
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Yan, Zheng; Zhang, Lifang; Ding, Wenxiu; Zheng, Qinghua
Heterogeneous Data Storage Management with Deduplication in Cloud Computing

Published in:
IEEE Transactions on Big Data

DOI:
10.1109/TBDATA.2017.2701352

Published: 01/01/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Yan, Z., Zhang, L., Ding, W., & Zheng, Q. (2019). Heterogeneous Data Storage Management with Deduplication
in Cloud Computing. IEEE Transactions on Big Data, 5(3), 393-407.
https://doi.org/10.1109/TBDATA.2017.2701352

https://doi.org/10.1109/TBDATA.2017.2701352
https://doi.org/10.1109/TBDATA.2017.2701352

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

IEEE TRANSACTIONS ON BIG DATA, MANUSCRIPT ID 1

Heterogeneous Data Storage Management
with Deduplication in Cloud Computing

Zheng Yan, Senior Member, IEEE, Lifang Zhang, Wenxiu Ding, and Qinghua Zheng, Member,
IEEE

Abstract—Cloud storage as one of the most important services of cloud computing helps cloud users break the bottleneck of
restricted resources and expand their storage without upgrading their devices. In order to guarantee the security and privacy of
cloud users, data are always outsourced in an encrypted form. However, encrypted data could incur much waste of cloud
storage and complicate data sharing among authorized users. We are still facing challenges on encrypted data storage and
management with deduplication. Traditional deduplication schemes always focus on specific application scenarios, in which the
deduplication is completely controlled by either data owners or cloud servers. They cannot flexibly satisfy various demands of
data owners according to the level of data sensitivity. In this paper, we propose a heterogeneous data storage management
scheme, which flexibly offers both deduplication management and access control at the same time across multiple Cloud
Service Providers (CSPs). We evaluate its performance with security analysis, comparison and implementation. The results
show its security, effectiveness and efficiency towards potential practical usage.

Index Terms—Data Deduplication, Cloud Computing, Access Control, Storage Management

—————————— ——————————

1 INTRODUCTION
loud computing allows centralized data storage and
online access to computer services or resources. It

offers a new way of Information Technology (IT) services
by re-arranging various resources and providing them to
users based on their demands. Cloud computing has
greatly enriched pervasive services and become a
promising service platform due to a number of desirable
properties [40, 41], such as scalability, elasticity, fault-
tolerance, and pay-per-use.

Data storage service is one of the most widely
consumed cloud services. Cloud users have greatly
benefited from cloud storage since they can store huge
volume of data without upgrading their devices and access
them at any time and in any place. However, cloud data
storage offered by Cloud Service Providers (CSPs) still
incurs some problems.

First of all, various data stored at the cloud may request
different ways of protection due to different data
sensitivity. The data stored at the cloud include sensitive
personal information, publicly shared data, data shared
within a group, and so on. Obviously, crucial data should
be protected at the cloud to prevent from any access of
unauthorized parties. Some unimportant data, however,
have no such a requirement. As outsourced data could

disclose personal or even sensitive information, data
owners sometimes would like to control their data by
themselves, while on some occasion, they prefer to
delegate their control to a third party since they cannot be
always online or have no idea how to perform such a
control. How to make cloud data access control adapt to
various scenarios and satisfy different user demands
becomes a practically important issue. Access control on
encrypted data has been widely studied in the literature
[10-17, 33]. However, few of them can flexibly support
various requirements on cloud data protection in a uniform
way, especially with economic deduplication management.

Second, flexible cloud data deduplication with data
access control is still an open issue. Duplicated data could
be stored at the cloud [39] in an encrypted form by the
same or different users, in the same or different CSPs. From
the standpoint of compatibility, it is highly expected that
data deduplication can cooperate well with data access
control. That is the same data (either encrypted or not) are
only stored once at the cloud, but can be accessed by
different users based on the policies of data owners or data
holders (i.e., the eligible data users who hold original data).
Although cloud storage space is huge, duplicated data
storage could greatly waste networking resources,
consume plenty of power energy, increase operation costs,
and make data management complicated. Economic
storage will greatly benefit CSPs by decreasing their
operation costs and reversely benefit cloud users with
reduced service fees. Obviously, cloud data deduplication
is particularly significant for big data storage and
management. However, the literature still lacks studies on
flexible cloud data deduplication across multiple CSPs.
Existing work cannot offer a generic solution to support
both deduplication and access control in a flexible and
uniform way over the cloud [18, 22-24, 29-38].

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 Z. Yan is with the State Key Laboratory of Integrated Services Networks,
School of Cyber Engineering, Xidian University, POX 91, No. 2 South
Taibai Road, 710071, Xi’an, China, and also with the Department of
Communications and Networking, Aalto University, Otakaari 5, 02150,
Espoo, Finland (e-mail: zyan@xidian.edu.cn).

 L. Zhang is with the Department of Communications and Networking,
Aalto University, Otakaari 5, 02150, Espoo, Finland (e-mail:
lifang.zhang@aalto.fi).

 W. Ding is with the School of Cyber Engineering, Xidian University, No. 2
South Taibai Road, 710071, Xi’an, China (Email:
wenxiuding_1989@126.com).

 Q. Zheng is with the Xi’an Jiaotong University, Xi’an, China (Email:
qhzheng@xjtu.edu.cn)

C

mailto:lifang.zhang@aalto.fi
mailto:wenxiuding_1989@126.com

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 2

In this paper, we propose a holistic and heterogeneous
data storage management scheme in order to solve the
above problems. The proposed scheme is compatible with
the access control scheme proposed in [33]. It further
realizes flexible cloud storage management with both data
deduplication and access control that can be operated by
either the data owner or a trusted third party or both or
none of them. Moreover, the proposed scheme can satisfy
miscellaneous data security demands and at the same time
save storage spaces with deduplication across multiple
CSPs. Thus it can fit into various data storage scenarios.
Our scheme is original and different from the existing
work. It is a generic scheme to realize encrypted cloud data
deduplication with access control, which supports the
cooperation between multiple CSPs. Specifically, the
contributions of this paper are:
 We motivate to save cloud storage across multiple CSPs

and preserve data security and privacy by managing
encrypted data storage with deduplication in various
situations.

 We propose a heterogeneous data management scheme
to support both deduplication and access control
according to the demands of data owners, which can
adapt to different application scenarios. Our scheme
can support data sharing among eligible users in a
flexible way, which can be controlled by either the data
owners or other trusted parties or both of them.

 We justify the performance of the proposed scheme
through security analysis, comparison with existing
work and implementation based performance
evaluation. The results show its security, advantages,
efficiency and potential applicability.
The rest of the paper is organized as below. We give a

brief review on related work in Section 2. In Section 3, we
present a system and security model, and introduce
notations and preliminaries that are used in our scheme.
We present the detailed design of the proposed scheme in
Section 4, followed by security analysis, comparison with
existing work and performance evaluation in Section 5.
Finally, the last section concludes the paper.

2 RELATED WORK
2.1 Access Control on Encrypted Data
Existing researches [1-3] proposed to encrypt data before
outsourcing it to the cloud in order to prevent data privacy
from being invaded at CSP. Access control on encrypted
data requests that only authorized entities can decrypt the
encrypted data. An ideal approach is to encrypt each data
once and issue relevant keys to authorized entities only
once. However, due to the changeability of trust
relationships, key management becomes complicated due
to frequent key update.

Access Control Lists (ACLs) were applied to ensure data
security in a distrusted or semi-trusted party (e.g., CSP).
Before uploading data to CSP, the data owner first
classifies the data into different groups, and then encrypts
each group with a symmetric key, which is only
distributed to the users in the ACL of the group. In this
way, this group of data is only accessible by the users in

the ACL [4]. The shortcoming of this scheme mainly comes
from the fact that the number of symmetric keys increases
linearly with the number of groups. Moreover, the trust
relationship change between one individual user and the
data owner could cause essential update of relevant
symmetric keys, which impacts other users in the same
ACL. Thereby, this approach is impractical to be applied in
many real applications where the trust relationship
between different users changes frequently. Combining a
traditional symmetric cryptosystem and an asymmetric
cryptographic system was proposed for cloud data access
control [5]. However, the computation cost of key
encryption increases linearly with the number of users in
the ACL.

Attribute-Based Encryption (ABE) [6-9] was proposed to
achieve access control on encrypted cloud data. It specifies
a set of attributes to identify users and encrypts data based
on an access structure specified by attributes. Thus,
encrypted data can only be decrypted by the users that
hold such attributes that can satisfy the access structure.
ABE is classified into two divisions: key-policy ABE (KP-
ABE) [7] and ciphertext-policy ABE (CP-ABE) [6, 8]
according to how the attributes link to ciphertexts and
decryption keys. ABE has such advantages as scalability
and high flexibility in terms of attributes based access
policies and fine-grained access control. It has been widely
applied to secure cloud data storage in recent years [10-17].
However, all above existing solutions about access control
on encrypted data did not consider how to solve the issue
of duplicated data storage in cloud computing in a holistic
and comprehensive manner, especially for encrypted data
in various data storage scenarios. This issue is practically
significant for big data secure storage over the cloud.

2.2 Encrypted Data Deduplication
It is a hot research topic to reconcile deduplication and
client-side encryption [18]. Existing industrial solutions fail
to perform deduplication on encrypted data, e.g., Dropbox
[19], Google Drive [20], and Mozy [21]. Message-Locked
Encryption (MLE) was proposed to resolve this tension [22].
Convergent Encryption (CE), the most prominent
manifestation of MLE, was introduced [23, 24]. In CE, a
user computes the key of data 𝑀 based on its hash code
𝐾 ← 𝐻(𝑀) and encrypts 𝑀 with 𝐾. Another user holding
the same data can produce the same encrypted data, thus
realizing deduplication. The CE suffers from offline brute-
force dictionary attacks. As a result, CE can ensure high
security only when the underlying data is drawn from a
large space that is too big to exhaust. In addition, CE
cannot support data access controlled by data owners, as
well as other authorized parties. It is hard to support data
revocation because generating a same new encryption key
is hard to achieve for both the data owners and the data
holders to re-encrypt the data.

