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The two-site Heisenberg model has an extraordinarily simple analytical solution and is traditionally used as a
benchmark against numerical methods, such as exact diagonalization and Monte Carlo methods. In the same
spirit, we benchmark three quantum algorithms that are implemented in a quantum computer against the
analytical solution of this model. In particular, this presentation includes a description of the standard and
iterative quantum phase estimation algorithms, as well as the variational quantum eigensolver. These quantum
algorithms are introduced in a pedagogical fashion allowing newcomers to the subject, familiar with only the
most basic quantum mechanical systems, to easily reproduce the presented results and apply the methods to
other problems, thus building a seemingly under-appreciated path towards useful quantum algorithms through
the lens of simulating and computing properties of physical quantum systems.
Keywords: Heisenberg Model, Quantum algorithms, Phase estimation, Variational quantum eigensolver.

O modelo de Heisenberg de dois sítios tem uma solução analítica extraordinariamente simples e é tradicionalmente
usado como um ponto de referência para métodos numéricos, como a diagonalização exata e métodos de Monte
Carlo. Nessa linha de pensamento, comparamos três algoritmos quânticos implementados num computador
quântico com a solução analítica deste modelo. Em particular, este trabalho inclui uma descrição dos algoritmos
quânticos tradicional e iterativo para a estimação de fase, bem como o variational quantum eigensolver. Estes
algoritmos quânticos são introduzidos de forma pedagógica, permitindo que leitores familiarizados apenas com
os sistemas quânticos mais básicos, reproduzam facilmente os resultados apresentados e apliquem os métodos a
outros problemas, construindo assim um caminho, aparentemente subestimado, para algoritmos quânticos úteis
através da simulação e cálculo de propriedades de sistemas quânticos.
Palavras-chave: Modelo de Heisenberg, Algoritmos quânticos, Estimativa de fase, Variational quantum
eigensolver.

1. Introduction

The second quantum revolution refers to the exploration
of quantum superposition and quantum entanglement
with sights set on addressing challenging physical and
engineering problems rooted in quantum mechanical
systems. This revolution has become possible due,
for example, to the appearance of intense sources of
entangled photons [15–18], which led to extraordinary
advances in quantum cryptography [19] and quantum
communication [20, 21]. More recently, we have seen

*Correspondence email address: mgabijo@gmail.com

spectacular advances in quantum computation [33], with
the advent of new age quantum computers.

Quantum computers allow one to treat, in principle,
a select but diverse class of problems, including some
that are prohibitive to classical computers. Most of
those familiar with quantum computation have certainly
heard of the possibility of using quantum computers to
factor large primes using the famous Shor algorithm [22],
built on the idea of the Quantum Fourier transform
(QFT) [1]; to search through databases more efficiently
using Grover’s algorithm [23], or even to help solve the
mathematical problem of distinguishing knots [41].

In the spirit of Feynman’s original insight into the
necessity of utilising quantum computers to simulate
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intrinsically quantum systems [13], another avenue
which showcases the power of quantum computing is the
diagonalization of quantum models, which finds several
applications in quantum condensed matter physics and
quantum chemistry. In this realm, the role of quan-
tum computation is yet to be fully elucidated, as new
quantum algorithms are required in order to treat many
useful systems. Due to the promise of efficiency, as well as
the relative sparseness of already established algorithms,
this is an extremely active field of research. Concerning
the simulation of physical systems, one may find the
direct application of the time evolution operator on a
quantum computer [24, 25], or some more sophisticated
techniques relying on the Quantum Phase Estimation
algorithm (QPEA) [26] or variational quantum algo-
rithms [27].

At the present moment, we are living in the Noisy
Intermediate-Scale (NISQ) era [28], where the number
of qubits in existing devices is limited, and the devices
themselves are severely prone to noise. Therefore, some
of the most well studied algorithms in the scope of
quantum information theory do not display the expected
behaviour when running on real quantum machines.
The QPEA, which aims to find the eigenvalues of a
unitary operator, requires long and deep circuits, and
so, is not functional on current devices. Attending to
the requirements of most NISQ era devices, algorithms
with smaller quantum circuits, such as the iterative
version of QPEA – Iterative Phase Estimation algo-
rithm (IPEA) [29] –, and other hybrid quantum-classical
approaches have been widely explored.

In the hybrid quantum-classical paradigm, variational
quantum algorithms are a prominent player. In this
kind of algorithm, which is, in fact, a particular
type of Quantum Machine Learning (QML), some
parameterised quantum circuit is evaluated by a
quantum computer and its parameters are updated using
a classical optimiser. This class of algorithms includes
the Variational Quantum Eigensolver (VQE) [3] which
aims to find the ground state of a given system. This
makes such algorithms very useful in the context of
quantum chemistry and simulation of physical systems.
Other hybrid quantum-classical algorithms include
the Quantum Approximate Optimization Algorithm
(QAOA) [30] used to solve optimisation problems [45],
and QML [34, 42].

Even though some of the mentioned above quantum
algorithms don’t behave as desired in NISQ devices,
the algorithms here studied, i.e., the QPEA, IPEA, and
VQE, seem to find an advantage over their classical
counterparts [47–49]. In the specific case of the Heisen-
berg model, these algorithms have good scalability in
the system size, allowing the study of large models
unsolvable using classical methods, which is itself a
statement of the quantum advantage of these algorithms.
Nonetheless, the quantum computations are still limited
by the state of the current devices [50, 51], which is

perhaps the main obstacle in the study and implemen-
tation of large systems.

