal 
data profits, thus they would not disclose 𝑠𝑘𝐼𝐷,𝑢,𝑢’  and 
𝐷𝐸𝐾  to CSP. CSP has no way to gain 𝐷𝐸𝐾2  and 𝐷𝐸𝐾 . 
Based on the above analysis, the CSP that stores 𝐶𝑇 
cannot obtain 𝑀 through 𝐷𝐸𝐾. The scheme can guarantee 
that 𝑀  is securely stored at CSP during deduplication, 
which can be only accessed by eligible data holders.  

5.2 Comparison with Existing Work 
TABLE 2. COMPARISON OF COMPUTATION COMPLEXITY WITH 

[31][32] 

Party [this paper] [31] [32] 

Data Owner 𝓞(𝒏) 𝓞(𝟏) 𝓞(𝒏) 

CSP 𝓞(𝒏) 𝓞(𝒏) 𝓞(𝒏) 

Data Holder 𝓞(𝟏) 𝓞(𝟏) 𝓞(𝟏) 

AP 𝓞(𝒏) 𝓞(𝒏) - 

n: the number of data holders. 
We compare our scheme with the previous work [31][32]. 
One of them [31] realizes deduplication managed by AP 
and the other [32] manages deduplication by the online 
data owner. As shown in Table 2 and further tested in 
Section 5.4, the proposed scheme can flexibly support 
various scenarios with similar computation complexity to 
existing work [31][32]. Thereby, we compare their main 
properties in Table 3. We can see that the proposed 
scheme is a heterogeneous solution. It can realize both 
fine-grained and offline access control, thus it has better 
flexibility than previous work. In addition, the random 
hash code challenge is applied to verify data ownership, 
which can guarantee that the data holders really have the 
original data rather than its hash code. Though 
possession proof has been achieved in [31] by applying 
Elliptic Curve Cryptography (ECC) (with ownership 
verification time about 1.2 millisecond), hash code set 
employed in this paper is also very efficient if we make 
challenged part of data is small. If the challenged part of 
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data is very small, e.g., within 1 kilobyte, we can achieve 
much better performance than [31] considering the fast 
operation time of the hash function. Moreover, our 
scheme can cope with the situations of deduplication 
across multiple CSPs, which was not considered at all in 
previous work. In general, our scheme has distinct 
advantages compared with existing work in terms of high 
flexibility and advanced properties. 

TABLE 3. COMPARISON OF FEATURES WITH [31][32] 
Properties [this paper] [31] [32] 

Basic Algorithm Applied PRE, ABE PRE, ECC ABE 

Fine-grained Access Control √  √ 

Possession Proof √ √  

Offline Access Control √ √  

 Deduplication Across CSPs √   

5.3 Scheme Implementation 
We implemented the scheme based on MIRACL Crypto 

Library (http://info.certivox.com/docs/miracl), Pairing 
Based Cryptography (PBC) Library [27], OpenSSL 
Cryptography, JHU-MIT Proxy Re-cryptography Library 
(https://isi.jhu.edu/~mgreen/prl/index.html), and SSL / 
TLS Toolkit (https://www.openssl.org/). In our 
implementation, we applied AES for symmetric encryption, 
RSA for PKC and SHA-1 as a hash function to generate hash 
codes and hash sets. Our implementation was in C++ and 
adopted MySQL 5.5.46 to build a database. The experiments 
were conducted in a virtual machine running a 64-bits 
Ubuntu operating system on Amazon EC2 cloud service 
with Intel Xeon CPU E5-2670, 2.50GHz processor and 1-GB 
RAM. We tested the correctness of our implementation in 
terms of each procedure described in Section 4.3. Herein, we 
only take the case of data deduplication with heterogeneous 
control as an example to illustrate our implementation due 
to paper size limitation. 