A number of schemes were proposed to overcome the
weakness of CE. Bellare et al. proposed DupLESS to resist
the above-mentioned brute-force attacks [18]. In DupLESS,
users encrypt their data using the keys obtained from a
Key Server (KS). They are generated based on the data with
an oblivious Pseudo Random Function (PRF) protocol. The

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 3

KS is separated from a Storage Service (SS). Users
authenticate themselves to the KS without leaking any
information about their data. Thus, high security can be
assured if the KS is not accessible to attackers. Even though
both KS and SS are compromised, DupLESS can still
preserve the security of stored data based on the guarantee
of MLE. But some data owners do not like to authorize a
third party like KS to control their data, since in some
specific situations they prefer to manage the storage and
access of their data by themselves and keep track of data
storage and usage status. However, DupLESS cannot
support this desirable feature. Li et al. presented an
efficient and reliable convergent key management scheme
by splitting a convergent key and distributing its shares
among multiple servers [35]. However, it still cannot avoid
the innate drawbacks of CE. Wen et al. constructed a
session-key-based convergent key management scheme
and a convergent key sharing scheme to solve the issue
that encrypted data blocks and data ownership are
frequently changed [36]. But this work requests all data
owners communicate with each other to manage their
session key. The problem of CE still exists. Liu et al.
proposed a secure cross-user deduplication scheme that
supports client-side encryption without requiring any
additional independent servers by applying a password
authenticated key exchange protocol [38]. But this scheme
requests that the data owner is always online for data
ownership check and deduplication. Thus this approach
cannot handle the situation that the data owner is not
available, which is very common in practice. Cross-CSP
was not discussed in this work. The above schemes cannot
flexibly manage data deduplication in various situations
and across multiple CSPs. They cannot solve the issues as
described in the introduction. Neither can they support the
management of digital rights.

Existing schemes realized deduplication in either server-
side or owner-side. Seldom, a hybrid solution was
proposed to gain advantages of both approaches. In [29],
the authors proposed a method to solve deduplication
controlled by data owner only. The access control of other
data holders is based on predefined metadata that
describes eligible users and is shared with CSP. Applying
public key encryption in this method results in high
computation complexity, which is linearly increased with
the number of users and lacks flexibility to support various
data storage scenarios. Hur et al. proposed a novel server-
side deduplication scheme for encrypted data [34]. It
allows the cloud server to control access to outsourced data
even when the ownership changes dynamically by
exploiting randomized convergent encryption and secure
ownership group key distribution. This scheme prevents
data leakage not only to revoked users but also to an
honest-but-curious cloud storage server.

Yan et al. [30, 31] proposed a deduplication scheme
based on PRE, but it completely relied on an authorized
party to control data deduplication. It cannot flexibly adapt
to different scenarios, especially the data access controlled
by the data holders. In another line of our previous work
[32], we applied ABE to realize deduplicated data access
control managed by data owners. Similarly, this scheme

cannot solve the issue about flexible data access control
with deduplication across multiple CSPs, which can be
managed by any trusted parties based on real application
demands.

2.3 Other Related Work
Yang et al. proposed a scheme called Provable Ownership
of the File (POF) [25], which allows a user to prove to a
server that it really possesses a file without the need to
upload the entire file. Data ownership proof is an essential
process of data deduplication, especially for encrypted data.
But this scheme does not consider flexible deduplication
control across multiple CSPs. Yuan and Yu proposed a
scheme to achieve data deduplication and secure data
integrity auditing at the same time [28]. It supports both
public and batch auditing. This work applied different
technologies (i.e., polynomial-based authentication tags
and homomorphic linear authenticators) from ours and
focused on solving a different research issue. Wu et al.
developed Index Name Servers (INS) to reduce the
workload caused by duplicated data. But this work cannot
support the deduplication on encrypted data. A hybrid
data deduplication mechanism was proposed by Fan et al.
[27]. It can deduplicate both plaintext and ciphertext.
However, this mechanism has such a drawback that CSP
knows the key that is used for data encryption. Therefore,
it cannot be applied into such a situation that the CSP
cannot be fully trusted by data owners. Li et al. formally
addressed the problem of authorized data deduplication
[37]. Different from traditional deduplication systems, the
differential privileges of users are further considered in
duplicate check besides the data itself in a hybrid cloud
architecture. All above work focused on solving different
research issues from ours.

3 PROBLEM STATEMENT

Cloud Service
Provider (CSP)

CSP CSP’

Data Holders
Authorized
Party (AP)

Key Generation
Center (KGC)

Fig. 1. System model

3.1 System and Security Model
Figure 1 shows the system that the proposed scheme can
be applied into. It contains four types of entities:

1) Key Generation Center (KGC) that is fully trusted and
responsible for system parameter generation and
certification issuance.

2) The Cloud Service Provider (CSP) that offers a data
storage service. Multiple CSPs could exist in the system.
Thus, a cloud user can choose one of them to manage its
uploaded data and seek advanced usage experiences. In
addition, CSPs can cooperate with each other under a
business agreement to save storage spaces through
deduplication;

3) The Data Owner or the Data Holder that uploads and

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 4

stores data at CSPs. Different CSPs may serve the data
holders. Multiple eligible data holders or a single cloud
user could store the same encrypted or plain data at one
CSP or across CSPs;

4) The Authorized Party (AP) that is responsible for
controlling data access as a delegate of data owners as they
expect to support deduplication.

In this system, AP is trusted by all entities. All CSPs
cannot be fully trusted. That is, they are curious about the
raw data of cloud users but follow system design and
protocols strictly. We hold such an assumption that the AP
would never collude with the CSPs due to different
business incentive and interests. Any collusion would
worsen the reputation of the CSPs, which lead to final loss
of their business.

We additionally hold following assumptions. The data
holder provides the correct hash code set of its data for
data ownership verification. The first eligible data holder
that uploads the data is regarded as the data owner.
Multiple APs could exist in the system and can be
supported by the underlying scheme. For simplification,
we assume one AP in the system for easy presentation. CSP,
AP and data owners/holders use secure channels to
communicate with each other. Backup of stored data is
generally performed by CSP and this kind of data
duplication for erasing storage risk is out of the discussion
of this paper. Delegation agreement could be negotiated
and signed among data holders during ownership check
for data access management. If a data holder does not want
any delegation, the procedure of our scheme will go to this
data holder about data access, which means the access will
be jointly controlled online by this data holder and the data
owner. For simplifying system process, we assume
delegation can be agreed among all data holders.

3.2 Notations and Preliminaries

1) Notations
Table 1 summarizes the notations used in this paper.

TABLE 1. NOTATIONS
Key Description Usage

𝑃𝐾𝑢 The public key of 𝑢 about

ABE;

The unique ID of user 𝑢

and the key for user

attribute verification; it

is used to generate

personalized secret

attribute key for 𝑢.

𝑆𝐾𝑢 The secret key of 𝑢 about

ABE;

For decryption in ABE.

𝑃𝐾’𝑢 The public key of 𝑢 about

Public-Key Cryptosystem

(PKC);

For PKC encryption and

signature verification.

𝑆𝐾’𝑢 The secret key of 𝑢 about

PKC;

For PKC decryption and

signature generation.

𝐷𝐸𝐾𝑢 The symmetric key of 𝑢; User data encryption.

𝐷𝐸𝐾1,𝑢 The partial key 1 of 𝐷𝐸𝐾𝑢;

𝐷𝐸𝐾2,𝑢 The partial key 2 of 𝐷𝐸𝐾𝑢;

𝑝𝑘𝐼𝐷,𝑢 The public key of 𝑢 regarding

attribute 𝐼𝐷;

For encrypting 𝐷𝐸𝐾2,𝑢.

𝑠𝑘𝐼𝐷,𝑢,𝑢’ The secret key of 𝑢′ regarding For decryption to get

attribute 𝐼𝐷 issued by 𝑢; 𝐷𝐸𝐾2,𝑢.

𝐷𝐸𝐾’𝑢 The renewed symmetric key

of 𝑢;

𝐻(∗) The hash function;

𝐶𝑇𝑢 The ciphertext of 𝑢;

𝐶𝐾𝑢 The cipherkey of 𝑢;

𝑝𝑘𝑢 The public key of 𝑢 about

PRE;

Generation of re-

encryption key for 𝑢.

𝑠𝑘𝑢 The secret key of 𝑢 about PRE; Decryption in PRE.

𝑀 The duplicated data;

𝐻𝐶(𝑀) The hash code set of data 𝑀.

2) Proxy Re-Encryption (PRE)
PRE transforms the ciphertext of 𝑚 encrypted with the

public key of entity A into one that can be decrypted with
the private key of entity B at a proxy.

𝑬(𝒑𝒌𝑨, 𝒎) outputs ciphertext 𝐶𝑖𝑝ℎ𝑒𝑟𝐴 = 𝐸(𝑝𝑘𝐴, 𝑚) by
taking input 𝑝𝑘𝐴 and data 𝑚.

𝑹𝑮(𝒔𝒌𝑨, 𝒑𝒌𝑩) , the re-encryption key generation
algorithm outputs re-encryption key 𝑟𝑘𝐴→𝐵 for a proxy (e.g.,
CSP) by taking input (𝑠𝑘𝐴, 𝑝𝑘𝐵).

𝑹(𝒓𝒌𝑨→𝑩, 𝑪𝒊𝒑𝒉𝒆𝒓𝑨) , the re-encryption algorithm
outputs 𝑅(𝑟𝑘𝐴→𝐵 , 𝐶𝑖𝑝ℎ𝑒𝑟𝐴) = 𝐸(𝑝𝑘𝐵, 𝑚) = 𝐶𝑖𝑝ℎ𝑒𝑟𝐵 by
taking input 𝑟𝑘𝐴→𝐵 and 𝐶𝑖𝑝ℎ𝑒𝑟𝐴. 𝐶𝑖𝑝ℎ𝑒𝑟𝐵 can be decrypted
with 𝑠𝑘𝐵.

𝑫(𝒔𝒌𝑩, 𝑪𝒊𝒑𝒉𝒆𝒓𝑩) outputs plain data 𝑚 by taking input
𝑠𝑘𝐵 and 𝐶𝑖𝑝ℎ𝑒𝑟𝐵.

Each user has a key pair for PRE, which is applied when
AP involves in taking charge of data deduplication and
access control. PRE allows AP to grant data access right to
an eligible user through re-encryption at CSP, while the
plain data cannot be gained by the CSP.