It is only with a healthy mix of hardware development
and algorithm optimisation that one can hope to solve
physically relevant problems using quantum computers.
In this work, throughout all the following sections,
the focus of the discussion will be on some quantum
algorithms and their implementation in the context of
faulty or noisy hardware. Nevertheless, developments
in the hardware of quantum computers have also been
on the rise, resulting in the emergence of new kinds
of platforms, both larger (with more qubits) and more
robust to noise. The major difference between the
diverse quantum computing platforms is the type of
utilised qubits. The most known and common types of
qubits include superconducting junctions [35], neutral
atoms [36], photonic platforms [37], trapped ions [38],
and quantum dots [39].

This paper is organised following a pedagogical pre-
sentation1 in order overcome students’ difficulties with
many of the seemingly counter-intuitive aspects of
quantum computation [32]. In Section 2, the analytical
solution of the two-site Heisenberg model is reviewed.
This presentation serves as an introduction to the main
system to which we will apply the different algorithms
to be explored in later sections. We fix the notation
for states and energies and provide the eigenvectors
and eigenvalues that later will be compared with the
output of the three quantum algorithms developed. In
Section 3 we present three algorithms which enable a
calculation of the eigenvalues and eigenstates of the
two-site Heisenberg model. These are discussed with
emphasis on a providing a detailed overview of the
algorithms and of their implementation. In Section 4
we discuss our results in broader perspective. Finally,
all of the code utilised in this work is available in
https://github.com/mgabijo/The-two-site-Heisenbe
rg-model-on-a-quantum-computer.

2. The Two-site Heisenberg Model and
its Analytical Solution

It is often the case that in most physics or engineering
physics curricula, quantum mechanics is taught from the
perspective of “pure” physics, while quantum compu-
tation is dealt with using the perspective of computer
scientists or information theorists. Indeed, the usage
of quantum computers to simulate physical systems is
not often emphasised at such early stages of learning.
However, it is our belief that such a perspective can suc-
cessfully be presented quite early in the learning process
of quantum mechanics, both for physics and engineering
students. Moreover we believe that this would come with
benefits both for a thorough understanding of quantum

1 Attempts to introduce quantum computation through didactic
teaching materials have already been proposed [43–46].
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algorithms, as well as quantum mechanical and solid
state systems.

The choice of a simple and familiar model is often
crucial when testing, implementing or developing new
algorithms, independently of their quantum or classical
nature. For this reason, and with the mixed intent of
benchmarking simple results, as well as reviewing an
important model for quantum magnetism, we focus on
the two-site Heisenberg model.

The Heisenberg model is as old as quantum mechanics
itself [10] and has served physicists well as the basis for
the study of the quantum nature of magnetic order in
many different physical applications.

In this model, quantum objects called atomic spins
are paramount. In the simplest magnets, for instance,
the atoms forming a crystalline lattice hold a certain
amount of electrons. Each of the spin states of these
electrons is characterised by an electronic spin quantum
number S = 1/2, and spin projection along a direction
z, labelled by m = ±1/2.

In magnetic materials, it can be the case that adding
up the contribution from each of these electronic spins
results in a non-zero value. This occurs, for instance,
if electrons in inner shells are all paired up with ones
of opposite spin projections, and a single electron with
spin S = 1/2 is left in a valence shell. Atomic spins
of larger value S can also form in case the previously
described spin-pairing is not energetically favoured. This
is a consequence of the famous Hund’s rules of chemistry
(see [11] for a lively introduction to the theory of
magnetism).

The resulting picture is that atoms carry an over-
all spin. Due to the statistical properties of electrons
shared in chemical bonds between atoms, namely their
fermionic statistics, an effective interaction between
spins can be derived. This is called the exchange inter-
action. Ferromagnets or antiferromagnets then appear
if it becomes energetically favourable for spins to be
respectively aligned or anti-aligned in a macroscopic
ordered fashion. The collective alignement of spins
results in the magnetization of the material. Although
this intuitive picture is fairly clear, Heisenberg models
are essentially untractable in any exact fashion in two
or three dimensional crystals, with analytical solutions
being extremely scarce.

The 1D Heisenberg models, however, does have an
exact analytical solution, relying on the so-called Bethe-
Ansatz method [12].

Despite this possibility, the Bethe-Ansatz method is
not approachable or simple in any way, as exact solutions
of models using this method are known to be infamously
lengthy and tricky. For this reason, we can reduce the
dimensionality of the problem even further, by looking at
a “0D” Heisenberg model. The simplest non-trivial such
model is the two-site Heisenberg model (see Figure 1).

The solution of the two-site Heisenberg model does
not require this sophisticated approach as its exact

Figure 1: (a) Artistic rendition of the two-site Heisenberg
model. The spins are oriented along the z axis, representing
a state |11⟩. (b) Semiclassical spin-vector representation of the
spin. The eigenvalue S of the total spin is represented by the
length of the spin-vector, whereas its projection along z is
represented by m, the eigenvalue of Ŝz.

solution is given by the diagonalization of a 4×4 matrix.
Nevertheless, it captures the intuition regarding fer-
romagnetism or antiferromagnetism, where it becomes
clear that aligned or anti-aligned spins are favoured
depending on the sign of the exchange interaction.

Below, we review this simple calculation, providing
the results which will be later compared with those of
a quantum computer calculation, as well as providing a
bridge between the notation of spin S = 1/2 states, and
the qubit notation, familiar from quantum computation.

As stated before, the quantum mechanical states we
are concerned with are the spin states of two “atomic”
spins. These states are eigenstates of two distinct opera-
tors Ŝ and Ŝz, and are, in fact completely characterized
by the eigenvalues of both of these operators, call them
S and m respectively.

The operator Ŝ is called the total spin operator,
and its eigenvalues are related to the magnitude of the
atomic spin S. For instance, if a single electron with
unpaired spin is present in an atom, then the atomic
total spin is defined by the eigenvalue as S = 1/2,
whereas if more electron spins are unpaired, one can have
S = 1, 3/2, 2, . . . .

