Klimenta, Dardan O.; Hannukainen, Antti

Novel approach to analytical modelling of steady-state heat transfer from the exterior of TEFC induction motors

Published in:
Thermal Science

DOI: 10.2298/TSCI150629091K

Published: 01/01/2017

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
The purpose of this paper is to propose a novel approach to analytical modelling of steady-state heat transfer from the exterior of totally enclosed fan-cooled induction motors. The proposed approach is based on the geometry simplification methods, energy balance equation, modified correlations for forced convection, the Stefan-Boltzmann law, air-flow velocity profiles, and turbulence factor models. To apply modified correlations for forced convection, the motor exterior is presented with surfaces of elementary 3-D shapes as well as the air-flow velocity profiles and turbulence factor models are introduced. The existing correlations for forced convection from a short horizontal cylinder and correlations for heat transfer from straight fins (as well as inter-fin surfaces) in axial air-flows are modified by introducing the Prandtl number to the appropriate power. The correlations for forced convection from straight fins and inter-fin surfaces are derived from the existing ones for combined heat transfer (due to forced convection and radiation) by using the forced-convection correlations for a single flat plate. Employing the proposed analytical approach, satisfactory agreement is obtained with experimental data from other studies.

Key words: analytical model, empirical correlation, energy balance, steady-state heat transfer, totally enclosed fan-cooled induction motor

Introduction

Existing analytical models of steady-state heat transfer in totally enclosed fan-cooled (TEFC) induction motors are based on a number of commonly accepted assumptions [1-8] and application of the lumped-parameter circuits. However, as the authors will demonstrate, some of these assumptions are unrealistic. In addition, as a rule, analytical modelling of steady-state heat transfer in a solid should begin by setting up only one energy balance equation for its entire outer surface. This was not the case with TEFC induction motors from the first analytical models up to the present day. Therefore, lumped-parameter models may not be accurate enough and adequate for precise modelling of heat transfer processes in electrical machines. In order to accurately model steady-state heat transfer from the motor exterior it is necessary to avoid unrealistic assumptions and lumped-parameters. In the present paper, this is achieved by using the geometry simplification methods, energy balance equation, empirical correlations...
Klimenta, D. O., et al.: Novel Approach to Analytical Modelling of Steady-State Heat Transfer ...

(including the Stefan-Boltzmann law), air-flow velocity profiles from [9], and turbulence factor models from [9].

Some of the unrealistic assumptions commonly used in thermal modelling of TEFC induction motors are: (1) that the heat transfer coefficient due to forced convection can only depend on the turbulence factor, $K_{ξ,y}$, and/or the air-flow velocity at the beginning of the cooling channels, V_0 [1-3], (2) that the correlations which were experimentally determined for a combination of forced convection and radiation from [4, 5] can directly be applied to the modelling of only the forced convection as in [3], (3) that the air-flow velocity at the beginning of the cooling channels, V_0, always amounts to approximately 70% or 75% of the peripheral velocity of the fan wheel, V_p [2, 3], (4) that the cooling fins should only increase the heat transfer between the motor exterior and the surroundings [6, 7], which is not consistent with the results presented in [4, 5], (5) that the end-windings do not dissipate heat to the air inside the end-winding zones of the motor, and the heat generated by the stator winding is completely transferred to the stator core [8], etc. In quite a large number of existing analytical models, to a greater or lesser extent, these or similar assumptions adversely affect the model accuracy.

More accurate analytical thermal model should be developed by using: (1) the motor geometry simplification that does not involve changes in the outer surface areas of the frame and end-shields, as well as the motor radius under the cooling fins, (2) the selection of empirical correlations for forced convection appropriate to the particular flow conditions and shapes within the equivalent geometric representation of the motor exterior, (3) a good polynomial approximation to estimate profiles of air-flow velocity, V_y, along the frame cooling channels [9], and (4) an appropriate model to estimate reduction of the turbulence factor, $K_{ξ,y}$, along the frame cooling channels [9].

The thermal model proposed in this paper is based on a simplified geometric representation of the exterior of TEFC induction motors under different load conditions by using surfaces of elementary 3-D shapes. The model proposed in this paper considers an equivalent combination/representation of surfaces of 3-D geometric shapes to simplify the exterior of TEFC induction motors operating under different loads. All the surfaces have their own heat transfer coefficients due to forced convection and radiation. The coefficients represent unknowns in the energy balance equation and their values have been estimated with the appropriate empirical correlations. Moreover, the suggested approach to thermal modelling has been applied to two TEFC induction motors having different pole numbers, shaft heights, and rated powers; both operating in two different regimes.