  

 
Fig. 10. File uploading process with heterogeneous control  

 
Fig. 11. Record of CSP database  

 
Fig. 12. Records of U1 and U2 databases  

 
Fig. 13. The detailed data content in CSP  

 
Fig. 14. Duplicated file download with heterogeneous control 

 
Fig. 15. The content of file U2File, CT and the decryption of CT 

http://info.certivox.com/docs/miracl
https://isi.jhu.edu/~mgreen/prl/index.html
https://www.openssl.org/
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Use Case: Data deduplication with heterogeneous control 
(as illustrated in Figure 2). 

Step 1: 𝑈1 wants to upload file TestHetro to CSP. CSP 
checks that there is no duplicated file stored, and thus 
requests 𝐷𝑃1  from 𝑈1 . 𝑈1  generates 𝐷𝐸𝐾  randomly, 
encrypts file TestHetro using AES with 𝐷𝐸𝐾, divides 𝐷𝐸𝐾 
into two parts, denoted as 𝐷𝐸𝐾1  and 𝐷𝐸𝐾2 . 𝑈1  prepares 
𝐷𝑃1 and uploads it to CSP. Upon receiving 𝐷𝑃1, CSP stores 
𝐷𝑃1  in its database and 𝑈1  also stores the uploaded file 
information in its own database. Such uploading process is 
shown in Figure 10(a) and the records in CSP database and 
𝑈1 database are shown in Figure 11 and Figure 12(a). 

Step 2: 𝑈2 wants to upload file U2File whose content is 
exactly the same as that of file TestHetro. CSP identifies 
duplication and challenges the ownership of 𝑈2 . After 
passing ownership challenge, 𝑈2 gets 𝐶𝐾2, the re-encrypted 
𝐶𝐾1 , and related attribute secrete key of 𝑈2 . 𝑈2  then 
decrypts 𝐶𝐾1 and 𝐶𝐾2 to get 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2, as shown in 
Figure 10(b). In addition, we can observe that 𝑈2 can get the 
correct 𝐷𝐸𝐾 generated by 𝑈1. Then, 𝑈2 stores the received 
𝐷𝐸𝐾1  and 𝐷𝐸𝐾2  for file U2File, as shown in Figure 12(b). 
Meanwhile, CSP updates the record of file TestHetro to mark 
𝑈2 as a user that holds file TestHetro, as shown in Figure 

11(b). 
Figure 13 shows the detailed data content in CSP. We can 

see that the file is secure from CSP since only the ciphertexts 
of 𝐷𝐸𝐾1, 𝐷𝐸𝐾2 and file content are stored in CSP. 

Step 3: 𝑈2 wants to download file U2File. After checking 
the eligibility of 𝑈2, CSP sends 𝐶𝑇 of file TestHetro to 𝑈2. 
Upon receiving 𝐶𝑇 , 𝑈2  decrypts it with 𝐷𝐸𝐾  that is 
combined from 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2, as shown in Figure 14. 
Figure 15 shows the content of the file U2File before it is 
uploaded, its 𝐶𝑇  and decryption of 𝐶𝑇 . We can see from 
Figure 15 that 𝑈2 can decrypt the file correctly.  

5.4 Efficiency Evaluation 
Based on the implementation, we performed a number of 
tests to evaluate the efficiency of our proposed scheme. 
Test 1: Efficiency of file encryption and decryption 

We tested the time spent to encrypt and decrypt a file 
with different sizes by applying AES with 3 different key 
sizes, namely 128 bits, 196 bits and 256 bits. We observe from 
Figure 16(a) that encrypting or decrypting a file of 500 
megabytes (MB) with 256-bit AES takes about 100 seconds. It 
is a reasonable and practical choice to apply symmetric 
encryption for data protection. 