On the other hand, the operator Ŝz is called the
spin projection operator along z, and it measures how
much the spin “vector”2 is tilted along this axis (see
Figure 1). One can project along other axes, such as
x or y in any Cartesian system, and in fact, one has
the relation Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z . The eigenvalues of this
squared operator take the form S(S + 1).

This relation between Ŝ and Ŝz imposes certain
restrictions on the the eigenvalue m of Ŝz. Namely, one
can show that −m ≤ S ≤ m. For the simplest example of
a single S = 1/2 spin, one therefore has a two-level sys-
tem with state vectors |S,m⟩ = |1/2,+1/2⟩ , |1/2,−1/2⟩.

Since S is really a fixed parameter of most models,
one often omits it entirely from the labelling of states,
when it is understood its value is. Furthermore, one

2 The visualization of spins as angular momentum vectors precess-
ing around an axis is a useful intuition although a semiclassical
one.
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often identifies the positive and negative eigenvalues for
S = 1/2 with “up” and “down” pointing spins, and
simply writes the eigenstates as |↑⟩ and |↓⟩. In this paper,
we will use instead a notation stemming from quantum
computation. Since |↑⟩ and |↓⟩ form a two-state system,
or in other words, a qubit, the basic element of quantum
computation. As such, one might as well identify them
with |↑⟩ ≡ |0⟩ and |↓⟩ ≡ |1⟩.

With this notation in mind, we can introduce the two-
site Heisenberg model per se. Let us organise the spin
projection operators into a vector Ŝ = (Ŝx, Ŝy, Ŝz), and
let the spin on each site be additionally labelled by i =
1, 2. The Hamiltonian reads

H = J Ŝ1 · Ŝ2. (1)

The quantity J is the aforementioned exchange integral
or interaction. In order to handle this Hamiltonian, it
becomes useful to rewrite it in a language where it
becomes clear what the action on the eigenstates is.
First, it should be noted that for spin S = 1/2, one
has a direct mapping of the spin operators to the Pauli
operators X,Y, Z. Let us, in all discussion that follows,
set ℏ = 1. This is always possible under a suitable
redefinition of the units of the exchange integral and
time variables. One has, in this convenient unit system,
Ŝx = X/2, Ŝy = Y/2 and Ŝz = Z/2. Thus, making
explicit the tensor product structure of the Hamiltonian,
one finds what is sometimes called a sum of Pauli strings

H = J

4 (X1 ⊗X2 + Y1 ⊗ Y2 + Z1 ⊗ Z2). (2)

As we will discuss later, this sort of decomposition is an
essential step in the unfolding of some of the quantum
algorithms we will present in this paper. For now, note
that in the basis {|0⟩ , |1⟩}, a matrix representation of
such a Hamiltonian is extremely simple, and computing
the necessary tensor products, one finds

H = 1
4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 . (3)

Diagonalization of this problem is straightforward, as the
Hamiltonian is already conveniently block-diagonalized.
One can check that the different eigenstates of this
Hamiltonian are

|ψs⟩ = 1√
2

(|01⟩ − |10⟩), (4)

|ψ(1)
t ⟩ = 1√

2
(|01⟩ + |10⟩), (5)

|ψ(2)
t ⟩ = |00⟩ , (6)

|ψ(3)
t ⟩ = |11⟩ . (7)

Furthermore, when checking this, one also realises that
all the states |ψ(i)

t ⟩, which are symmetric under per-
mutation of the spins, are degenerate in energy. The
eigenvalue of the Hamiltonian for such states is E = J/4.

On the other hand, the only anti-symmetric eigenstate
|ψs⟩ has a different energy E = −3J/4. Thus, eigenstates
are grouped into a spin-singlet and a spin-triplet, each
of which has different energy levels.

As expected, the exact diagonalization by hand is
simple in all regards, and with matters of notation fixed,
what is now left unanswered is the how one can use quan-
tum computational algorithms to reproduce such results.
This is the aim of the remainder of the present paper.

3. Quantum Algorithms

The implementation of a quantum algorithm in a quan-
tum computer is not without subtleties, and the role
of this paper is as much to introduce some quantum
algorithms as it is to address these subtleties. Before
describing the quantum algorithms themselves, we shall
start by giving an insight into the structure of qubits as
the basic units of quantum information.

In a quantum computer all the information is encoded
in the states of two-level systems called qubits. In
principle a generic qubit state can be written as a
superposition of two orthogonal basis states, denoted as
|0⟩ and |1⟩. In this basis, the most general qubit state
can be represented resorting to two “angle” variables as

|ψ⟩ = cos θ2 |0⟩ + eiφ sin θ2 |1⟩, (8)

where θ ∈ [0, π] and φ ∈ [0, 2π).
This general state can be represented as a point in a

sphere, often called the Bloch sphere [14]. For example,
a state in the equator of the Bloch sphere has θ =
π/2 and arbitrary φ. Usually, the qubit register of a
quantum computer is initialised as a tensor product
state where all qubits lie in the |0⟩ state. In all that
follows, we shall employ a notation for tensor product

states where |0⟩⊗N ≡
N times︷ ︸︸ ︷

|0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩. Starting from
this initial state, any computation then proceeds via the
application of different types of unitary operators. Each
of these unitary transformations is commonly referred
to as a quantum gate, and a quantum circuit can be
defined as a collection of quantum gates interconnected
by quantum wires, which represent the flow of the states
of each qubit. When a computation is completed, a
measurement of the final state of the qubits is performed.

Over the next subsections we introduce three different
quantum computational methods for determining the
states and energies of a given quantum system. The
results of these methods will be compared among them-
selves in the setting of the two-site Heisenberg model, as
well as benchmarked against the exact solution given in
Sec. 2.