Equivalent geometric representation of the motor exterior

From an empirical point of view, pulley, metal nameplate, eyebolt, metal keys of the shaft, fan wheel and cowl do not have a significant effect on the heat transfer between the motor exterior and the surroundings. Hence, these elements additionally complicate the equivalent geometric representation of the motor shape. For this reason, the elements are not included into the present geometric model.

Forced convection and radiation from the shaft extensions are disabled by the pulley and the fan wheel. Therefore, the surfaces of the shaft extensions are assumed to be cylindrical and adiabatic. Motor elements such as terminal box and mounting feet have complex shapes and outer surface areas of considerable sizes. These two elements are difficult to model thermally and geometrically, and their effect can not be ignored. Moreover, end-shields are usually hollow (the shaft passes through the end-shields), externally-finned and not ideally flat and/or cylindrical.
Modelling the geometry of the TEFC induction motor elements (main parts and those with significant surfaces) for the purpose of their thermal analysis will be based on empirically confirmed facts. These empirical facts are: (1) if there is any change in the motor outer surface during the procedure of geometry modelling, its heat transfer coefficients need to be recalculated accordingly [10], (2) a change in the number of cooling fins up to 12 and an appropriate change in the spacing between the fins do not affect significantly their heat transfer coefficients [6, 7], (3) a small change in the height of cooling fins with regard to its optimal value will not have significant effect on the fin efficiency [11] and corresponding heat transfer coefficients [6, 7], (4) a change in the number of cooling fins will not cause any significant change in the airflow velocity at the beginning of the cooling channels, \(V_0 \) [6, 7], (5) the one-n\(^{\text{th}}\)-power law can be applied in a case of airflow through the annular gap between two coaxial tubes [12-15], and (6) the degree of flow turbulence depends very little on the air-flow velocity [16].

In order to simplify the geometry of a TEFC induction motor, its shape is represented by a union of rotating and stationary horizontal cylinders with and without fins, where a number of lengths and one radius differ from the corresponding actual dimensions. In the following paragraphs and equations, radii, \(r_i \), lengths/thicknesses, \(L_i \), and surfaces, \(S_i \), labelled with a combination of surface numbers \(i = 1-10 \) and capital letter \(E \) differ from the corresponding actual dimensions of the motor. Radii, \(r_i \), lengths/thicknesses, \(L_i \), and surfaces, \(S_i \), labelled only with surface numbers \(i = 1-10 \) are introduced in order to display the equations related to the steady-state heat transfer model in a more convenient manner. The surface numbers \(i = 1-10 \) (that is, subscripts) are used for the labelling as shown in fig. 1. All radii and lengths are in meters, and surface areas are in \(\text{m}^2 \).

The exterior of a TEFC induction motor, in the direction of fan wheel from the drive end of the shaft, is represented by a combination of surfaces composed of: (\(S_1 \)) the base surface of a rotating disk having radius \(r_1 \), thickness \(L_1 = 0 \text{ m} \) and base area \(S_1 \), (\(S_2 \)) the lateral surface of a rotating horizontal cylinder having radius \(r_2 = r_1 \), length \(L_2 = L_2E \) and lateral area \(S_2 = S_2E \), (\(S_3 \)) the ring-shaped base surface of a stationary horizontal hollow cylinder having outer radius \(r_3 \), length \(L_3 = L_3E \) and base area \(S_3 = S_3E \), (\(S_4 \)) the lateral surface of a stationary horizontal cylinder having radius \(r_4 \), length \(L_4 = L_4E \) and lateral area \(S_4 = S_4E \), (\(S_5 \)) all the fin surfaces of a stationary horizontal longitudinally-finned cylinder having radius over the fins \(r_5 \), length \(L_5 \), and total fin area \(S_5 = S_5E \), (\(S_6 \)) all the inter-fin surfaces of a stationary horizontal longitudinally-finned cylinder having radius under the fins \(r_6 = r_3 \), length \(L_6 = L_5 \), and total inter-fin area \(S_6 = S_6E \), (\(S_7 \)) the lateral surface of a stationary horizontal cylinder having radius \(r_7 \), length \(L_7 = L_7E \) and lateral area \(S_7 = S_7E \), (\(S_8 \)) the ring-shaped base surface of a stationary horizontal
Klimenta, D. O., et al.: Novel Approach to Analytical Modelling of Steady-State Heat Transfer...