 
Fig. 16. Efficiency evaluation on basic algorithms 

Test 2: Efficiency of calculating hash code set of a file  
Figure 16(b) shows the time needed to calculate 𝐻(𝑀) 

(𝑘 = 1) and 𝐻𝐶(𝑀) (𝑘 > 1) of files of different sizes using 
SHA-1. We can see from Figure 16(b) that the time increases 
as the file size increases and that the bigger 𝑘 is, the more 
time it takes to calculate 𝐻𝐶(𝑀). Calculating 𝐻(𝑀) is very 
efficient, which takes less than 10 seconds to calculate 𝐻(𝑀) 
of a file as big as 500MB. When 𝑘  is small (e.g., 𝑘 =50), 
calculating 𝐻𝐶(𝑀) with data size 500 kilobytes (KB) is also 
very efficient, within 50 milliseconds. 
Test 3: Efficiency of RSA sign and verification  

In our proposed scheme, RSA signature is used during 
duplication check and performed on the hash code or the 

hash code set of plaintext data. Signature verification is used 
at CSP to ensure data ownership during duplication check. 
We tested the execution time needed to sign a given SHA-1 
hash code and verify a given signature using RSA 
cryptosystem. We observed from Figure 16(c) that both RSA 
sign and RSA verification are very efficient. Signing with 
4096-bit RSA takes only about 10 milliseconds. 
Test 4: Efficiency of PRE operations 

We tested the operation time of different PRE operations. 
PRE schemes require that all users in a PRE deployment 
share a common set of public parameters. These parameters 
should be fixed, then they need to be generated only once 
during system setup. We tested that generating these 
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parameters takes about 34.79 milliseconds. Each user in a 
PRE deployment needs to generate a public/secrete key pair. 
As shown in Figure 16(d), generating a PRE key pair takes 
only 6.5 milliseconds. We can observe that PRE operations 
(including re-encryption key generation, encryption, re-
encryption and decryption) are quite efficient. Thus, 
applying PRE to protect data encryption keys is reasonable 
and practical, especially when it is handled at a server with 
sufficient resources and processing capability. 
Test 5: Efficiency of CP-ABE operations 

Figure 16(e) shows the execution times of all CP-ABE 
operations (UKGen: User key pair generation; IDPKGen: ID 
public key generation (ID numbers = 10); IDSKGen: ID 
secret key generation; Enc: ABE encryption (ID numbers in 
encryption policy = 5); Dec: ABE decryption (ID numbers in 
encryption policy = 5)). The setup process that is needed 

only once generates CP-ABE global public key and secret 
master key, which takes about 12 milliseconds. User key pair 
generation takes about 14 milliseconds and is needed when 
a new user is registered into the system. The ID public key 
generation process varies with different number of IDs. 
Figure 16(f) shows the ID public key (𝑝𝑘𝐼𝐷,𝑢) generation time 
with different number of IDs, namely eligible users. 

Figure 17(a) shows the CP-ABE encryption and 
decryption time. The encryption time increases with the 
number of IDs in encryption policy, since the encryption 
algorithm iterates over all IDs and constructs ciphertext for 
each ID. The decryption time is consistent around 7.8 
milliseconds. 

Following tests were carried out by applying 128-bit AES 
and 2048-bit RSA. The 𝐻𝐶(𝑀) was calculated with k=10 and 
the number of IDs in CP-ABE encryption policy is 5. 

 
Fig. 17. Efficiency evaluation on main operations 

 
Test 6: Efficiency of file uploading  

We tested the efficiency of file uploading process under 
different control policies. The process includes encrypting 
data file with AES, calculating 𝐻(𝑀) and 𝐻𝐶(𝑀), signing 
and verifying signature. The process may include encrypting 
𝐷𝐸𝐾1,𝑢  with PRE and/or encrypting 𝐷𝐸𝐾2,𝑢  with ABE 
according to the access control policy. As shown in Figure 
17(b), there is no much difference between uploading a file 
under three control policies, namely, data owner and AP 
control, data owner control, and AP control, especially for 
big files. Since for big files, the time is dominated mainly by 
AES encryption that increases with file sizes. However, CP-
ABE and PRE are quite efficient (less than 1 second) and 
stays constant for files with different sizes, since the size of 
𝐷𝐸𝐾 stays constant for different files. We can also see from 
Figure 17(b) that encrypting a file does not introduce too 
much computation overhead. The result shown in this figure 

also indicates that the proposed scheme has similar 
performance to the existing work [31, 32] with regard to file 
uploading. 