3) Attribute-Based Encryption
We also resort to control data access during

deduplication based on user identity by applying ABE [6-9].
The advance of adopting ABE is a data owner only
encrypts a data encryption key once when it issues access
rights to a number of eligible data holders. Because the
issued decryption keys are personalized for the data
holders, they cannot collude with each other. We can also
easily realize fine-grained access control with ABE, which
further enhances the flexibility of our scheme. We can use
either CP-ABE to simplify key management or KP-ABE to
gain the efficiency of data encryption. In our
implementation as described in Section 5.3, we applied
CP-ABE to demonstrate the scheme. In the proposed
scheme, each user maintains a secret key 𝑆𝐾𝑢 about ABE.
𝑆𝐾𝑢 and the identities of other users are used to generate
the ABE decryption key of the users based on attribute 𝐼𝐷,
named as secret attribute key. 𝐼𝐷 denotes the identity
attribute, which can be an anonymous identifier of the user.
𝑝𝑘𝐼𝐷,𝑢 is the public key used to encrypt a partial key of
𝐷𝐸𝐾𝑢. Data owner 𝑢 issues a personalized secret attribute
key 𝑠𝑘𝐼𝐷,𝑢,𝑢’ to eligible data holder 𝑢’ through a secure
channel for decrypting the part of cipher-key encrypted
with 𝑝𝑘𝐼𝐷,𝑢.

Our scheme is heterogonous and flexible. In some
scenarios, data owners would like to directly control data
deduplication, e.g., in the case that they know the data

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 5

holders, which is also the scenario that was referred by the
work in [36]. The scheme proposed in our paper is more
advanced than existing work because it can adapt to
various application scenarios. For example, the data owner
can manage deduplication directly or it does not know
how to manage it thus delegates this task to a third party,
or it would like to perform dual control or no control. All
above scenarios can be supported by our scheme.

Notably, our scheme is a framework that can adapt to
various user policies on data deduplication. The data
owner adopts the ABE algorithm to directly manage its
data deduplication and sharing. In different scenarios, the
access policy would differ from each other, which is based
on the data sensitivity and the willingness of the data
owner. For simplicity, we directly regard user identity as a
basic attribute in ABE and data owners are responsible for
the ABE setup and key management. If higher security is
required and fine-grained access control is expected, more
complicated access policy can be designed and this can be
realized based on the properties of ABE.

4 SYSTEM DESIGN
4.1 Overview
We propose a scheme for heterogeneous data storage
management with deduplication. It can be flexibly applied
into such scenarios that cloud data deduplication is
handled 1) only by the data owner; 2) by any trusted third
party; 3) by both the data owner and the trusted third party;
4) by nobody (i.e., plain data is stored at the cloud); 5) by
either the data owner or the trusted third party.

Concretely, we use the hash code of data 𝑀 to check
data duplication during data storage at the cloud. The data
holder signs the hash code of the data for passing the
originality verification of CSP. Meanwhile, a number of
hash codes of randomly selected specific parts of the data
are calculated with their indexes (e.g., the hash code of the
first 15.1% of 𝑀, the hash code of 21-25% of 𝑀). We call
these hash codes as the hash code set (𝐻𝐶(𝑀)) of data 𝑀.

When the data owner/holder stores 𝑀 at CSP, it sends
the signed hash code of 𝑀 to CSP for duplication check. If
there is no duplicated data stored at CSP, the data owner
encrypts 𝑀 with a randomly generated symmetric key
𝐷𝐸𝐾 to get encrypted data 𝐶𝑇. It separates 𝐷𝐸𝐾 into two
parts 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2 . It encrypts 𝐷𝐸𝐾1 with 𝑝𝑘𝐴𝑃 by
applying PRE to get 𝐶𝐾1 and encrypts 𝐷𝐸𝐾2 with ABE by
using 𝑝𝑘𝐼𝐷 to get 𝐶𝐾2. The encrypted two parts of 𝐷𝐸𝐾 are
passed to CSP together with 𝐶𝑇.

If the above duplication check is positive, CSP further
verifies the ownership of the data holder by challenging
the hash code set of 𝑀, concretely some specific hash codes.
If the ownership verification is positive, CSP contacts the
data owner and/or AP for deduplication.

During deduplication, the data owner issues a
personalized secret key through a secure communication
channel (e.g., public key cryptosystem) to a data holder for
decrypting 𝐶𝐾2 if eligibility verification is positive (i.e., the
data holder is allowed by the data owner to store data 𝑀 at
CSP). Meanwhile, AP issues CSP a re-encryption key that is
used to re-encrypt 𝐶𝑇1 to make it decryptable by the

duplicated data holder in order to get 𝐷𝐸𝐾1 . By getting
both 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2, the duplicated data holder can gain
𝐷𝐸𝐾 and access 𝐶𝑇 at CSP. Data duplication check and
data deduplication can be performed among CSPs based
on their agreement. One CSP can store data for other CSPs.
Duplicated data access from the eligible users of other
CSPs can be supported among the CSPs.

Depending on the data management policy set by the
data owner, 𝐷𝐸𝐾 can be randomly divided into multiple
parts, which are taken care by different authorized parties
(e.g., multiple APs). For simplifying presentation, we
illustrate our scheme by dividing 𝐷𝐸𝐾 into two parts:
𝐷𝐸𝐾1 and 𝐷𝐸𝐾2. The following use cases can be flexibly
supported: 1) when 𝐷𝐸𝐾1 is null and 𝐷𝐸𝐾2 = 𝐷𝐸𝐾 , the
data owner solely controls data deduplication; 2) when
𝐷𝐸𝐾1 = 𝐷𝐸𝐾 and 𝐷𝐸𝐾2 = 𝑛𝑢𝑙𝑙, data deduplication is only
controlled by AP; 3) when 𝐷𝐸𝐾1 ≠ 𝑛𝑢𝑙𝑙, 𝐷𝐸𝐾2 ≠ 𝑛𝑢𝑙𝑙 and
𝐷𝐸𝐾1 ∥ 𝐷𝐸𝐾2 = 𝐷𝐸𝐾, data deduplication is controlled by
both AP and the data owner; 4) when 𝐷𝐸𝐾1 = 𝐷𝐸𝐾2 =
𝐷𝐸𝐾, data deduplication is managed by either AP or the
data owner; 5) when 𝐷𝐸𝐾1 = 𝐷𝐸𝐾2 = 𝐷𝐸𝐾 = 𝑛𝑢𝑙𝑙 ,
plaintext is stored at CSP that handles deduplication
without any specific control indicated by the data owner.

4.2 Fundamental Algorithms
In this sub-section, we introduce a number of fundamental
algorithms of the proposed scheme.

1) System Setup
𝑰𝒏𝒊𝒕𝒊𝒂𝒕𝒆𝑺𝒚𝒔𝒕𝒆𝒎 . This algorithm is conducted at the

KGC. It generates basic system parameters related to ABE
and PRE, such as generators and universal attributes, etc.

𝑰𝒏𝒊𝒕𝒊𝒂𝒕𝒆𝑵𝒐𝒅𝒆(𝒖) . Based on the system parameters,
cloud user 𝑢 generates its own key pairs including ABE
master key pair 𝑃𝐾𝑢 and 𝑆𝐾𝑢 used for ABE encryption and
user decryption key issuance, PKC key pair 𝑃𝐾’𝑢 and 𝑆𝐾’𝑢
for signing, as well as 𝑝𝑘𝑢 and 𝑠𝑘𝑢 regarding PRE.

𝑺𝒆𝒕𝒖𝒑𝑵𝒐𝒅𝒆(𝒖). With node identity 𝑢 and public keys
as input, this algorithm conducted at KGC outputs a
number of user credentials, 𝐶𝑒𝑟𝑡(𝑃𝐾𝑢) , 𝐶𝑒𝑟𝑡(𝑃𝐾’𝑢) and
𝐶𝑒𝑟𝑡(𝑝𝑘𝑢), which can be verified by CSPs and their users.

𝑰𝒏𝒊𝒕𝒊𝒂𝒕𝒆𝑨𝑷. AP initiates itself by generating 𝑝𝑘𝐴𝑃 and
𝑠𝑘𝐴𝑃. 𝑝𝑘𝐴𝑃 is broadcast to the users of CSPs.

2) ABE Key Generation
𝑪𝒓𝒆𝒂𝒕𝒆𝑰𝑫𝑷𝑲(𝑰𝑫, 𝑺𝑲𝒖). This algorithm checks the

policies about 𝐼𝐷 and outputs 𝑝𝑘𝐼𝐷,𝑢 for user 𝑢 to allow 𝑢 to
control its data deduplication and access.

𝑰𝒔𝒔𝒖𝒆𝑰𝑫𝑺𝑲(𝑰𝑫, 𝑺𝑲𝒖, 𝑷𝑲𝑢’). This algorithm is run by 𝑢
to issue 𝑠𝑘𝐼𝐷,𝑢,𝑢’ to 𝑢’ if the eligibility check of 𝑢’ is positive.

Otherwise, it outputs 𝑁𝑈𝐿𝐿. Specifically, user 𝑢 checks the
attributes of 𝑢′. If they satisfy with the policy defined by 𝑢,
𝑢 issues a secret key to 𝑢′ for sharing the duplicated data
storage and allow its future access. Otherwise, it rejects the
request.

For simplifying our presentation, we set user identity as

an example attribute rather than complex attributes herein.

The access control based on user identity also consists with

practice since most of data access over the cloud is based

on user identity. Data owner 𝑢 allows other data holders

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 6

with 𝐼𝐷 = 𝑃𝐾𝑢’𝑗
 (𝑗 = 1, 2, 3) to share its data storage. It

encrypts 𝐷𝐸𝐾2 with policy λ: 𝐼𝐷 = 𝑃𝐾𝑢′
1

∨ 𝑃𝐾𝑢′
2

∨ 𝑃𝐾𝑢′
3
.

The encryption key algorithm 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑦 as described

below iterates over all 𝑗 = 1, 2, 3 , generates a random

value for each conjunction and constructs 𝐶𝐾2𝑗
. The cipher-

key 𝐶𝐾2 is obtained as tuple 𝐶𝐾2 = < 𝐶𝐾21
, 𝐶𝐾22

, 𝐶𝐾23
>.