1532

THERMAL SCIENCE: Year 2017, Vol. 21, No. 3, pp. 1529-1542

hollow cylinder having outer radius \(r_8 = r_9 \), length \(L_8 = L_9 \), and base area \(S_8 = S_9 \), the lateral surface of a rotating horizontal cylinder having radius \(r_8 \), length \(L_9 \), and lateral area \(S_8 \), and \((S_{10}) \) the base surface of a rotating disk having radius \(r_{10} = r_9 \), thickness \(L_{10} = 0 \) m and base area \(S_{10} \). Equivalent geometric representation of a TEFC induction motor by using the \(S_1, S_2, \ldots, S_9 \) and \(S_{10} \) surfaces, that is, the equivalent TEFC induction motor is shown in fig. 1.

The equivalent dimensions are determined such that surface areas of the equivalent geometric representations of the frame and end-shields match with the actual surface areas of the same elements. According to this principle, \(S_{3E} + S_{4E} \) is the actual outer surface area of the drive end-shield, \(S_{7E} + S_{8E} \) is the actual outer surface area of the non-drive end-shield, and \(S_{5E} \) is equal to \(S_{6E} \). Moreover, \(S_{5E} + S_{6E} \) is the actual outer surface area of the finned frame, terminal box and two mounting feet.

Basic calculations lead to the following formulas:

\[
L_{2E} = L' - L_{3E}
\]

(1)

\[
L_{7E} = \frac{S_{7E} + S_{8E} - \pi(r_9^2 - r_5^2)}{2\pi r_5}
\]

(2)

\[
L_{9E} = \frac{S_{9E} + S_{8E} - \pi(r_9^2 - r_5^2)}{2\pi r_5}
\]

(3)

\[
L_{9E} = L - L_{2E} - L_{3E} - L_{5E} - L_{7E}
\]

(4)

\[
r_{5E} = r_5 + H_{FE}
\]

(5)

where \(L' \) is the distance from the flat surface of the drive shaft extension to the end of the cooling channels, \(L \) – the length of the shaft, and \(H_{FE} \) – the height of the equivalent cooling fins in m, which according to fig. 1(b) is:

\[
H_{FE} = \frac{S_{5E} + S_{9E} - 2\pi r_5 L_9}{2L_9 N_{FE}}
\]

(6)

where \(N_{FE} \) is the number of the equivalent cooling fins (an integer value). Also, according to fig. 1(b), the width of the equivalent cooling channels (that is, the spacing between equivalent fins) at half the height \(H_{FE} \) in meters is:

\[
D_{FE} = 2r_{nE} \sqrt{1 - \cos^2 \frac{\alpha_f}{2} - \Delta_f}
\]

(7)

where \(r_{nE} = (r_5 + r_{nE})/2 \) is the radius of the circle which divides the equivalent fins into two halves, \(\Delta_f \) – the thickness of an actual cooling fin, and \(\alpha_f = 360/N_{FE} \) – the angle between the radial axes of every two adjacent equivalent fins in degrees. The radial axis of an equivalent fin represents a straight line passing through the center points of the shaft and the equivalent fin. Moreover, in accordance with fig. 1, \(x \) is the distance from the fin base measured along the radial axis in m.

Model for steady-state heat transfer from the motor exterior

The steady-state heat transfer from the exterior of the equivalent TEFC induction motor is discussed in this section and illustrated in fig. 2. The average values of the heat transfer coeffi-
The heat transfer coefficients corresponding to the forced-convection processes \(Q_{c1}, \ldots, Q_{c9} \) [W m\(^{-2}\)] are \(h_{c1}, h_{c2}, \ldots, h_{c9} \) and \(h_{c10} \) [W m\(^{-2}\) K\(^{-1}\)], respectively. Also, the heat transfer coefficients corresponding to the radiation processes \(Q_{r1}, \ldots, Q_{r9} \) are \(h_{r1}, h_{r2}, \ldots, h_{r9} \) and \(h_{r10} \) [W m\(^{-2}\) K\(^{-1}\)], respectively. Assuming a number of the previously-mentioned parameters are mutually equal, the rates of heat transfer processes by forced convection \(Q_{c1}, Q_{c2}, \ldots, Q_{c9}, Q_{c10} \) and radiation \(Q_{r1}, Q_{r2}, \ldots, Q_{r9}, Q_{r10} \) need to be estimated for the equivalent TEFC induction motor under different operating conditions.

Since the exterior of the TEFC induction motors typically consists of two different types of surface (polished surfaces of the shaft extensions and colored surfaces of the frame and end-shields), the number of the heat transfer coefficients corresponding to the radiation processes can be reduced in the following manner: \(h_{r1} = h_{r10} = h_{sb} \) – for the shaft extensions, and...
The heat transfer coefficients h_{rSh} and h_r correspond with the appropriate thermal emission coefficients ε_{Sh} and ε_r, respectively.