3.1. Quantum phase estimation

The QPEA has a very suggestive name, directly related
to its purpose. Indeed, the objective of the QPEA is
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estimating the phase θ conferred by a unitary operator
U to one of its eigenstates |ψ⟩. Note that, due to the
unitarity of U , its eigenenergies can always be written
as a complex number in the unit circle, i.e. e2πϕi, for
ϕ ∈ [0, 1).

Imagine now that U(t) is a unitary operator which
describes, at time t, the time-evolution of a quantum
system described by a certain Hamiltonian H. In this
context, estimating the phase conferred by the time
evolution to an eigenstate of H amounts to computing
the energy of this state. This, of course, is due to the
fact that the rate at which the phase of a stationary
state oscillates is proportional to its energy.

The QPEA relies on a well-known sub-routine – the
Quantum Fourier Transform (QFT) [1]. The circuit used
in the implementation of this algorithm is composed
of two different registers of qubits, i.e. two different
groups of qubits with different purposes: The counting
register, and the state register. The circuit can further-
more be broken down into four different parts, and a
schematic representation of these four parts as well as
the circuit implementing the QPEA are presented in
Figure 2. These parts are the initialisation step, the
phase kickback step, the phase estimation step, and the
post-processing step.

The first n qubits showcased in Figure 2, belong to the
counting register and the size (n) of this register directly
impacts the accuracy3 of the value of the estimated
phase.

Figure 2: Generic circuit for quantum phase estimation algo-
rithm. The circuit is composed of four major parts: initialisation,
phase kickback, phase estimation and post-processing. Where H
is the usual Hadamard gate, U is the operator that we want to
estimate the phase, the successive application of the controlled
gate U to a power of two kickbacks the digits of the phase to the
first n qubits (counting qubits) and the QF T † is the application
of the inverse Quantum Fourier transform (Equation 11).

3 Note that when talking about simulators or fault-tolerant devices
the accuracy of the value found only depends on the number of
bits used to its representation. However, NISQ devices are prone
to noise, and so, an increase in the number of qubits leads to an
increase in the noise, i.e. in practice, there is a trade-off between
the number of qubits used and the amount of noise introduced in
the calculation.

The purpose of the counting register is to host the bits
describing a binary decomposition of the phase. Its size
thus corresponds to the number of desired bits in the
binary decomposition of the phase value.

The remaining qubits form the state register. The size
of this register must match the dimensionality of the
Hilbert space describing the system we aim to study,
e.g. for the two-site Heisenberg model a register of two
qubits is necessary.

The circuit which implements the QPEA can now be
explained in a detailed step-by-step manner. We detail
the aforementioned four steps:

1. Initialisation – The state register must be ini-
tialised in an eigenstate4 |ψ⟩ of the operator U .
Within the counting register, the core idea is to
bring the state of all qubits to the equator of the
Bloch sphere in order to encode the information
in a phase. Whilst by definition a QFT should
be applied to all of the counting qubits, since the
initial state of the qubits is |0⟩ , the application
of the QFT simplifies to the application of an n-
bit Hadamard gate to the counting register (see
Appendix A), creating a state superposition5.

2. Phase kickback – The goal of this step is to
encode each bit of the phase that we want to find
in a phase of a counting qubit state. The name
phase kickback comes from the fact that the bits
of the phase are kicked back to the counting qubits
in the form of phases. To implement this step it is
necessary to implement a series of gates realising
the operator U . This is the operator whose phase-
shift imparted on |ψ⟩ we wish to estimate. In the
particular case of estimating the energy levels of
the two-site Heisenberg model such an operator is
simply the time evolution of the Hamiltonian, i.e.
U(t) = e−iHt.
If n counting qubits are initially prepared, the kth

qubit of the counting register is used as the control
for a CU2k gate6 acting on the state register, with
k ranging from 0 to n − 1. Since U is an unitary

4 Although the traditional definition of the algorithm initialises
the state register in an eigenstate, some more advanced studies [2]
try to find the eigenvalues (phase) through the initialisation in
state superposition instead.
5 For single qubit state the Hadamard gate reads H =

1√
2

(
1 1
1 −1

)
. Taking, as an example, the qubit state |ψ⟩ = (1, 0),

we have H|ψ⟩ = 1√
2

(1, 1) = 1√
2

(1, 0) + 1√
2

(0, 1).
6 A CG or controlled-G gate is a multi-qubit gate that is only
applied in the target qubits if the control qubits are in the state

|1⟩. Consider the X gate, defined as X =
(

0 1
1 0

)
, if the CX0,1

(control-X) is applied on the state |ψ⟩ = |00⟩ + |10⟩, the resulting
state is CX0,1 |ψ⟩ = |00⟩+ |11⟩. Here, an index notation is utilised,
where the first index refers to the set of control qubits, whereas the
second refers to the set of target qubits. In an arbitrary controlled
gate CGq0,q1 , q0 is the control qubit and q1 is the target. Note
also that the CX gate is commonly referred to as the CNOT gate.
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operator and |ψ⟩ is an eigenstate of U , U |ψ⟩ =
e2πϕi |ψ⟩, and so, U2k |ψ⟩ = e2πϕi2k |ψ⟩. Now, recall
that the controlled gate U (CU) is only applied in
the subspace where the kth counting qubit is in the
|1⟩ state. As such, for the kth counting qubit and
state register subspace, the effect of CU is

1√
2

(|0⟩ + |1⟩) |ψ⟩
CU2k

0,1−−−−→ 1√
2

(
|0⟩ + e2πϕi2k

|1⟩
)

|ψ⟩.

(9)
Bear in mind that since |ψ⟩ is an eigenstate of
U , the state register remains unchanged after the
application in Equation 10. After applying all the
n controlled operations U2k (with k ranging from
0 to n− 1), and using the relation in Equation 10,
the state of the counting register is

|count⟩n = 1
2 n

2

(
|0⟩ + e2πϕi2n−1

|1⟩
)

⊗ · · · ⊗
(

|0⟩ + e2πϕi20
|1⟩

)
= 1

2 n
2

2n−1∑
k=0

e2πϕi2k |k⟩ . (10)

Note that in the state |k⟩, k should be written in
its binary representation, e.g. if k = 2, the state
|k⟩ is |2⟩ ≡ |10⟩ ≡ |1⟩ ⊗ |0⟩.