3) Data Encryption and Decryption
𝑬𝒏𝒄𝒓𝒚𝒑𝒕(𝑫𝑬𝑲𝒖, 𝑴) encrypts 𝑀 with 𝐷𝐸𝐾𝑢 and outputs

ciphertext 𝐶𝑇𝑢 to protect 𝑀 stored at CSP.
𝑫𝒆𝒄𝒓𝒚𝒑𝒕(𝑫𝑬𝑲𝒖, 𝑪𝑻𝒖) decrypts 𝐶𝑇𝑢 with 𝐷𝐸𝐾𝑢 and

outputs 𝑀. It is executed at the data holders to obtain the
plain content of 𝐶𝑇𝑢 stored at CSP.

4) Symmetric Key Management
𝑺𝒆𝒑𝒂𝒓𝒂𝒕𝒆𝑲𝒆𝒚(𝑫𝑬𝑲𝒖). On input 𝐷𝐸𝐾𝑢, this algorithm

outputs a number of partial keys, e.g., 𝐷𝐸𝐾1,𝑢 and 𝐷𝐸𝐾2,𝑢
based on random separation. Separating 𝐷𝐸𝐾𝑢 into
multiple parts can also be performed if needed.

𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝑲𝒆𝒚(𝑫𝑬𝑲𝟏,𝒖, 𝑫𝑬𝑲𝟐,𝒖). On input partial keys
of 𝐷𝐸𝐾𝑢 , e.g., 𝐷𝐸𝐾1,𝑢 and 𝐷𝐸𝐾2,𝑢 , this algorithm outputs
the full key 𝐷𝐸𝐾𝑢 through combination.

5) Partial Key Control based on ABE Operated by
Data Owner

𝑬𝒏𝒄𝒓𝒚𝒑𝒕𝑲𝒆𝒚(𝑫𝑬𝑲𝟐,𝒖, 𝝀, 𝒑𝒌𝑰𝑫,𝒖) encrypts 𝐷𝐸𝐾2,𝑢 with
policy 𝜆 and outputs cipher-key 𝐶𝐾2,𝑢 by taking 𝐷𝐸𝐾2,𝑢 , 𝜆
and 𝑝𝑘𝐼𝐷,𝑢 as input. This algorithm is conducted at 𝑢.

𝑫𝒆𝒄𝒓𝒚𝒑𝒕𝑲𝒆𝒚(𝑪𝑲𝟐,𝒖, 𝝀, 𝑺𝑲𝒖′, 𝒔𝒌𝑰𝑫,𝒖,𝒖’) decrypts cipher-
key 𝐶𝐾2,𝑢 and outputs 𝐷𝐸𝐾2,𝑢 if the policy 𝜆 under which
𝐷𝐸𝐾2,𝑢 was encrypted can be satisfied; otherwise it outputs
NULL. This algorithm is conducted at 𝑢′.

6) Partial Key Control based on PRE Operated by AP
We employ PRE to enable AP to perform the re-

encryption of 𝐶𝐾1 . During ciphertext re-encryption, CSP
learns nothing about 𝐷𝐸𝐾1. The algorithms related to PRE
are represented as below:

𝑬(𝒑𝒌𝑨𝑷, 𝑫𝑬𝑲𝟏,𝒖) outputs 𝐶𝐾1 = 𝐸(𝑝𝑘𝐴𝑃, 𝐷𝐸𝐾1,𝑢) by
taking 𝑝𝑘𝐴𝑃 and 𝐷𝐸𝐾1,𝑢, as input.

𝑹𝑮(𝒑𝒌𝑨𝑷, 𝒔𝒌𝑨𝑷, 𝒑𝒌𝒖’) outputs re-encryption key 𝑟𝑘𝐴𝑃→𝑢’
for the proxy CSP by taking 𝑝𝑘𝐴𝑃, 𝑠𝑘𝐴𝑃, and 𝑝𝑘𝑢’ as input.

𝑹(𝒓𝒌𝑨𝑷→𝒖’, 𝑪𝑲𝟏) takes input 𝑟𝑘𝐴𝑃→𝑢’ and 𝐶𝐾1 , and
outputs 𝑅(𝑟𝑘𝐴𝑃→𝑢’, 𝐶𝐾1) = 𝐸(𝑝𝑘𝑢’, 𝐷𝐸𝐾1,𝑢) = 𝐶𝐾′1 , which
can be decrypted with 𝑠𝑘𝑢’.

𝑫(𝒔𝒌𝒖, 𝑪𝑲’𝟏) outputs 𝐷𝐸𝐾1,𝑢 by taking 𝑠𝑘𝑢 and 𝐶𝐾’1 as
input.

4.3 Flexible Deduplication Scheme

1) Data Deduplication
Figure 2 shows the procedure of data deduplication with
heterogeneous control handled by both the data owner and
AP. User 𝑢1 is the data owner that stores data 𝑀 at CSP by
encrypting it with 𝐷𝐸𝐾𝑢1

, while user 𝑢2 tries to store the
same data at CSP. We assume that both the data owner and
AP are indicated for deduplication control based on the
encryption behavior of 𝑢1. Both 𝑢1 and 𝑢2 are the users of
the same CSP.

Step 1 - System Setup: After system parameter

generation, each node 𝑢𝑖 calls 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑁𝑜𝑑𝑒 to generate

three key pairs 𝑃𝐾𝑢𝑖
 and 𝑆𝐾𝑢𝑖

; 𝑃𝐾’𝑢𝑖
 and 𝑆𝐾’𝑢𝑖

; 𝑝𝑘𝑢𝑖
 and

𝑠𝑘𝑢𝑖
 (𝑖 = 1, 2, …) . Meanwhile, 𝑢𝑖 gets the certificates of

public keys 𝐶𝑒𝑟𝑡(𝑃𝐾𝑢𝑖
) , 𝐶𝑒𝑟𝑡(𝑃𝐾’𝑢𝑖

) and 𝐶𝑒𝑟𝑡(𝑝𝑘𝑢𝑖
) from

KGC. AP calls 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐴𝑃 to generate its key pair 𝑝𝑘𝐴𝑃 and

𝑠𝑘𝐴𝑃.

Fig. 2. Data deduplication with heterogeneous control

Step 2 - Duplication Check: User 𝑢1 stores data 𝑀 at CSP.
It calculates 𝐻(𝑀) , signs 𝐻(𝑀) with 𝑆𝐾’𝑢1

 and sends

package 𝑃1 = {𝐻(𝑀), 𝑆𝑖𝑔𝑛(𝐻(𝑀), 𝑆𝐾’𝑢1
) , 𝐶𝑒𝑟𝑡(𝑃𝐾𝑢1

) ,

𝐶𝑒𝑟𝑡(𝑃𝐾’𝑢1
), 𝐶𝑒𝑟𝑡(𝑝𝑘𝑢1

)} to CSP. CSP checks if the same

data has been stored already by verifying the signature and
checking if 𝐻(𝑀) has existed. The duplication check across

multiple CSPs can be supported, refer to next sub-section for
details. If the check is positive, go to Step 5. Otherwise, go to
Step 3 to request data package.

Fig. 3. Data deduplication at CSP controlled by AP

Step 3 - Data Storage: When CSP requests the data
package, user 𝑢1 encrypts 𝑀 with a random symmetric key

𝐷𝐸𝐾𝑢1
 to get 𝐶𝑇𝑢1

= 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐷𝐸𝐾𝑢1
, 𝑀). If 𝐷𝐸𝐾𝑢1

= 𝑛𝑢𝑙𝑙 ,

𝐶𝑇𝑢1
= 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑛𝑢𝑙𝑙, 𝑀) = 𝑀 . It then calls

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝐾𝑒𝑦(𝐷𝐸𝐾𝑢1
) to get two random parts of 𝐷𝐸𝐾𝑢1

:

𝐷𝐸𝐾1,𝑢1
 and 𝐷𝐸𝐾2,𝑢1

. User 𝑢1 encrypts 𝐷𝐸𝐾1,𝑢1
 with 𝑝𝑘𝐴𝑃 to

get 𝐶𝐾1,𝑢1
 by calling 𝐸(𝑝𝑘𝐴𝑃, 𝐷𝐸𝐾1,𝑢1

) and encrypts 𝐷𝐸𝐾2,𝑢1

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 7

with 𝑝𝑘𝐼𝐷,𝑢1
 by calling 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑦(𝐷𝐸𝐾2,𝑢1

, 𝜆, 𝑝𝑘𝐼𝐷,𝑢1
) to

get 𝐶𝐾2,𝑢1
, where 𝑝𝑘𝐼𝐷,𝑢1

 is generated according to data

policy 𝜆 of 𝑢1. In addition, it randomly selects a number of
indexes: 𝐼𝑁 = {𝐼𝑛1, 𝐼𝑛2, … , 𝐼𝑛𝑘} that indicate the special parts
of 𝑀 (e.g., 𝐼𝑛1 indicates first 1% of data; 𝐼𝑛2 indicates first 3%
of data), where 𝑘 is the total number of indexes.
Furthermore, 𝑢1 calculates the hash codes of partial 𝑀 based
on the indexes as 𝐻𝐶(𝑀) = {𝐻(𝑀1), 𝐻(𝑀2), … , 𝐻(𝑀𝑘)}. Then
𝑢1 sends the data package to CSP for storage:
𝐷𝑃1 =

{𝐶𝑇𝑢1
, 𝐶𝐾1,𝑢1

, 𝐶𝐾2,𝑢1
, 𝐼𝑁, 𝐻𝐶(𝑀), 𝑆𝑖𝑔𝑛(𝐻𝐶(𝑀), 𝑆𝐾’𝑢1

)}.

Step 4 - Duplicated Data Upload: Later on, user 𝑢2 wants
to store the same data 𝑀 at CSP by sending CSP the data

package 𝑃2 = {𝐻(𝑀), 𝑆𝑖𝑔𝑛(𝐻(𝑀), 𝑆𝐾’𝑢2
), 𝐶𝑒𝑟𝑡(𝑃𝐾𝑢2

),

𝐶𝑒𝑟𝑡(𝑃𝐾’𝑢2
), 𝐶𝑒𝑟𝑡(𝑝𝑘𝑢2

)}.