The iteration procedure for calculation of the heat transfer coefficients requires knowledge of T_s, which is initially unknown. To obtain an initial estimate of T_s, the same numerical value should be taken for all unknown heat transfer coefficients (for example 50 W/m²K). Therefore, an initial estimate of T_s can be obtained from:

$$Q_{tot} = \sum_{i=1}^{10} (Q_{r,i} + Q_{s,i}) S_i$$

More precisely:

$$T_s = \frac{Q_{tot}}{\Sigma_{r} + \Sigma_{s}} + T_a$$

where

$$\Sigma_r = \sum_{i=1}^{10} h_r S_r, \quad \Sigma_s = \sum_{i=1}^{10} h_{rSh} S_i,$$

and Q_{tot} [W] is the total amount of power lost within the TEFC induction motor. The total power loss Q_{tot} is usually measured and consists of the following five components [17]: the stator winding losses, the iron-core losses, the rotor winding losses, the friction and windage losses and the stray losses.

The heat fluxes due to forced convection from the outer surfaces of the motor to the surrounding air are modelled in a usual manner by an equation of the form:

$$Q_{ci,s} = h_{ci,s} (T_s - T_a)$$

where $Q_{ci,s}$ and $h_{ci,s}$ represent one of the aforementioned heat fluxes due to forced convection and its corresponding heat transfer coefficient.

The forced-convection heat transfer coefficients, $h_{ci,s}$, equal:

$$h_{ci,s} = \frac{K_{Nu} \lambda_{kt}}{L_c}$$

where K_{Nu} is the dimensionless coefficient which equals 1 for laminar and turbulent forced convection from all the aforementioned surfaces except for turbulent forced convection from the flat and cylindrical surfaces of end-shields, λ_{kt} – the average Nusselt number which should be calculated using different empirical correlations, k_t [W/m°C] – the thermal conductivity of the surrounding air, and L_c [m] – an appropriate characteristic length. The values of coefficient K_{Nu} for turbulent forced convection from the end-shields in this iteration procedure are specified in the following manner [9]:

$$K_{Nu} = K_{y,y} = 1 + (1.4163 - 1) e^{-4.62 y} \quad \text{for flat outer surfaces of end-shields}, \quad (12)$$

and

$$K_{Nu} = K_{y,y} = 1 + (1.6776 - 1) e^{-13.087 y} \quad \text{for cylindrical outer surfaces of end-shields} \quad (13)$$

where $K_{y,y}$ is the turbulence factor model. At a film temperature $T_f = (T_s + T_a)/2$, the thermal conductivity, k_t, the kinematic viscosity, ν [m²s⁻¹], and the Prandtl number of air have been read from corresponding input data files and interpolated using a cubic spline.
The average Nusselt number correlations for 3-D shapes which are used to represent the motor exterior, together with the corresponding characteristic lengths, \(L_c \), Reynolds numbers, and references, are presented in tab. 1. Some of these correlations are modified by introducing the Prandtl number to the appropriate power, while others are derived from existing ones for combined heat transfer by using the forced-convection correlations for a single flat plate.

The heat fluxes due to radiation from all the particular outer surfaces of the motor to the surroundings are modelled by the Stefan-Boltzmann law, that is, by the following equation:

\[
Q_{r_{i,s}} = h_{r_i}(T_i - T_a)
\]

where \(Q_{r_{i,s}} \) is one of the aforementioned heat fluxes due to radiation and \(h_{r_i} \) is corresponding heat transfer coefficient, which depends on temperature in the following manner:

\[
h_{r_i} = \alpha_{SB} \epsilon_i(T_i^4 + T_a^4)(T_i + T_a)
\]

where \(\alpha_{SB} \) is the Stefan-Boltzmann constant and \(\epsilon_i \) is the appropriate thermal emission coefficient (\(\epsilon_i \) equals to \(\epsilon_{SB}, \epsilon_F \) or zero).