3. Phase estimation – After the controlled opera-
tions kick back the fractional digits of the phase to
the counting register, the inverse Quantum Fourier
Transform [1] (QFT †) allows us to obtain them
through measurements in the computational basis.
The application of the gate labelled by QFT †

results in the state

1
2 n

2

2n−1∑
k=0

e2πϕi2k |k⟩ |ψ⟩ QF T †

−−−−→ |ϕ̃⟩ |ψ⟩, (11)

where ϕ̃ is an approximation of ϕ. Bear in mind
that our goal with this algorithm is to determine
ϕ, but due to the impossibility of using an infinite
amount of counting qubits, we most likely will, at
most, find a good approximation of ϕ, denoted by
ϕ̃. Although there is a Qiskit class that directly
implements the QFT and its inverse as a quantum
circuit, i.e., the class QFT, the explicit circuit
representation of the QFT is in Appendix B.

4. Post-processing – The result of the measurement
comes in the form of a probability distribution,
i.e. the result consists of a dictionary that maps
the possible phase values (between 0 and 2n−1)
with the associated probability. Two different post-
processing methodologies allow for a mapping of
the probability distribution into the desired phase.
The first and simplest method only makes use
of the most probable phase, picking that alone
as the correct result. The second makes use of

the concept of circular statistics over every value
in the probability distribution (and is for this
reason sometimes called circular optimisation):
Given a probability distribution P (x) defined for
2n integers x, one computes the circular mean µ,
defined as

µ =
2n−1∑
x=0

e2πi x
2n P (x). (12)

This results in the weighted average over the possi-
ble phases. Such an averaging procedure can often
be beneficial since we are dealing with phases.
Indeed, such a procedure assures that the modular
arithmetic nature of the phases taken into account,
with the value of 0 being necessarily identified
with the value 2π. In the end, µ is the complex
mean value and its argument is the mean estimated
phase, which can be used as a good approximation
of ϕ. One has

ϕ = arg (µ)
2π . (13)

3.2. Iterative quantum phase estimation

As stated in Subsection 3.1, the QPEA, has its precision
limited by the number of counting qubits. On the other
hand, in NISQ devices, the noise increases with the size
of the circuit, both in number of qubits and depth of the
circuit7.

Hence, when implementing this algorithm in a real
quantum computer, one must keep in mind the fact
that adding counting qubits induces more noise in the
results, instead of simply increasing the performance.
In response to this issue, the iterative quantum phase
estimation algorithm, also simply known as iterative
phase estimation algorithm, implements the QPEA with
a single counting qubit with the accuracy of the algo-
rithm being restricted by the number of iterations rather
than the number of counting qubits.

To comprehend this iterative version, recall that the
aim of using the quantum phase estimation algorithm
is to estimate the phase ϕ conferred by a unitary
operator U to one of its eigenstates |ψ⟩. Recall also
that the eigenvalues of a unitary operator U can be
written as e2πϕi. To understand the construction of
this algorithm, it is further necessary to realise that
ϕ can be decomposed as an expansion in binary, i.e.
ϕ = ϕ1

2 + ϕ2
22 + ... + ϕn

2n , or, in another simpler notation
as 0.ϕ1ϕ2...ϕn. The action of the IPEA over the state
register is exactly the same as QPEA, however, ϕ is
calculated bit by bit (ϕk by ϕk, with k ranging from
1 to n). To perform such a calculation in this bit by bit
manner, it is necessary to include a rotation factor based

7 The depth of the circuit can be defined as the length of the
longest path from the initialisation to the measurement (including
eventual initialisation gates), where the path steps are gates.
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Figure 3: Generic circuit of the kth iteration of IPEA. Where
the gate P is the rotation around z gate, defined as P (ω) =(

1 0
0 eiω

)
, and the factor ωk depends on the previous iterations

outcomes and is calculated accordingly to Equation 14. As in
Figure 2, the controlled operation U2k

kickbacks the kth bit of
the phase to the control qubit.

on the previous outcomes, as we shall now describe. The
IPEA algorithm is described below, and its kth iteration
circuit is presented in Figure 3.

1. Run the k = 0 circuit with a null rotation (ωk = 0)
to find the less significant bit, i.e. the rightmost bit.

2. Repeat the following procedure while k < n, with
n being the number of desired classical phase bits:

(a) Increment k;
(b) Calculate the rotation angle ωk for the kth

circuit via

ωk = −2π
k−1∑
x=0

bx

2k−x+1 , (14)

where bx refers to the measurement outcome
of the xth circuit, it can be 0 or 1.
This formula is analogous to the binary
decomposition ϕ = ϕ1

2 + ϕ2
22 + ... + ϕn

2n , with
the number of parcels increasing in each step,
e.g. for k = 4 ω4 = −2π

(
b0
25 + b1

24 + b2
23 + b3

22

)
,

where b0 is the least significant bit, this is
the binary decomposition ϕ with four bit up
to a −π factor. From a geometrical point of
view, the most significant bit determines a π

2
angle, the second most significant a π

4 angle,
this means that at each iteration we start
with a rotation that traduces the information
already retrieved;

(c) Run the kth circuit with the phase correction
ωk to find bk.

3. Recover the phase ϕ from its binary decomposi-
tion.

Please note that when we say “run the circuit”, it
is implicit that the circuit is both constructed and
measured to retrieve the results.

Finally, note also that in this IPEA approach, since
the phase is calculated bit by bit, the value of the phase
is simply determined by the most probable value found
in the last iteration.