Step 5 - Deduplication: CSP performs duplication check
as in step 2. It further checks the correctness of 𝐻𝐶(𝑀) by
randomly selecting an index 𝑥 in 𝐼𝑁 , and challenging 𝑢2 .
The purpose of performing this additional check is to ensure
the data ownership in case that 𝐻(𝑀) is eavesdropped or
gained by some malicious party. A number of indexes in 𝐼𝑁
can be selected with regard to the hash code set challenge in
order to enhance the security of the ownership check. If the
verification of challenge response is positive, CSP performs
data storage with deduplication.

If AP is involved into the control of deduplication, CSP

contacts AP with 𝐶𝑒𝑟𝑡(𝑝𝑘𝑢2
) (that contains 𝑝𝑘𝑢2

). If the

verification on the data storage policy regarding 𝑢2 is
positive, AP generates 𝑟𝑘𝐴𝑃→𝑢2 if not performed before by

calling 𝑅𝐺(𝑝𝑘𝐴𝑃, 𝑠𝑘𝐴𝑃, 𝑝𝑘𝑢2
) and issues it to CSP to allow it

to re-encrypt 𝐶𝐾1,𝑢1
 by calling 𝑅(𝑟𝑘𝐴𝑃→𝑢2, 𝐶𝐾1,𝑢1

). CSP sends

𝐸(𝑝𝑘𝑢2
, 𝐷𝐸𝐾1,𝑢1

) to 𝑢2 for decryption with 𝑠𝑘𝑢2
 to get

𝐷𝐸𝐾1,𝑢1
.

If the control of data owner is applied to the stored data,

CSP contacts 𝑢1 by sending 𝐻(𝑀) and 𝐶𝑒𝑟𝑡(𝑃𝐾𝑢2
) (that

contains 𝑃𝐾𝑢2
) for deduplication. If the verification on 𝑢2’s

eligibility for data storage at CSP is positive, 𝑢1 generates

𝑆𝐾𝐼𝐷,𝑢1,𝑢2
 by calling 𝐼𝑠𝑠𝑢𝑒𝐼𝐷𝑆𝐾(𝐼𝐷, 𝑆𝐾𝑢1

, 𝑃𝐾𝑢2
), and issues it

and 𝐶𝐾2,𝑢1
 to 𝑢2 . Then 𝑢1 informs the success of data

deduplication to CSP. After getting this notification, CSP
updates corresponding deduplication records.

Through data deduplication, both 𝑢1 and 𝑢2 can access
the same data 𝑀 that is stored only once at CSP. User 𝑢1 uses
𝐷𝐸𝐾𝑢1

 directly. While 𝑢2 gets 𝐷𝐸𝐾2,𝑢1
and 𝐷𝐸𝐾1,𝑢1

by calling

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐾𝑒𝑦(𝐶𝐾2,𝑢1
, 𝜆, 𝑆𝐾𝑢′, 𝑠𝑘𝐼𝐷,𝑢1,𝑢2

) and 𝐷(𝑠𝑘𝑢2
, 𝐶𝐾1,𝑢1

) ,

respectively. It then combines 𝐷𝐸𝐾1,𝑢1
 and 𝐷𝐸𝐾2,𝑢1

 to get

𝐷𝐸𝐾𝑢1
 by calling 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐾𝑒𝑦(𝐷𝐸𝐾1,𝑢1

, 𝐷𝐸𝐾2,𝑢1
).

Figure 3 describes the procedure of data deduplication at
CSP with the control of AP. Figure 4 shows the procedure of
data deduplication at CSP with the control of the data owner.
The main differences of these two procedures from the one
described in Figure 2 are:

1) The separation of 𝐷𝐸𝐾 is different: in Figure 2,
𝐷𝐸𝐾1|| 𝐷𝐸𝐾2 = 𝐷𝐸𝐾, where 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2 are not null. In
Figure 3, 𝐷𝐸𝐾1 = 𝐷𝐸𝐾 and 𝐷𝐸𝐾2 is null. In Figure 4,
𝐷𝐸𝐾2 = 𝐷𝐸𝐾 and 𝐷𝐸𝐾1 is null.

2) CSP requests both the data owner and AP for

deduplication in Figure 2, while CSP only requests AP for
deduplication in Figure 3 and CSP only requests the data
owner for deduplication in Figure 4.

Fig. 4. Data deduplication at CSP controlled by the data owner

Fig. 5. Data deduplication at CSP without any control of AP or the
data owner

Figure 5 shows the procedure of data deduplication at
CSP without any control provided by AP and the data
owner. In this case 𝐷𝐸𝐾 is null. Plaintext is stored at CSP. If
some data holder would like to store encrypted data at CSP
later on, system process is similar to 𝐷𝐸𝐾 update, which will
be described below. Note that re-encryption key 𝑟𝑘𝐴𝑃→𝑢2
and 𝑠𝑘𝐼𝐷,𝑢1,𝑢2

 should be issued if they are not available by
CSP and eligible user 𝑢2 in the case of 𝐷𝐸𝐾 update.

Though deduplication can help save storage cost, the data
owners or holders may prefer to store replicated data in the
CSP. A flag is signed by the user to indicate its preference
with regard to deduplication, which is checked by CSP
before performing any duplication check. On the other hand,
CSP can also issue different privileges to its users. Some
users could hold a specific privilege to store replicated data
in the CSP, but they could be charged more than normal
users by the CSP. For this type of users, the data duplication
check should be waived.

2) Deduplication Across CSPs
Figure 6 shows the process of deduplication across

multiple CSPs.
Step 1. The user requests its local CSP for data storage.
Step 2. The local CSP checks data duplication. If yes, the

local CSP performs deduplication by contacting the data

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 8

owner and/or AP based on the way of data encryption for
deduplication. Corresponding keys are generated by the
data owner and/or AP and issued to the user if it is an
eligible data holder.

Fig. 6. Data deduplication across multiple CSPs

Step 3. If the local duplication check is negative, CSP will
check with other CSPs if the same data is stored by
broadcasting the data storage request of the user. If there is
no any positive reply from other CSPs, the local CSP
performs data storage by requesting data package from the
user.

Step 4. If there is a remote CSP’ replying that the same
data has been stored therein, the local CSP forwards the data
storage request to CSP’ and records user data deduplication
information locally. The remote CSP’ performs
deduplication by contacting the data owner and/or AP.
Corresponding keys are generated by the data owner
and/or AP and issued to the user through the cooperation of
CSP and CSP’. Meanwhile, CSP’ records the deduplication
information of the user.

3) Data Deletion
Figure 7 shows the procedure of data deletion by a data

holder in the context of data deduplication.

Fig. 7. A procedure of data deletion

Step 1. User 𝑢 sends a request of data deletion to its local
CSP by providing 𝐻(𝑀), 𝑆𝑖𝑔𝑛(𝐻(𝑀), 𝑆𝐾’𝑢).

Step 2. The CSP verifies the ownership of 𝑢 by randomly
selecting an index 𝑥 in 𝐼𝑁 and challenging expected hash
code set. It deletes the storage record of 𝑢 and blocks its
future access to data 𝑀 if the verification is positive.

Step 3. The CSP further checks if the data is locally stored.
If not, go to Step 4. If yes, it will delete the data in case that
the data deduplication record is empty (i.e., no user stores
such data in CSP any more). It could contact the data owner
about 𝐷𝐸𝐾 update in case that the deduplication record is
not empty. Further deduplication control is also required if
the underlying user 𝑢 is the data owner when the
deduplication record is not empty.

Step 4. The local CSP contacts remote CSP’ that really
stores the data. The CSP’ deletes the storage record of 𝑢 and
blocks its future data access. It also checks the data
deduplication record. If it is empty (i.e., no user stores such
data in CSP’ any more), CSP’ deletes the data. Otherwise, it
contacts the data owner about 𝐷𝐸𝐾 update (refer to
Continuous Deduplication Control as described below).

4) Continuous Deduplication Control
Figure 8 illustrates the procedure when CSP inquires a

data owner for continuous deduplication control if the data
owner deletes its data at CSP, but still there are other eligible
data users storing the same data at CSP.

Fig. 8. A procedure of continuous deduplication control

Step 1. CSP inquires a data owner about continuous
deduplication control.

Step 2. If the data owner’s decision is positive, the data
owner continues deduplication control by issuing access
keys to eligible users. Else, go to Step 3.

Step 3. The data owner generates a new key 𝐷𝐸𝐾’ =
𝐷𝐸𝐾’1, encrypts it with 𝑝𝑘𝐴𝑃, and sends 𝐷𝑃’ = {𝐶𝑇’, 𝐶𝐾′1} to
CSP. CSP performs re-encryption on 𝐶𝐾′1 using the re-
encryption keys of all eligible users and updates the
deduplication record of the underlying data. When any
eligible data user accesses the data, CSP provides 𝐶𝑇’ and
the re-encrypted 𝐶𝐾′1.

Herein, we only illustrate one solution of continuous
deduplication control. Other data holders can also take over
the control. In this case, CSP will request a new delegate
from existing data holders and select one of them (e.g., based
on the duration of data storage and user willingness). The
new delegate will perform storage update by applying a
newly generated key 𝐷𝐸𝐾’. The process is similar to 𝐷𝐸𝐾
update as described below.

5) DEK and CT Update
Figure 9 illustrates the procedure of 𝐷𝐸𝐾 and 𝐶𝑇 update,

which is essential for enhancing system security. The data

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 9

owner (or an eligible data holder) 𝑢1 generates a new key
𝐷𝐸𝐾’𝑢1

and encrypts data 𝑀 with 𝐷𝐸𝐾’𝑢1
. It separates

𝐷𝐸𝐾’𝑢1
 into 𝐷𝐸𝐾1,𝑢1

′ and 𝐷𝐸𝐾’2,𝑢1
, and encrypts 𝐷𝐸𝐾’1,𝑢1

with 𝑝𝑘𝐴𝑃 , and 𝐷𝐸𝐾’2,𝑢1

 with 𝑝𝑘𝐼𝐷,𝑢1
. Then data package

𝐷𝑃’1 = {𝐶𝑇’𝑢1
, 𝐶𝐾’1,𝑢1

, 𝐶𝐾’2,𝑢1
, 𝐻(𝑀), 𝑆𝑖𝑔𝑛(𝐻(𝑀), 𝑆𝐾’𝑢1

)} is
sent to CSP. The CSP validates the eligibility of 𝑢1 and stores
𝐷𝑃’1 . CSP requests AP to get the re-encryption keys of
current eligible data holders (e.g., 𝑢2) if the re-encryption
keys are not available. CSP performs re-encryption on
𝐶𝐾’1,𝑢1

, with e.g., 𝑟𝑘𝐴𝑃→𝑢2
 to get 𝐸(𝑝𝑘𝑢2

, 𝐷𝐸𝐾’1𝑢1
).