Moreover, from iteration to iteration the coefficients \(h_{ci} \) and \(h_{ri} \) should be calculated using eqs. (11) and (15), respectively. Each new estimation for \(T_s \) should be calculated by averaging the previously estimated and newly found values of \(h_{ci} \) and \(h_{ri} \). The iteration procedure continues until the difference between the previously estimated and the newly found \(T_s \) becomes sufficiently small. Finally, this iteration procedure uses the final value of \(T_s \) to calculate the final values of \(h_{ci}, h_{ri}, Q_{ci} = Q_{ci,s}S_i \) and \(Q_{ri} = Q_{ri,s}S_i \) where \(Q_{ci}, Q_{ri}, \) and \(S_i \) are one of the aforementioned heat transfer rates due to forced convection, one of the aforementioned heat transfer rates due to radiation and corresponding surface area, respectively.

When all the heat transfer rates due to forced convection and radiation are known, it is possible to determine the temperature distribution along the frame. In order to obtain the best possible longitudinal temperature profile, the following assumptions are also introduced: (1) temperatures of the drive and non-drive end-shields \(T_{s1} \) and \(T_{s0} \) are constant, unequal, \(T_{s1} \) is greater than \(T_{s0} \) and it always holds that \(T_{s1} > T_s > T_{s0} \), (2) longitudinal temperature profiles \(T_s(y) \) for the cooling fins and inter-fin surfaces have the same shapes and change with the distance \(y \) within the range from \(T_{s0} \) to \(T_{s1} \), (3) maximum surface temperature along the frame \(T_{sM} \) and its corresponding longitudinal co-ordinate \(y_M \) are available based on infrared thermography or any other measurement technique, (4) temperatures of the shaft extensions are equal to the temperatures of the appropriate end-shields, and (5) all the heat transfer coefficients due to radiation are constant and depend only on the average temperature \(T_r \).

In accordance with these assumptions for the given \(T_{sM} [K] \) and \(y_M [m] \), the following expression for the longitudinal temperature profile \(T_s(y) [°C] \) is obtained:

\[
T_s(y) = \frac{Q_a + Q_{\sigma}}{[h_{ri}(y) + h_{rj}]S_j} + T_a - 273.157
\]

where

\[
h_{rj}(y) = K_{rj}h_{rj} = \frac{K_{r\sigma}Q_{\sigma} + Q_{\sigma}}{K_{r\sigma}S_j(T_{sM} - T_a)} - h_{rj}
\]
Table 1. Forced-convection correlations for elementary 3-D shapes

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Flow regime</th>
<th>Recommended correlation</th>
<th>(L_c [m])</th>
<th>Reynolds number and intended range of its application</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Rotating disk</td>
<td>Laminar</td>
<td>(\text{Nu} = \frac{0.4964 \text{Re}^{0.5}}{0.6/\text{Pr}+0.95/\text{Pr}^{0.83}})</td>
<td>(r_1)</td>
<td>(\frac{\Omega r_1^2}{\nu} < 2.4 \times 10^3)</td>
</tr>
<tr>
<td>1st</td>
<td></td>
<td>Turbulent</td>
<td>(\text{Nu} = 0.0168 \text{Re}^{0.43})</td>
<td>(r_1)</td>
<td>(\frac{\Omega r_1^2}{\nu} \geq 2.4 \times 10^3)</td>
</tr>
<tr>
<td>3rd</td>
<td>Stationary horizontal cylinder</td>
<td>Laminar</td>
<td>(\text{Nu} = 0.108 \text{Re}^{0.686} \text{Pr}^{0.4})</td>
<td>(2r_3)</td>
<td>(\frac{2Vr_3}{\nu} < 6 \times 10^4)</td>
</tr>
<tr>
<td>3rd</td>
<td></td>
<td>Turbulent</td>
<td>(\text{Nu} = 0.137 \text{Re}^{0.862} \text{Pr}^{0.4})</td>
<td>(2r_3)</td>
<td>(\frac{2Vr_3}{\nu} < 6 \times 10^4)</td>
</tr>
<tr>
<td>5th</td>
<td>Stationary horizontal finned cylinder</td>
<td>Laminar</td>
<td>(\text{Nu} = \text{Nu}^{(2)} \left[1 - \frac{0.02 \text{H}{\text{eff}}}{\text{D}{\text{eff}}} \right])</td>
<td>(L_s)</td>
<td>(\frac{V \text{L}_{s}}{\nu} < 6 \times 10^4)</td>
</tr>
<tr>
<td>5th</td>
<td></td>
<td></td>
<td>(\text{Nu}^{(2)} = \text{Nu}^{(1)} \left[1 - 0.12 \left(\frac{\text{H}{\text{eff}}}{\text{D}{\text{eff}}} \right)^{1/3} \right])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td></td>
<td></td>
<td>(\text{Nu}^{(1)} = 0.664 \text{Re}^{1.2} \text{Pr}^{0.3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td></td>
<td>Turbulent</td>
<td>(\text{Nu} = \text{Nu}^{(2)} \left[1 - \frac{0.02 \text{H}{\text{eff}}}{\text{D}{\text{eff}}} \right])</td>
<td>(L_s)</td>
<td>(\frac{V \text{L}_{s}}{\nu} \geq 6 \times 10^4)</td>
</tr>
<tr>
<td>5th</td>
<td></td>
<td></td>
<td>(\text{Nu}^{(2)} = \text{Nu}^{(1)} \left[1 - 0.09 \left(\frac{\text{H}{\text{eff}}}{\text{D}{\text{eff}}} \right)^{1/2} \right])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td></td>
<td></td>
<td>(\text{Nu}^{(1)} = 0.037 \text{Re}^{4.3} \text{Pr}^{0.3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>Stationary horizontal finned cylinder</td>
<td>Laminar</td>
<td>(\text{Nu} = \text{Nu}^{(3)} \left[1 - 0.35 \left(\frac{\text{H}{\text{eff}}}{\text{D}{\text{eff}}} \right)^{1/3} \right])</td>
<td>(L_s)</td>
<td>(\frac{V \text{L}_{s}}{\nu} < 6 \times 10^4)</td>
</tr>
<tr>
<td>6th</td>
<td></td>
<td></td>
<td>(\text{Nu}^{(3)} = \text{Nu}^{(1)} \left[1 - 0.3 \left(\frac{\text{H}{\text{eff}}}{\text{D}{\text{eff}}} \right)^{1/3} \right])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td></td>
<td></td>
<td>(\text{Nu}^{(1)} = 0.664 \text{Re}^{1.2} \text{Pr}^{0.3})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
is the distance-dependent heat transfer coefficient due to forced convection from the cooling fins or inter-fin surfaces in [W m⁻² K⁻¹], \(j\) is the subscript denoting the cooling fins or inter-fin surfaces, \(h_{j,y} = \frac{(Q_{c,j} + Q_{r,j})/(S(T_{u,j} - T_a)) - h_{j}}{K_{\xi,y}}\) – the heat transfer coefficient due to forced convection from the cooling fins or inter-fin surfaces that corresponds to the distance \(y \rightarrow \infty\) in [W m⁻² K⁻¹], \(K_{\xi,y}\) – the turbulence factor model for fins and inter-fin surfaces defined by [9]:

\[
K_{\xi,y} = 1 + (1.8 - 1)e^{-1.3057y}
\]

and \(K_{\xi,y}\) is the value of the turbulence factor model (18) at the distance \(y = y_{MF}\). There are only two values of the subscript \(j\), namely 5 – for the cooling fins and 6 – for the inter-fin surfaces.

The remaining heat transfer coefficients due to forced convection from the surfaces on the drive and non-drive sides of the motor are recalculated by means of:

\[
h_{c,i} = \frac{Q_{c,i} + Q_{r,i}}{S_i(T_{u,i} - T_a)} - h_{c,i}
\]

\[
h_{r,i} = \frac{Q_{r,i}}{S_i(T_{u,i} - T_a)} - h_{r,i}
\]

respectively, where the subscript \(i\) is not equal to 2, \(j\), or 9.
Results and discussions

The proposed analytical heat transfer model is applied to the 4 and 15 kW TEFC induction motors from [25], where these motors were analyzed experimentally and by means of the lumped-parameter circuits. All the necessary input data for applying the model is also taken from [25]. Therefore, this left open the possibility to compare the results obtained by the proposed model to the existing ones.

The results related to the 4 kW motor are presented in fig. 3 and tab. 2, while the results related to the 15 kW motor are presented in fig. 4 and tab 3. Figures 3 and 4 show the longitudinal changes in the heat transfer coefficients \(h_c \) and \(h_n \) as well as in temperature \(T_s \) of the 4 and 15 kW motors, respectively. Each of the operating regimes in these two figures has a load torque, \(\tau \), which is approximately equal to the appropriate rated-load torque. Moreover, the supply frequencies, \(f \), and the total power losses, \(Q_{tot} \), are different. The distance-dependences of \(h_c \) and \(h_n \) are modelled by eq. (17), while the distance-dependences of \(T_s \) are modelled by eq. (16). Figures 3 and 4 also show measured data appropriate to each of the operating regimes.