This concludes our generic presentation of the QPEA
and IPEA, and we now move on to a different approach
to the computation of energy states for a given Hamil-
tonian, in particular, its ground state.

3.3. Variational quantum eigensolver

The VQE [3] is a hybrid (it requires both a quantum
computer (to execute the quantum circuits) and a
classical computer (to optimise the parameters of the
quantum circuit)) algorithm that also aims to find the
ground state of a given system. QML is a computation
paradigm briefly defined as the interplay of quantum
computing and machine learning ideas. In turn, machine
learning algorithms can be defined as algorithms that
can learn, and, so able to complete tasks without specific
orders. Thus, the VQE is considered a particular type
of QML due to the fact that it is a hybrid quantum-
classic algorithm that learns the eigenvalues of a target
operator.

This algorithm requires as many qubits as the dimen-
sion of the physical system, i.e. the dimension of the
state register in the previous algorithms, and is made up
of four essential components which are described below
in detail. A schematic view of the VQE algorithm is
presented in Figure 4.

1. Hamiltonian decomposition – One of the
requirements of this algorithm is to have a decom-
position of the Hamiltonian into a sum of Pauli
strings. This task is trivial in simple spin problems,
as discussed in Section 2, but in many other kinds
of physical systems, this can be a hard step, both
computationally and analytically. In symbols, the
Pauli string decomposition amounts to writing the
Hamiltonian as

Ĥ =
PN∑
j=1

wjP̂j , (15)

where PN is the number of Pauli strings in the
decomposition, wj are a set of weights associated
with each string P̂j =

{
I,X, Y, Z

}⊗N . N stands
for the number of qubits in the register (what we
colloquially call the size of the system) and I is the
identity matrix.

Figure 4: Structure of the variational quantum eigensolver.
Where the parameters θ are randomly initialised and the gates
Ri stand for the rotations necessary to measure along an
arbitrary direction, with i ranging from 1 to N .
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The reason why this decomposition is crucial
can be understood after studying the additional
components, and especially the measurement part
of the algorithm.

2. Ansatz and initial state preparation – Before
explaining this step, we shall clarify that in the
quantum computing context, more precisely in the
field of variational circuits, an ansatz circuit is a
parametrised circuit used to prepare a trial state to
solve the problem. Therefore, an important step of
VQE is the choice of an ansatz and the initial state
preparation. A good ansatz should be able to span
over the parts of the Hilbert space that contain
the solution of the problem [3]. For this purpose,
there are some well-known ansatzs, such as the
hardware efficient ansatz [4] or the unitary coupled
cluster ansatz [5]. When the number of utilised
qubits is large, this kind of algorithm can exhibit
barren plateus [6], i.e. the gradient exponentially
vanishes and so the optimisation (training) of
the parameters becomes impossible. This means
that a careful choice of ansatz is a crucial step,
attending to both expressibility (span of possible
states within the Hilbert space) and trainability
(avoiding barren plateaus) [7].
In this particular presentation, we opt for an
ansatz composed of rotations around the x, y, and
z axis8 and CX gates, usually used in quantum
machine learning problems. The circuit that imple-
ments this anstaz is in Figure 5.
The angles of the rotations are the classical train-
able parameters and their initial value is randomly
selected. The initial state can, for instance, be
chosen to be the usual one, i.e. all the qubits
starting in the state |0⟩.

3. Measurement – In each step of the algorithm,
the circuit should be executed and measured as
many times as the number of Pauli strings in the
decomposition of the Hamiltonian. For each Pauli
string, the qubits should be measured along the
axis determined for the components of the string,
e.g. if we have 3 qubits and the Pauli string X ⊗
Y ⊗Z, the first qubit should be measured along the
x axis, the second along the y axis and the third
along the z axis.
Please note that the default measurement direction
is the z direction. Therefore, to measure along
this direction, no rotations are necessary, to mea-
sure along x is necessary to apply a Hadammard
gate since X = HZH† = HZH, or any other

8 The rotations around the x, y and z axis are defined as Rx (θ) =(
cos

(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

) )
,Ry (θ) =

(
cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

) )
and

Rz (θ) =
(
e−i θ

2 0
0 ei θ

2 .

)
.

Figure 5: Variational quantum eigensolver circuit Ansatz. Rx,
Ry, and Rz are rotations around the x, y, and z axis,
respectively and the qubits entangled through the use of CX
gates. CX gates are controlled X gates, i.e. a Pauli x gate (X)
is applied on the target qubit, if the control qubit is in the state
|1⟩.

equivalent transformation, and to measure along
the y direction is necessary to apply an Ry(− π

2 ),
since Y = Ry(− π

2 )ZRy(− π
2 )† = Ry(− π

2 )ZRy( π
2 ),

or any other equivalent transformation.
After performing all such measures, the expecta-
tion value (E) can be obtained via a weighted sum
of the measurement of each Pauli string (Ej), i.e.

E =
PN∑
j=1

wjEj , (16)

wj are a set of weights associated with each Êj ,
the exactly ones of Equation 15.

4. Classical optimisation – The angles in the
ansatz rotations are classically optimised accord-
ing to the previous measurements to minimise the
expectation value (Equation 16). The choice of the
classical optimiser defines how the optimisation is
done.

3.4. Application to the Heisenberg model

After presenting the generic structure of QPEA, IPEA,
and VQE, we are ready to describe and define some
details in order to find the eigenvalues of the two-site
Heisenberg model. The J factor in Equation 2 is fixed
as 4 to avoid unnecessary multiplicative factors, and so
the implemented Hamiltonian is simply H = X1 ⊗X2 +
Y1 ⊗ Y2 + Z1 ⊗ Z2.