Fig. 9. A procedure of DEK and CT update

Meanwhile, 𝑢1 also needs to issue 𝑠𝑘𝐼𝐷,𝑢1,𝑢2
 through a

secure channel if it is not ever sent to eligible users. Any
eligible user, e.g., 𝑢2 , can get 𝐷𝐸𝐾’1,𝑢1

 with 𝑠𝑘𝑢2
 and gain

𝐷𝐸𝐾’2,𝑢1
 with 𝑠𝑘𝐼𝐷,𝑢1,𝑢2

 in order to generate 𝐷𝐸𝐾’1,𝑢1
 for

accessing newly encrypted data 𝐶𝑇’𝑢1
.

5 PERFORMANCE EVALUATION
5.1 Security Analysis
The security of our scheme relies on ABE theory, PRE
theory, symmetric key encryption and PKC. The security
of PRE and ABE was proved in our previous work [33].
Symmetric key encryption and PKC theory play as a
security foundation in many security schemes. We
assume that the applied key sizes of these two
cryptosystems are long enough to satisfy the security
requirements of our system. In what follows, we analyze
the security of our scheme regarding data ownership
verification and data deduplication.

Proposition 1. To pass data ownership verification, a
cloud user must really hold data 𝑀.

Proof. A cloud user can generate correct 𝐻(𝑀) with
real data 𝑀 , thus it can pass duplication check. For
ownership challenge, stolen 𝐻(𝑀) is useless since an
ineligible data holder is hard to provide correct 𝐻(𝑀𝑥)
since 𝑥 is randomly selected and 𝐻() is non-invertible.
Eavesdropping previous transmitted 𝐻(𝑀𝑥′) is useless to
pass the current challenge. The user holding the real 𝑀 can
get 𝑀𝑥 and generate correct 𝐻(𝑀𝑥), thus pass the challenge.
The security level of data ownership verification links to the
maximum number of 𝑘 in 𝐼𝑁 = {𝐼𝑛1, 𝐼𝑛2, … , 𝐼𝑛𝑘} and the
number of indexes used to challenge the ownership. In
practice, these parameters can be set according to the
sensitivity of the stored data and the security requirement of
the data owner.

Proposition 2. Data 𝑀 can be deduplicated in a secure
way and only eligible users can access it if data owner 𝑢,

CSP and AP cooperate without collusion.
Proof. During data deduplication, data confidentiality

is ensured by ABE, PRE and symmetric key encryption
(e.g., AES). Data 𝑀 could be disclosed in two ways:
obtaining it from 𝐻(𝑀) and breaking
𝐶𝑇 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐷𝐸𝐾, 𝑀) . First, the hash function is
assumed hard to suffer from collision attacks. Therefore,
it is impossible to obtain 𝑀 through its hash code. Second,
if we select a long enough key size for the symmetric key
encryption, breaking 𝐶𝑇 is hard. Thus, 𝐷𝐸𝐾 becomes the
attack point of data security. In our scheme, 𝐷𝐸𝐾 is
divided into two parts: 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2 , which are
encrypted with 𝑝𝑘𝐴𝑃 through PRE and 𝑝𝑘𝐼𝐷,𝑢 through
ABE, respectively. Because AP does not collude with CSP,
CSP cannot gain 𝐷𝐸𝐾1 since it knows nothing about 𝑠𝑘𝐴𝑃
although it stores 𝐶𝐾1 . Through the re-encryption with
𝑝𝑘𝐴𝑃→𝑢′, 𝐶𝐾1 under 𝑝𝑘𝐴𝑃 is transformed into the cipherkey
under 𝑝k𝑢′, during which CSP cannot get to know 𝐷𝐸𝐾1
since CSP knows nothing about 𝑠𝑘𝑢′ and 𝐷𝐸𝐾1 is always
in encrypted forms. AP has no way to access 𝑀 because
CSP blocks its access. Even though AP obtains 𝐷𝐸𝐾1 by
colluding with CSP, it is still impossible for AP to get 𝑀
because another part of 𝐷𝐸𝐾 (i.e., 𝐷𝐸𝐾2) is controlled by
the data owner. The data owner and holders have no
incentive to collude with CSP considering their personal
data profits, thus they would not disclose 𝑠𝑘𝐼𝐷,𝑢,𝑢’ and
𝐷𝐸𝐾 to CSP. CSP has no way to gain 𝐷𝐸𝐾2 and 𝐷𝐸𝐾 .
Based on the above analysis, the CSP that stores 𝐶𝑇
cannot obtain 𝑀 through 𝐷𝐸𝐾. The scheme can guarantee
that 𝑀 is securely stored at CSP during deduplication,
which can be only accessed by eligible data holders.

5.2 Comparison with Existing Work
TABLE 2. COMPARISON OF COMPUTATION COMPLEXITY WITH

[31][32]

Party [this paper] [31] [32]

Data Owner 𝓞(𝒏) 𝓞(𝟏) 𝓞(𝒏)

CSP 𝓞(𝒏) 𝓞(𝒏) 𝓞(𝒏)

Data Holder 𝓞(𝟏) 𝓞(𝟏) 𝓞(𝟏)

AP 𝓞(𝒏) 𝓞(𝒏) -

n: the number of data holders.
We compare our scheme with the previous work [31][32].
One of them [31] realizes deduplication managed by AP
and the other [32] manages deduplication by the online
data owner. As shown in Table 2 and further tested in
Section 5.4, the proposed scheme can flexibly support
various scenarios with similar computation complexity to
existing work [31][32]. Thereby, we compare their main
properties in Table 3. We can see that the proposed
scheme is a heterogeneous solution. It can realize both
fine-grained and offline access control, thus it has better
flexibility than previous work. In addition, the random
hash code challenge is applied to verify data ownership,
which can guarantee that the data holders really have the
original data rather than its hash code. Though
possession proof has been achieved in [31] by applying
Elliptic Curve Cryptography (ECC) (with ownership
verification time about 1.2 millisecond), hash code set
employed in this paper is also very efficient if we make
challenged part of data is small. If the challenged part of

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 10

data is very small, e.g., within 1 kilobyte, we can achieve
much better performance than [31] considering the fast
operation time of the hash function. Moreover, our
scheme can cope with the situations of deduplication
across multiple CSPs, which was not considered at all in
previous work. In general, our scheme has distinct
advantages compared with existing work in terms of high
flexibility and advanced properties.

TABLE 3. COMPARISON OF FEATURES WITH [31][32]
Properties [this paper] [31] [32]

Basic Algorithm Applied PRE, ABE PRE, ECC ABE

Fine-grained Access Control √ √

Possession Proof √ √

Offline Access Control √ √

 Deduplication Across CSPs √

5.3 Scheme Implementation
We implemented the scheme based on MIRACL Crypto

Library (http://info.certivox.com/docs/miracl), Pairing
Based Cryptography (PBC) Library [27], OpenSSL
Cryptography, JHU-MIT Proxy Re-cryptography Library
(https://isi.jhu.edu/~mgreen/prl/index.html), and SSL /
TLS Toolkit (https://www.openssl.org/). In our
implementation, we applied AES for symmetric encryption,
RSA for PKC and SHA-1 as a hash function to generate hash
codes and hash sets. Our implementation was in C++ and
adopted MySQL 5.5.46 to build a database. The experiments
were conducted in a virtual machine running a 64-bits
Ubuntu operating system on Amazon EC2 cloud service
with Intel Xeon CPU E5-2670, 2.50GHz processor and 1-GB
RAM. We tested the correctness of our implementation in
terms of each procedure described in Section 4.3. Herein, we
only take the case of data deduplication with heterogeneous
control as an example to illustrate our implementation due
to paper size limitation.

Fig. 10. File uploading process with heterogeneous control

Fig. 11. Record of CSP database

Fig. 12. Records of U1 and U2 databases

Fig. 13. The detailed data content in CSP

Fig. 14. Duplicated file download with heterogeneous control

Fig. 15. The content of file U2File, CT and the decryption of CT

http://info.certivox.com/docs/miracl
https://isi.jhu.edu/~mgreen/prl/index.html
https://www.openssl.org/

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 11

Use Case: Data deduplication with heterogeneous control
(as illustrated in Figure 2).

Step 1: 𝑈1 wants to upload file TestHetro to CSP. CSP
checks that there is no duplicated file stored, and thus
requests 𝐷𝑃1 from 𝑈1 . 𝑈1 generates 𝐷𝐸𝐾 randomly,
encrypts file TestHetro using AES with 𝐷𝐸𝐾, divides 𝐷𝐸𝐾
into two parts, denoted as 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2 . 𝑈1 prepares
𝐷𝑃1 and uploads it to CSP. Upon receiving 𝐷𝑃1, CSP stores
𝐷𝑃1 in its database and 𝑈1 also stores the uploaded file
information in its own database. Such uploading process is
shown in Figure 10(a) and the records in CSP database and
𝑈1 database are shown in Figure 11 and Figure 12(a).

Step 2: 𝑈2 wants to upload file U2File whose content is
exactly the same as that of file TestHetro. CSP identifies
duplication and challenges the ownership of 𝑈2 . After
passing ownership challenge, 𝑈2 gets 𝐶𝐾2, the re-encrypted
𝐶𝐾1 , and related attribute secrete key of 𝑈2 . 𝑈2 then
decrypts 𝐶𝐾1 and 𝐶𝐾2 to get 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2, as shown in
Figure 10(b). In addition, we can observe that 𝑈2 can get the
correct 𝐷𝐸𝐾 generated by 𝑈1. Then, 𝑈2 stores the received
𝐷𝐸𝐾1 and 𝐷𝐸𝐾2 for file U2File, as shown in Figure 12(b).
Meanwhile, CSP updates the record of file TestHetro to mark
𝑈2 as a user that holds file TestHetro, as shown in Figure

11(b).
Figure 13 shows the detailed data content in CSP. We can

see that the file is secure from CSP since only the ciphertexts
of 𝐷𝐸𝐾1, 𝐷𝐸𝐾2 and file content are stored in CSP.