Figure 17(c) shows the duplicated file uploading time 
under different control policies. In this process, CSP will 
request re-encryption key from AP and use it to re-encrypt 
𝐶𝐾1  if needed. CSP also contacts the data owner about 
issuing the user attribute secret key if the data owner 
controls data access. We observe that such a process is very 
efficient, taking less than 0.3 seconds if the data is less than 
100MB. The operation time varies slightly with file sizes, 
which results from 𝐻𝐶(𝑀)  calculation and challenge. By 
comparing Figure 17(b) with 17(c), we can see that the 
proposed deduplication scheme can greatly save data 
uploading time for duplicated data storage at the cloud. 
Test 7: Efficiency of file downloading  

We also tested the efficiency of file downloading process 
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that combines 𝐷𝐸𝐾1  and 𝐷𝐸𝐾2  and decrypts downloaded 
𝐶𝑇 with AES. Because the decryption of 𝐶𝐾1 and 𝐶𝐾2 is very 
fast (only several milliseconds), there is no much difference 
between the file downloading time under different control 
policies, as shown in Figure 17(d). But if no party controls 
the data access, the downloading process is much faster than 
that under data owner and/or AP control. Since in this case, 
AES decryption is not needed. This result indicates that the 
proposed scheme has similar performance to the existing 
work [31, 32] with regard to file downloading. 
Test 8: Efficiency of file deletion  

Figure 17(e) shows the data holder’s file deletion time 
under different control policies. The deletion process 
involves 𝐷𝐸𝐾 and 𝐶𝑇 update if the deleted file is controlled 
by the data owner and/or AP. The 𝐷𝐸𝐾  and 𝐶𝑇  update 
process is similar to the above mentioned new file uploading 
process except that it does not need to calculate 𝐻𝐶(𝑀). 
Thus, deleting a file under data owner and/or AP control 
varies slightly, especially for big files, as shown in Figure 
17(e). However, deleting a file without any control by the 
data owner or AP only needs to update related file records 
in CSP, thus it is very efficient and takes less than 0.1 
seconds for a file with 100 MB. 

Figure 17(f) shows the data owner’s file deletion time 
under different control policies. The data owner deletion 
process involves generating a new 𝐷𝐸𝐾 and encrypting it 
with 𝑝𝑘𝐴𝑃 . Therefore, there is no much difference under 
different access control policies. For a file without any access 
control, the deletion just needs to update related CSP file 
records and thus very efficient. 

As can be seen from Figure 17, the proposed scheme 
achieves similar performance to the existing work [31, 32]. 
Considering its advanced properties as shown in Table 3 
and high flexibility, we conclude that our scheme 
outperforms the existing work.  

6 CONCLUSION 
Data deduplication is important and significant in the 
practice of cloud data storage, especially for big data storage 
management. In this paper, we proposed a heterogeneous 
data storage management scheme, which offers flexible 
cloud data deduplication and access control. Our scheme 
can adapt to various application scenarios and demands and 
offer economic big data storage management across multiple 
CSPs. It can achieve data deduplication and access control 
with different security requirements. Security analysis, 
comparison with existing work and implementation based 
performance evaluation showed that our scheme is secure, 
advanced and efficient. 

Our scheme supports data privacy of cloud users since 
the data stored at the cloud is in an encrypted form. One 
way to support identity privacy is to apply pseudonyms in 
Key Generation Center (KGC), where a real identity is linked 
to a pseudonym, which is verified and certified by the KGC. 
In our future work, we will further enhance user privacy 
and improve the performance of our scheme towards 
practical deployment. In addition, we will conduct game 
theoretical analysis to further prove the rationality and 
security of the proposed scheme. 
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