For the first two algorithms, it is necessary to showcase
(i) how we can extract the energy from the retrieved
phase; (ii) determine the form of the operator U as a
quantum circuit in the context of this physical system;
(iii) pick how many bits are used to determine the phase.
When it comes to the VQE analysis, one would also
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in principle be worried about the necessity of rewriting
the Hamiltonian as a sum of Pauli strings. Fortunately,
recall that for the two-site Heisenberg model, this was
already done in Section 2, as the Hamiltonian is, almost
by construction, of this form. Furthermore, one must
specify the number of qubits, the maximum number of
iterations, the convergence criteria, as well as how the
probability distribution is translated into an expectation
value.

Starting with point (i) above, for the two-site Heisen-
berg model, the operator U(τ) is the time evolution of
the Hamiltonian in Equation 2, i.e

U = e− i
ℏ Ht. (17)

If |ψ⟩ is an eigenstate of H, applying U to |ψ⟩ leads to

e−iHτ |ψ⟩ = e−iEτ |ψ⟩, (18)

where τ = t
ℏ is the evolution parameter utilised in

the algorithm application. As already mentioned, the
eigenvalues of a unitary operator can always be written
as e2πϕi, which means that e2πϕ(τ)i = e−iEτ and
2πϕ(τ)i = −iEτ . Note that the phase dependence in τ
appears due to the fact that the operator U is, itself,
time dependent. With this, the eigenenergies can be
determined through

E = −2πdϕ(τ)
dτ

. (19)

Onto point (ii), in order to implement the time evolution
of H, the operator U(τ) needs to be defined as a
quantum circuit (a sequence of quantum gates). Note
that the time dependence of U(τ) is made explicit,
since the time parameter must be thought of as an
input value to the circuit, and the algorithm should
be implemented separately for different values of τ in
order to get the energy through Equation 19. In the
case of the two-site Heisenberg model, the Pauli strings
composing the Hamiltonian of Equation 2 commute
with each other, and so the operator can be directly
mapped into a quantum circuit. When Pauli strings
in the Hamiltonian decomposition do not commute, a
Trotter-Suzuki approximation is necessary [9]. Following
the procedures in [1, 2], the quantum circuit definition
of U(τ) is represented in Figure 6.

Finally, onto point (iii), we pick an amount of three
counting qubits with the aim of hopefully finding the
desired energies to a somewhat acceptable degree of

Figure 6: Time evolution of the Hamiltonian in Equation 2
defined as a quantum circuit.

precision without introducing significant noise. Further-
more, the size of the state register is simply set to two
since we are dealing with a model of two physical spins.

Moving on to the VQE, the number of utilized qubits
is also set to two for the exact same reason, i.e. because
the problem has a Hilbert space of dimension 22. The
classical optimiser we made use of – COBYLA – is based
on the (C)onstrained (O)ptimisation (BY) (L)inear
(A)pproximation method [8] (pp. 51–67). We set the
maximum number of iterations to 150 and the final
desired accuracy is 1 × 10−1.

In Subsection 3.3, we mention that in each step we
need to run the circuit as many times as the number of
Pauli’s strings in the Hamiltonian decomposition, and
the measurement direction is determined by the Pauli
matrices in each string. Attending the decomposition in
Equation 2, we need to run the circuit three times in
each step and measure both qubits along the x, y, and z
axes, once in each run.

The resulting output of interest after each run is the
probability distribution of the basis state, i.e., for two
qubits, the probabilities associated with the states |00⟩,
|11⟩, |01⟩ and |10⟩. Consequently, for a measurement
along one of the axes, the expectation value (the energy
E) (see Appendix C) is given by

E = P00 + P11 − P01 − P10, (20)

where Pij is the probability of the state |ij⟩. Note that
the state |0⟩ has an eigenvalue of 1 and the state |1⟩
of −1.

Now, after presenting all of the theoretical framework,
we are primed to implement all three algorithms in the
context of finding the energy levels of a physical system,
namely, the two-site Heisenberg model.

3.5. Results

The application of the three algorithms presented in the
previous subsections to the two-site Heisenberg model
was executed both on a real quantum device or a
simulator with the noise model of a real device and
on a quantum device simulator. We decided to use the
127-qubit ibm_brisbane device, which is one of the IBM
Quantum Eagle processors, and the qasm_simulator.
The number of shots in each execution was 20000, which
is the maximum number allowed in the open access
plan, and, when running on a real device, the chosen
optimisation level was 3 (the maximum one).

The probability distributions of the phase values
obtained using the QPEA were post-processed with two
different methodologies. One where only the most proba-
ble value for each time parameter was considered, which
results are in Figure 7, and one where the value of the
phase was retrieved using circular statistics (Equation 12
and Equation 13), Figure 8.

Using the QPEA, for both the post-processing meth-
ods, we could not retrieve the energy values on the
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Figure 7: Phase values retrieved with QPEA for different time
parameters, using both a real device (right), and a simulator
(left). The value of the phase for each time parameter is
picked as the most probable one. When the curves show a
clear trend, a linear regression is performed. When multiplied by
−2π (Equation 19), the slope of the adjusted straight line gives
the eigenenergy. Attending to the slope values, the eigenen-
ergies obtained using the simulator are 0.980 for the state

1√
2 (|01⟩ + |10⟩) and −2.909 for the state 1√

2 (|01⟩ − |10⟩).