Step 3: 𝑈2 wants to download file U2File. After checking
the eligibility of 𝑈2, CSP sends 𝐶𝑇 of file TestHetro to 𝑈2.
Upon receiving 𝐶𝑇 , 𝑈2 decrypts it with 𝐷𝐸𝐾 that is
combined from 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2, as shown in Figure 14.
Figure 15 shows the content of the file U2File before it is
uploaded, its 𝐶𝑇 and decryption of 𝐶𝑇 . We can see from
Figure 15 that 𝑈2 can decrypt the file correctly.

5.4 Efficiency Evaluation
Based on the implementation, we performed a number of
tests to evaluate the efficiency of our proposed scheme.
Test 1: Efficiency of file encryption and decryption

We tested the time spent to encrypt and decrypt a file
with different sizes by applying AES with 3 different key
sizes, namely 128 bits, 196 bits and 256 bits. We observe from
Figure 16(a) that encrypting or decrypting a file of 500
megabytes (MB) with 256-bit AES takes about 100 seconds. It
is a reasonable and practical choice to apply symmetric
encryption for data protection.

Fig. 16. Efficiency evaluation on basic algorithms

Test 2: Efficiency of calculating hash code set of a file
Figure 16(b) shows the time needed to calculate 𝐻(𝑀)

(𝑘 = 1) and 𝐻𝐶(𝑀) (𝑘 > 1) of files of different sizes using
SHA-1. We can see from Figure 16(b) that the time increases
as the file size increases and that the bigger 𝑘 is, the more
time it takes to calculate 𝐻𝐶(𝑀). Calculating 𝐻(𝑀) is very
efficient, which takes less than 10 seconds to calculate 𝐻(𝑀)
of a file as big as 500MB. When 𝑘 is small (e.g., 𝑘 =50),
calculating 𝐻𝐶(𝑀) with data size 500 kilobytes (KB) is also
very efficient, within 50 milliseconds.
Test 3: Efficiency of RSA sign and verification

In our proposed scheme, RSA signature is used during
duplication check and performed on the hash code or the

hash code set of plaintext data. Signature verification is used
at CSP to ensure data ownership during duplication check.
We tested the execution time needed to sign a given SHA-1
hash code and verify a given signature using RSA
cryptosystem. We observed from Figure 16(c) that both RSA
sign and RSA verification are very efficient. Signing with
4096-bit RSA takes only about 10 milliseconds.
Test 4: Efficiency of PRE operations

We tested the operation time of different PRE operations.
PRE schemes require that all users in a PRE deployment
share a common set of public parameters. These parameters
should be fixed, then they need to be generated only once
during system setup. We tested that generating these

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 12

parameters takes about 34.79 milliseconds. Each user in a
PRE deployment needs to generate a public/secrete key pair.
As shown in Figure 16(d), generating a PRE key pair takes
only 6.5 milliseconds. We can observe that PRE operations
(including re-encryption key generation, encryption, re-
encryption and decryption) are quite efficient. Thus,
applying PRE to protect data encryption keys is reasonable
and practical, especially when it is handled at a server with
sufficient resources and processing capability.
Test 5: Efficiency of CP-ABE operations

Figure 16(e) shows the execution times of all CP-ABE
operations (UKGen: User key pair generation; IDPKGen: ID
public key generation (ID numbers = 10); IDSKGen: ID
secret key generation; Enc: ABE encryption (ID numbers in
encryption policy = 5); Dec: ABE decryption (ID numbers in
encryption policy = 5)). The setup process that is needed

only once generates CP-ABE global public key and secret
master key, which takes about 12 milliseconds. User key pair
generation takes about 14 milliseconds and is needed when
a new user is registered into the system. The ID public key
generation process varies with different number of IDs.
Figure 16(f) shows the ID public key (𝑝𝑘𝐼𝐷,𝑢) generation time
with different number of IDs, namely eligible users.

Figure 17(a) shows the CP-ABE encryption and
decryption time. The encryption time increases with the
number of IDs in encryption policy, since the encryption
algorithm iterates over all IDs and constructs ciphertext for
each ID. The decryption time is consistent around 7.8
milliseconds.

Following tests were carried out by applying 128-bit AES
and 2048-bit RSA. The 𝐻𝐶(𝑀) was calculated with k=10 and
the number of IDs in CP-ABE encryption policy is 5.

Fig. 17. Efficiency evaluation on main operations

Test 6: Efficiency of file uploading

We tested the efficiency of file uploading process under
different control policies. The process includes encrypting
data file with AES, calculating 𝐻(𝑀) and 𝐻𝐶(𝑀), signing
and verifying signature. The process may include encrypting
𝐷𝐸𝐾1,𝑢 with PRE and/or encrypting 𝐷𝐸𝐾2,𝑢 with ABE
according to the access control policy. As shown in Figure
17(b), there is no much difference between uploading a file
under three control policies, namely, data owner and AP
control, data owner control, and AP control, especially for
big files. Since for big files, the time is dominated mainly by
AES encryption that increases with file sizes. However, CP-
ABE and PRE are quite efficient (less than 1 second) and
stays constant for files with different sizes, since the size of
𝐷𝐸𝐾 stays constant for different files. We can also see from
Figure 17(b) that encrypting a file does not introduce too
much computation overhead. The result shown in this figure

also indicates that the proposed scheme has similar
performance to the existing work [31, 32] with regard to file
uploading.

Figure 17(c) shows the duplicated file uploading time
under different control policies. In this process, CSP will
request re-encryption key from AP and use it to re-encrypt
𝐶𝐾1 if needed. CSP also contacts the data owner about
issuing the user attribute secret key if the data owner
controls data access. We observe that such a process is very
efficient, taking less than 0.3 seconds if the data is less than
100MB. The operation time varies slightly with file sizes,
which results from 𝐻𝐶(𝑀) calculation and challenge. By
comparing Figure 17(b) with 17(c), we can see that the
proposed deduplication scheme can greatly save data
uploading time for duplicated data storage at the cloud.
Test 7: Efficiency of file downloading

We also tested the efficiency of file downloading process

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 13

that combines 𝐷𝐸𝐾1 and 𝐷𝐸𝐾2 and decrypts downloaded
𝐶𝑇 with AES. Because the decryption of 𝐶𝐾1 and 𝐶𝐾2 is very
fast (only several milliseconds), there is no much difference
between the file downloading time under different control
policies, as shown in Figure 17(d). But if no party controls
the data access, the downloading process is much faster than
that under data owner and/or AP control. Since in this case,
AES decryption is not needed. This result indicates that the
proposed scheme has similar performance to the existing
work [31, 32] with regard to file downloading.
Test 8: Efficiency of file deletion

Figure 17(e) shows the data holder’s file deletion time
under different control policies. The deletion process
involves 𝐷𝐸𝐾 and 𝐶𝑇 update if the deleted file is controlled
by the data owner and/or AP. The 𝐷𝐸𝐾 and 𝐶𝑇 update
process is similar to the above mentioned new file uploading
process except that it does not need to calculate 𝐻𝐶(𝑀).
Thus, deleting a file under data owner and/or AP control
varies slightly, especially for big files, as shown in Figure
17(e). However, deleting a file without any control by the
data owner or AP only needs to update related file records
in CSP, thus it is very efficient and takes less than 0.1
seconds for a file with 100 MB.

Figure 17(f) shows the data owner’s file deletion time
under different control policies. The data owner deletion
process involves generating a new 𝐷𝐸𝐾 and encrypting it
with 𝑝𝑘𝐴𝑃 . Therefore, there is no much difference under
different access control policies. For a file without any access
control, the deletion just needs to update related CSP file
records and thus very efficient.

As can be seen from Figure 17, the proposed scheme
achieves similar performance to the existing work [31, 32].
Considering its advanced properties as shown in Table 3
and high flexibility, we conclude that our scheme
outperforms the existing work.

6 CONCLUSION
Data deduplication is important and significant in the
practice of cloud data storage, especially for big data storage
management. In this paper, we proposed a heterogeneous
data storage management scheme, which offers flexible
cloud data deduplication and access control. Our scheme
can adapt to various application scenarios and demands and
offer economic big data storage management across multiple
CSPs. It can achieve data deduplication and access control
with different security requirements. Security analysis,
comparison with existing work and implementation based
performance evaluation showed that our scheme is secure,
advanced and efficient.

Our scheme supports data privacy of cloud users since
the data stored at the cloud is in an encrypted form. One
way to support identity privacy is to apply pseudonyms in
Key Generation Center (KGC), where a real identity is linked
to a pseudonym, which is verified and certified by the KGC.
In our future work, we will further enhance user privacy
and improve the performance of our scheme towards
practical deployment. In addition, we will conduct game
theoretical analysis to further prove the rationality and
security of the proposed scheme.

ACKNOWLEDGMENT
This work is sponsored by the National Key Research and
Development Program of China (grant 2016YFB0800704),
the NSFC (grants 61672410 and U1536202), the Project
Supported by Natural Science Basic Research Plan in
Shaanxi Province of China (Program No. 2016ZDJC-06),
the 111 project (grants B16037 and B08038), the PhD grant
of the Ministry of Education, China (grant JY0300130104),
and Aalto University.

REFERENCES
[1] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,

and J. Molina, "Controlling data in the cloud: outsourcing
computation without outsourcing control," in Proc. 2009 ACM
Workshop Cloud Comput. Secur., pp. 85-90, 2009.

[2] S. Kamara, and K. Lauter, "Cryptographic cloud storage,"
Financ. Crypto. Data Secur., pp. 136-149, Springer, 2010.

[3] Q. Liu, C. C. Tan, J. Wu, and G. Wang, "Efficient information
retrieval for ranked queries in cost-effective cloud
environments," in Proc. 2012 IEEE INFOCOM, pp. 2581-2585,
2012.

[4] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu,
"Plutus: scalable secure file sharing on untrusted storage," in
Proc. USENIX Conf. File Storage Technol., pp. 29–42, 2003.

[5] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, "SiRiUS:
securing remote untrusted storage," in Proc. Netw. Distrib. Syst.
Secur. Symp., pp. 131-145, 2003.