![Figure 3. Longitudinal change in heat transfer coefficients and surface temperature of the 4 kW TEFC induction motor: (a) at \(f = 48.8 \) Hz, \(\tau = 26.7 \) Nm, and \(Q_{tot} = 768 \) W and (b) at \(f = 69.9 \) Hz, \(\tau = 26.6 \) Nm, and \(Q_{tot} = 861 \) W](image)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(S_i)</th>
<th>(f = 48.8) Hz, (\tau = 26.7) Nm, and (Q_{tot} = 768) W</th>
<th>(f = 69.9) Hz, (\tau = 26.6) Nm, and (Q_{tot} = 861) W</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_c)</td>
<td>(h_n)</td>
<td>(Q_{ci})</td>
<td>(Q_{ri})</td>
</tr>
<tr>
<td>1</td>
<td>6.1575 \times 10^{-4}</td>
<td>15.942</td>
<td>0.531</td>
</tr>
<tr>
<td>2</td>
<td>7.5630 \times 10^{-4}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2.0842 \times 10^{-2}</td>
<td>25.238</td>
<td>28.04</td>
</tr>
<tr>
<td>5</td>
<td>1.8448 \times 10^{-2}</td>
<td>Fig. 3(a) – solid line</td>
<td>336.682</td>
</tr>
<tr>
<td>6</td>
<td>8.8307 \times 10^{-2}</td>
<td>Fig. 3(a) – dashed line</td>
<td>140.818</td>
</tr>
<tr>
<td>7</td>
<td>2.0842 \times 10^{-2}</td>
<td>97.411</td>
<td>65.674</td>
</tr>
<tr>
<td>8</td>
<td>2.9158 \times 10^{-2}</td>
<td>70.447</td>
<td>65.969</td>
</tr>
<tr>
<td>9</td>
<td>6.2654 \times 10^{-4}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>7.0686 \times 10^{-4}</td>
<td>27.688</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Table 2. Heat transfer coefficients and heat transfer rates for the outer surfaces of the 4 kW TEFC induction motor at two different operating regimes
Generally, the length of the frame can be divided into three zones: drive end-winding, stator core, and non-drive end-winding. The lengths of the drive and non-drive end-winding zones are approximately equal to each other and these lengths amount to 0.035 and 0.07 m for the 4 and 15 kW motors, respectively. The lengths of the stator core zones of the 4 and 15 kW motors are 0.105 and 0.23 m, respectively. Accordingly, the results shown in figs. 3 and 4 indicate that a good agreement exists between the calculated and measured data for the stator core zones of both motors. The percent deviations between the measured data and the data obtained by the proposed analytical model for stator core zones are lower than 12.5% for the 4 kW motor and lower than 6.3% for the 15 kW motor. Similarly, for end-winding zones, the percent deviations are between 3.7~17.2% for the 4 kW motor and between 6 ~ 10.9% for the 15 kW motor. Based on the results shown in these figures, it can also be seen that the percent deviation gradually increases as the supply frequency (that is, the angular velocity of the rotor) increases.

Tables 2 and 3 summarize the analytical results obtained for all the operating regimes of the 4 and 15 kW motors. For each operating regime a set of 15 to 17 iterations was needed. The heat transfer coefficients and the heat transfer rates are calculated using a MATLAB

Table 3. Heat transfer coefficients and heat transfer rates for the outer surfaces of the 15 kW TEFC induction motor at two different operating regimes

<table>
<thead>
<tr>
<th>i</th>
<th>S_i [m²]</th>
<th>f = 47.9 Hz, τ = 148 Nm, and Q_Tot = 2631 W</th>
<th>f = 29.7 Hz, τ = 147 Nm, and Q_Tot = 2039 W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>h_i [Wm⁻²K⁻¹] Q_i [W] h_i [Wm⁻²K⁻¹] Q_i [W]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.8096×10⁻⁴</td>
<td>10.39 1.267 5.6421 0.42549</td>
<td>8.0824 1.056 5.7295 0.46428</td>
</tr>
<tr>
<td>2</td>
<td>2.0029×10⁻²</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>3</td>
<td>6.8534×10⁻²</td>
<td>12.73 58.528 6.6998 19.136</td>
<td>8.7454 43.948 6.8037 20.881</td>
</tr>
<tr>
<td>5</td>
<td>8.1121×10⁻¹</td>
<td>Fig. 4(a) – solid line 1391.432 6.6998</td>
<td>226.5 Fig. 4(b) – solid line 986.052 6.8037 247.16</td>
</tr>
<tr>
<td>6</td>
<td>3.0496×10⁻¹</td>
<td>Fig. 4(a) – dashed line 446.9 6.6998</td>
<td>85.15 Fig. 4(b) – dashed line 316.7 6.8037 92.915</td>
</tr>
<tr>
<td>9</td>
<td>1.0653×10⁻²</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>10</td>
<td>1.9635×10⁻²</td>
<td>20.203 1.374 5.6421 0.46168</td>
<td>15.619 1.146 5.7295 0.50378</td>
</tr>
</tbody>
</table>