Figure 8: Phase values retrieved with QPEA for different time
parameters, using both a real device, figure on the right, and
a simulator, figure on the left. The value of the phase for each
time parameter is obtained using circular statistics (Equation 12
and Equation 13). When the curves show a clear trend, a linear
regression is performed. When multiplied by −2π (Equation 19),
the slope of the adjusted straight line gives the eigenenergy.
Attending to the slope values, the eigenenergies obtained using
the simulator are 1.257 for the state 1√

2 (|01⟩ + |10⟩) and
−2.488 for the state 1√

2 (|01⟩ − |10⟩).

real device, from the phase variation in times, since
the curves do not show a clear trend. Although this
behaviour is not the desired one, it is the expected
one since the required quantum circuits are deep, and
so, the results are severely affected by noise. The right
panel of Figure 8 shows that the phase approximately
varies around the 0 value, which reflects the fact that
the circuits are significantly affected by noise, since
the noise mean value should be 0 and when the noise
overpasses the signal (the phase value), the result should
also have mean 0. Respecting the executions on the
simulator, assuming the most probable value for the
phase (left panel of Figure 7) the energy value found
for the state 1√

2 (|01⟩ + |10⟩) is 0.980 and for the state
1√
2 (|01⟩ − |10⟩) is −2.909, and, when applying circu-

lar statistics the values found are 1.257 and −2.488,

respectively. These energy values are calculated from
the slope of the regression line through Equation 19,
and the linear regression is performed using Scipy [40].
As calculated in Section 2, with J = 4, the expected
energies are −3 for the state 1√

2 (|01⟩ − |10⟩) and 1 for
1√
2 (|01⟩ + |10⟩). Comparing with the analytical result,

assuming only the most probable phase had led to better
results than applying the circular mean, which is not sur-
prising. As the simulator is noise-free, and so its output
is the ideal one, i.e. the correct phase has clearly the
biggest probability, when applying the circular statistics
over the ideal, or a good, probability distribution, we are
decreasing the performance by adding noncorrect phase
values. This method would probably bring advantages
for executions on real devices that are not ideal but less
noisy than the ones found.

Requiring more quantum circuits but each one less
deeper than the previous ones, the IPEA was also
executed in the same two devices, which results are in
Figure 9.

The results found using the simulator (left panel of
Figure 9) are, with no surprise, the same ones found
when assuming the most probable phase with the QPEA
(left panel of Figure 7) since we are simulating in
the ideal scenario in both cases. Executing the IPEA
on a real device leads to curves similar to the ones
found in simulation, and so a linear regression was
also performed to extract the energy values, which are
1.037 and −2.859 for the states 1√

2 (|01⟩ + |10⟩) and
1√
2 (|01⟩ − |10⟩), respectively. These results, found with

a real device, are quite close to the analytical ones, i.e.
1 and −3.

Due to the limitations in the access to IBM devices
and the large number of accesses required to execute
the VQE algorithm, instead of executing in the real

Figure 9: Phase values retrieved with IPEA for different time
parameters, using both a real device, figure on the right, and a
simulator, figure on the left. The value of the phase for each
time parameter is the most probable one. When the curves
show a clear trend, a linear regression is performed. When
multiplied by −2π (Equation 19), the slope of the adjusted
straight line gives the eigenenergy. Attending to the slope values,
the eigenenergies obtained using the simulator are 0.980 for the
state 1√

2 (|01⟩ + |10⟩) and −2.909 for the state 1√
2 (|01⟩ − |10⟩)

and using the real device the values are 1.037 and −2.859,
respectively.
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Figure 10: Energy found in each iteration using the
qasm_simulator with (noisy simulator line) and without (ideal
simulator line) the noise model of the ibm_brisbane. The
minimum energy found with the noisy simulator is −2.679, and
with the ideal one is −2.999.

device, we opt to execute in the qasm_simulator with
the noise model of the ibm_brisbane device. The energy
found in each iteration when executing the algorithm in
both a noisy and an ideal simulators is in Figure 10.
The minimum energy found with the noisy simulator is
−2.679, and with the ideal one is −2.999, both of these
energies are quite close to the analytical one, i.e. −3.

4. Conclusion

In this paper we have presented a pedagogical introduc-
tion to the diagonalization or ground state optimization
of a quantum system, the spin S = 1/2 two-site Heisen-
berg model, using a quantum computer. We presented
three different algorithms, the first two of which, namely
the QPEA and the IPEA, allow us to determine the
eigenenergy of a given eigenstate. On the other hand, the
final algorithm, namely the VQEA allows for an estimate
of the minimum eigenvalue of an operator. Considering
the Hamiltonian operator for the two-site Heisenberg
model, such eigenvalue corresponds to the ground state
energy. The values determined using these algorithms,
on both real quantum devices and quantum simulators,
were bench-marked against the analytical solution.

Using the two-site Heisenberg model as a toy model,
we found that all three algorithms have successfully
satisfied their purpose when running on ideal simulators.
On real devices, however, when using the QPEA, noise
severely impacted the results, proving to be dominant
over any useful signal. When using the IPEA, the
retrieved results were quite close to the desired ones.
Due to access limitations to quantum computers, and
the large number of accesses required by the VQE, this
algorithm was only executed in a simulator with a noise
model and not in a real device. The result using this
noisy simulator deviated further from the analytical
results when compared to the results found with the
ideal simulator, but was nonetheless fairly satisfactorily
close.

This paper is (a first) and pedagogical introduction,
and so some newsworthy and more profound work is yet
to be done. One of the following steps, and probably the
most direct one, is to implement the same algorithms,
namely the IPEA and VQE, for larger models, i.e. for
more sites, where the analytical solutions are difficult
or do not exist. Other studies that could, and should,
be done are to study how the circuit size impacts the
noise in the results and how and which error mitigation
techniques could lead to more accurate results. Please
note that preliminary studies on using the Qiskit
Ignis native error mitigation techniques showed that
the use of these simpler mitigation techniques does not
bring significant improvements to the results. In fact,
respecting the QPEA the circuits are severely affected
by noise, such that even with mitigation techniques the
noise surpasses the signal. Therefore, in addition to the
introductory character of this article, we chose not to
include error mitigation and error treatments. Nonethe-
less, more complex and profound error mitigation and
statistical analysis studies are one of the following steps.
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