[6] J. Bethencourt, A. Sahai, and B. Waters, "Ciphertext-policy
attribute-based encryption," in Proc. of IEEE Symp. Secur. Privacy
(SP'07), pp. 321-334, 2007.

[7] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data”, in
Proc. of 13th ACM Comput. Commun. Secur., pp. 89–98, 2006.

[8] S. Muller, S. Katzenbeisser, and C. Eckert, “Distributed
attribute-based encryption,” in Proc. of 11th Annual Int. Conf. Inf.
Secur. Crypto., pp. 20–36, 2008.

[9] A. Sahai, and B. Waters, “Fuzzy identity-based encryption,” in
Proc. of 24th Int. Conf. Theory App. Cryptographic Tech., pp. 457–
473, 2005.

[10] S. C. Yu, C. Wang, K. Ren, and W. J. Lou, “Achieving secure,
scalable, and fine-grained data access control in cloud
computing,” in Proc. of IEEE INFOCOM, pp. 534–542, 2010.

[11] G. J. Wang, Q. Liu, J. Wu, and M. Y. Guo, “Hierarchical
attribute-based encryption and scalable user revocation for
sharing data in cloud servers,” Comput. Secur., vol. 30, no. 5, pp.
320–331, 2011.

[12] S. C. Yu, C. Wang, K. Ren, and W. J. Lou, “Attribute based data
sharing with attribute revocation,” in Proc. ACM Asia Conf.
Comput. Commun. Secur., pp. 261–270, 2010.

[13] G. J. Wang, Q. Liu, and J. Wu, "Hierarchical attribute-based
encryption for fine-grained access control in cloud storage
services," in Proc. of 17th ACM Comput. Commun. Secur., pp. 735-
737, 2010.

[14] M. Zhou, Y. Mu, W. Susilo, M. H. Au, and J. Yan, "Privacy-
preserved access control for cloud computing," in Proc. of IEEE
10th Int. Conf. Trust, Secur. Privacy Comput. Commun., pp. 83-90,
2011.

[15] Z. G. Wan, J. E. Liu, and R. H. Deng, “HASBE: a hierarchical
attribute-based solution for flexible and scalable access control
in cloud computing,” IEEE Trans. Inf. Forensics Secur., vol. 7, no.
2, pp. 743-754, 2012.

[16] Z. Yan, Trust Management in Mobile Environments – Usable
and Autonomic Models, IGI Global, Hershey, Pennsylvania,
2013.

[17] Y. Tang, P. P. Lee, J. C. Lui, and R. Perlman, “Secure overlay
cloud storage with access control and assured deletion,” IEEE
Trans. Dependable Secure Comput., vol. 9, no. 6, pp. 903-916, 2012.

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2701352, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 14

[18] M. Bellare, S. Keelveedhi, and T. Ristenpart, “DupLESS: server
aided encryption for deduplicated storage,” in Proc. of 22nd
USENIX Conf. Secur., pp. 179-194, 2013.

[19] Dropbox, "A file-storage and sharing service,"
http://www.dropbox.com/.

[20] Google Drive. http://drive.google.com.
[21] Mozy, "Mozy: a file-storage and sharing Service,"

http://mozy.com/.
[22] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M.

Theimer, "Reclaiming space from duplicate files in a serverless
distributed file system," in Proc. of 22nd Int. Conf. Distributed
Comput. Syst., pp. 617-624, 2002.

[23] G. Wallace, F. Douglis, H. W. Qian, P. Shilane, S. Smaldone, M.
Chamness, and W. Hsu, "Characteristics of backup workloads
in production systems," in Proc. of USENIX Conf. File Storage
Technol., pp. 500, 2012.

[24] Z. O. Wilcox, “Convergent encryption reconsidered,” 2011.
http://www.mail-
archive.com/cryptography@metzdowd.com/msg08949.html.

[25] C. Yang, J. Ren, and J. F. Ma, "Provable ownership of file in de-
duplication cloud storage," in Proc. of IEEE Global Commun. Conf.
(GLOBECOM), pp. 695-700, 2013.

[26] T.-Y. Wu, J.-S. Pan, and C.-F. Lin, “Improving accessing
efficiency of cloud storage using de-duplication and feedback
schemes,” IEEE Systems J., vol. 8, no. 1, pp. 208-218, 2014.

[27] C.-I. Fan, S.-Y. Huang, and W.-C. Hsu, "Hybrid data
deduplication in cloud environment," in 2012 Int. Conf. Inf.
Secur. Intell. Control (ISIC), pp. 174-177, 2012.

[28] J. W. Yuan, and S. C. Yu, "Secure and constant cost public cloud
storage auditing with deduplication," in IEEE 2013 Conf.
Commun. Netw. Secur. (CNS), pp. 145-153, 2013.

[29] N. Kaaniche, and M. Laurent, "A secure client side
deduplication scheme in cloud storage environments," in 2014
6th Int. Conf. New Technol., Mobility Secur. (NTMS), pp. 1-7, 2014.

[30] Z. Yan, W. X. Ding, and H. Q. Zhu, "A scheme to manage
encrypted data storage with deduplication in cloud," in Proc. of
ICA3PP2015, pp. 547-561: Springer, 2015.

[31] Z. Yan, W. X. Ding, X. X. Yu, H. Q. Zhu, and R. H. Deng,
“Deduplication on encrypted big data in cloud,” IEEE Trans. on
Big Data, vol. 2, no. 2, pp. 138-150, April-June 2016.

[32] Z. Yan, M. J. Wang, Y. X. Li, and A. V. Vasilakos, “Encrypted
data management with deduplication in cloud computing,”
IEEE Cloud Comput. Mag., vol. 3, no. 2, pp. 28-35, 2016.

[33] Z. Yan, X. Y. Li, M. J. Wang, A.V. Vasilakos, “Flexible data
access control based on trust and reputation in cloud
computing,” IEEE Trans. Cloud Comput., 2015. Doi:
10.1109/TCC.2015.2469662.

[34] J. Hur; D. Koo; Y. Shin; and K. Kang, “Secure Data
Deduplication with Dynamic Ownership Management in
Cloud Storage,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 11, pp.
3113-3125, 2016.

[35] J. Li, X. F. Chen, M. Q. Li, J. W. Li, P. P. C. Lee; and W. J. Lou,
“Secure Deduplication with Efficient and Reliable Convergent
Key Management,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no.
6, pp. 1615-1625, 2014.

[36] M. Wen, K. Ota, H. Li, J. S. Lei, C. H. Gu; and Z. Su, “Secure
Data Deduplication With Reliable Key Management for
Dynamic Updates in CPSS,” IEEE Trans. Comput. Social Syst.,
vol. 2, no. 4, pp.137-147, 2015.

[37] J. Li, Y. K. Li, X. F. Chen, P. P. C. Lee, and W. J. Lou. “A hybrid
cloud approach for secure authorized deduplication,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 5, pp. 1206-1216, 2015.

[38] J. Liu, N. Asokan, and B. Pinkas. "Secure deduplication of
encrypted data without additional independent servers," in
Proc. of 22nd ACM SIGSAC Conf. Comput. Commun. Secur., pp.
874-885. ACM, 2015.

[39] Q. Liu, G. J. Wang, and J. Wu, "Consistency as a service:
Auditing cloud consistency" IEEE Trans. Netw. Serv. Manage.,
vol.11, no.1, pp. 25-35, 2014.

[40] Q. Duan, “Cloud service performance evaluation: Status,
challenges, and opportunities – A survey from the system
modeling perspective”, Digital Commun. Netw., Available online
23 December 2016, ISSN 2352-8648,
http://dx.doi.org/10.1016/j.dcan.2016.12.002.

[41] Q. Liu, C. C. Tan, J. Wu, and G. J. Wang, "Towards differential
query services in cost-efficient clouds," IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 6, pp. 1648-1658, 2014.

Zheng Yan (M’06, SM’14) received the BEng
degree in electrical engineering and the MEng
degree in computer science and engineering from
the Xi’an Jiaotong University, Xi’an, China in
1994 and 1997, respectively, the second MEng
degree in information security from the National
University of Singapore, Singapore in 2000, and
the Licentiate of Science and the Doctor of
Science in Technology in electrical engineering
from Helsinki University of Technology, Helsinki,

Finland in 2005 and 2007. She is currently a professor at the Xidian
University, Xi’an, China and a visiting professor at the Aalto
University, Espoo, Finland. She authored more than 150 peer-
reviewed publications and solely authored two books. She is the
inventor and co-inventor of over 50 patents and PCT patent
applications. Her research interests are in trust, security and privacy,
social networking, cloud computing, networking systems, and data
mining. Prof. Yan serves as an associate editor of Information
Sciences, Information Fusion, IEEE Internet of Things Journal, IEEE
Access Journal, JNCA, Security and Communication Networks, etc.
She is a leading guest editor of many reputable journals including
ACM TOMM, FGCS, IEEE Systems Journal, MONET, etc. She
served as a steering, organization and program committee member
for over 70 international conferences. She is a senior member of the
IEEE.

Lifang Zhang received the BSc degree in
electrical engineering from Beijing Forestry
University, Beijing, China. She achieved MSc
in the Department of Communications and
Networking, Aalto University, Espoo, Finland.
Her research interests are in network security
and data privacy.

Wenxiu Ding received her BEng degree in
information security from the Xidian University,
Xi’an, China in 2012. She is currently pursuing
her Ph.D. degree in information security, the
School of Cyber Engineering in the Xidian
University, and also a visiting research student
at the School of Information Systems, Singapore
Management University. Her research interests
are in RFID authentication, privacy preservation,
cloud security, data mining and trust

management.

Qinghua Zheng received the BSc degree in
computer software in 1990, the MSc degree in
computer organization and architecture in 1993,
and the PhD degree in system engineering in
1997 from Xian Jiaotong University, China. He
did postdoctoral research at Harvard University
from February 2002 to October 2002 and visiting
professor research at HongKong University from
November 2004 to January 2005. Since 1995,
he has been with the Department of Computer

Science and Technology at Xi’an Jiaotong University. He is currently
a professor and serves as the vice president of Xi’an Jiaotong
University. His research interests include intelligent e-learning,
network security, and trusted software. He is a member of the IEEE.

http://drive.google.com/