Figure 4. Longitudinal change in heat transfer coefficients and surface temperature of the 15 kW TEFC induction motor: (a) at f = 47.9 Hz, τ = 148 Nm, and Q_Tot = 2631 W, and (b) at f = 29.7 Hz, τ = 147 Nm, and Q_Tot = 2039 W.
program. From the simulation results it can be noticed that the average temperature, T_s, equals to 61.76, 56.257, 61.675, and 64.781 °C for the operating regime presented in figs. 3(a), 3(b), 4(a), and 4(b) (at the air temperature $T_a = 20$ °C), respectively. From the same simulations it can be noticed that the average values of the coefficients h_5 and h_6 equal to: 43.701 and 38.186 W/m²K – for the regime presented in fig. 3(a), 59.741 and 52.201 W/m²K – for the regime presented in fig. 4(a), 27.144 and 23.19 W/m²K – for the regime presented in fig. 4(b), respectively. Moreover, the temperature T_{sM} and its corresponding coordinate y_{sM} are taken from measured data, figs. 3(a), 3(b), 4(a) and 4(b).

In comparison with the result calculated by the lumped-parameter circuit from [25], the average temperature $T_s = 61.675$ °C of the 15 kW motor at rated load conditions is lower by 8.125 °C. However, that is not the case with the 4 kW motor at rated load conditions. For the 4 kW motor at rated load conditions this difference is only 0.16 °C. Further comparison of differences between these two models would be unnecessary.

By knowing the amounts of heat dissipated through the end-shields, it is possible to calculate all the heat transfer coefficients of the motor exterior with a satisfactory accuracy [25]. According to [25], the amounts of heat dissipated through the drive and non-drive end-shields, respectively, are 9, and 19% of Q_{tot} for the 4 kW motor at rated operation, and 6, and 12% of Q_{tot} for the 15 kW motor at rated operation. According to tabs. 2 and 3, the portions of heat dissipated through the drive and non-drive end-shields amount to: (1) 8.833% and 18.963% – for the regime presented in fig. 3(a), (2) 8.661% and 17.932% – for the regime presented in fig. 3(b), (3) 6.185% and 12.029% – for the regime presented in fig. 4(a), and (4) 6.514% and 12.852% – for the regime presented in fig. 4(b). The portions (1) and (3) agree well with the corresponding data given in [25]. Moreover, it can be noticed that the portions of heat dissipated through the end-shields decrease as the supply frequency increases (or increase as f decreases).

Conclusions

The conclusions arising from the present paper are as follows.

- The proposed approach to analytical modelling of steady-state heat transfer from the exterior of TEFC induction motors excludes rough approximations, it is scientifically and empirically based, rather simple and provides more accurate results in comparison with the common ones, which are based on the lumped-parameter circuits.
- The procedure for modelling the geometry of TEFC induction motors is based on empirically confirmed facts and its implementation does not require a large amount of input data.
- A set of correlations, based on the one-n^{th}-power law, for the profiles of air-flow velocity along the cooling channels was taken from [9] and successfully applied to the proposed analytical model.
- Three models for the turbulence factor were taken from [9] and successfully introduced to the proposed analytical model. The turbulence factor models apply to all types of TEFC induction motors.
- A set of modified and corrected correlations for heat transfer due to forced convection from the rotating disks, stationary horizontal cylinders, fins and inter-fin surfaces is proposed and successfully applied.
- According to figs. 3 and 4, the percent deviations between the measured surface temperatures and the surface temperatures obtained by the proposed analytical model are between 0–17.2% for the 4 kW motor at given operating regimes and between 0–10.9% for the 15 kW motor at given operating regimes. The deviation increases as the supply frequency increases.
The presented analytical results correspond to a greater or lesser extent to the results obtained by the lumped-parameter circuits. For the 4 and 15 kW motors at rated load conditions the surface temperatures differ amongst themselves by 0.16 and 8.125 °C, respectively.

The portions of heat dissipated through the drive and non-drive end-shields decrease as the supply frequency increases.

The heat transfer coefficients obtained by means of the proposed analytical model can be used further for the analytical thermal modelling of the interior parts of the induction motors or for the appropriate finite element analysis.

Acknowledgment

This research was conducted within the project 259873 funded by the Academy of Finland.

References

