

Ship energy efficiency in simulations and energy system analysis

Modelling and Optimization of Ship Energy Systems October 23 - 25, 2017. EPFL Sion, Switzerland

Invited speaker Assoc. Prof. Kari Tammi, Aalto University Jari Vepsäläinen, Klaus Kivekäs, Juuso Autiosalo, Guangrong Zou

Content

Background

Previous examples

- HT water control
- Power turbine usage
- Shaft generator usage
- Power demand estimation

Current work on uncertainty in power system design

- Cycle uncertainty
- Robust design
- Digital twin

Future outlook

Aalto University

Background & team

Kari Tammi, Aalto University 2015-Earlier Research Professor at VTT: electric machines, energy efficiency, electric vehicles, dynamics & control At CERN 1997-2000 (LHC/CMS)

Teaching: Mechatronic machine design (5 cr), Vehicle mechatronics (5 cr), Design of electric vehicle systems at IIT Guwahati, India 2016

Panu Sainio. Chief Engineer, expertise: vehicle technology, hybridization, electric powertrain

Shashank Arora. Post-doc, expertise: batteries, mechanical modelling

Klaus Kivekäs. Electric powertrain optimization with statistical methods

Jari Vepsäläinen. Multi-objective robust design of electric powertrain

Juuso Autiosalo. Digital twin for industrial products

Ship Energy Flow Modelling

Aalto University

Motivation – Why Ship Energy Efficiency?!

- 95% of worldwide transport of goods by ships
- Increasingly high fuel cost
- Accumulatively strict IMO rules

(Source: Lloyd's Register, (2012), Implementing the Energy Efficiency Design Index)

Fuel costs as a percentage of total operational

costs for different ship types

 \rightarrow Fuel cost for container ships is the highest among all the other ship types

 \rightarrow Many are struggling to balance their financial sheets

Motivation – How to Improve Ship Energy Efficiency?!

Challenge

How to evaluate the overall effectiveness of each solution? How to estimate the Return On Investment of each solution?

Multi-Domain Energy Flow Simulation in Brief

□ Started in 2009

□ Aim at a general tool for ship power plant simulation

- To find globally optimal ways to improve ship overall energy efficiency
- To be modelled at a system level, ONLY main sub-systems included

□ Simulator modelling environment → Matlab/Simulink/Simscape

- Different physical interactions are modelled in DOMAINS in Simscape
 - Available: Mechanical, Electrical, Thermal, pneumatic
 - Self-developed: Electrical AC, Thermalfluid, Steam
- Component libraries for each domain using Simscape language

Multi-Domain Energy Flow Simulation – Example

Helpful to thoroughly understand the energy distribution and consumption
 Potential to utilize the simulation method in different types of ships

Ship Energy Flow Simulator

Fuel_Comp

Fuel Real

Fuel_Sim

Ċ

Real

IJ

DG Diff

DG_Sw

DG Sim

11/0018

□ Sub systems

- Electrical AC
- 4 DG sets
- HT/LT FWC
- STEAM
- Data I/O & processing, result display

Model validation results

 $ratio = \frac{Simulation \ results}{measured \ data}$

□ DG power output

□ Ship fuel consumption

The energy flow simulator can accurately represent the energy flow distribution in the case ship.

HT water control example

□ To test and verify different energy saving technologies and ideas

QUESTION: Can we harvest a part of the wasted heat energy by tuning the set-point of valve 4V02?

HT water control example

□ To specify the set-point of valve 4V02 as a function of engine load

Power and steam turbine usage

14

Shaft generator usage

- Generator mode
- Parallel generation

• Motor/booster mode

(Source: Rolls-Royce, Hybrid shaft generator propulsion system upgrade)

Harvest energy from ME shaft to generate electricity, less fuel consumption
 More flexible energy utilization to achieve higher overall energy efficiency

Results

- Different energy saving solutions evaluated under operation cycles recoded on-board
- Improved HT water temperature control

 → ROI 1 year, annual fuel savings 50 kUSD
 (HT/LT 3-way valve), [1]
 - In collaboration with ABB & Deltamarin
- Power turbine in waste heat recovery →
 ROI 2 years, annual fuel savings 2 M€, [2-3]
 - In collaboration with ABB

- 1. Zou G., Elg M., Kinnunen A., Kovanen P., Tammi K. & Tervo K. *Modeling ship energy flow with multidomain simulation*. CIMAC.2013
- 2. Zou G., Kinnunen A., Tervo K., Orivuori J., Vänskä K. & Tammi K. *Evaluate Ship Energy Saving Scenarios Using Multi-Domain Energy Flow Simulation*. COMPIT.2014
- 3. Solution developed was installed in 14 new container ships. *ABB to provide waste heat recovery systems for 14 container ships*. World Maritime News. Nov 15, 2013

http://worldmaritimenews.com/archives/97685/abb-to-provide-waste-heat-recovery-systems-for-14container-ships/

How to Predict Ship energy Flows?

Aalto University

Energy flow prediction

- How to estimate energy flows within ship based on incomplete measurement information?
- How to predict / forecast the energy flows 6-32 hours ahead as accurately as possible?
- How to operate and control ship and ship systems as energy efficiently as possible?

Marine engine cooling water circuit

Measured signals

- Observed signals
- Signals to predict

-		
T	-	temperature
'n	-	mass flow
Ż	-	heat
κ	-	thermostat coefficient
<u>Indices</u>		
in	-	inlet
out	-	outlet
Е	-	engine
BP	-	bypass
HE	-	heat exchanger
MIX	-	after mixer
WHR	-	waste heat recovery
Н	-	heat from load

Signal estimation results (RLS)

- The "low variation" load profile has been used
- A constant set point for T_{mix} has been used
- Details are presented in the attached, updated report

Estimated parameters

Estimated $\dot{Q}_{\rm E,out}$

Estimated $\dot{Q}_{\rm WHR}$

Uncertainty in machinery design Cases electric vehicles

Driving cycle and passenger load uncertainty - approach

- How much do the variations in the driving cycle and passenger load on a single bus route affect the energy consumption?
- Create a method to generate varying synthetic cycles and passenger flows and then run them with a simulation model.
- Case example: Line 11 in Espoo, battery electric bus
- Note: "driving cycle" substantially more complicated in ships due to high auxiliary loads

Driving cycle and passenger load uncertainty - methods

- Divide route into segments between bus stops
- Create new cycles by randomly choosing respective segments from measured cycles
- Segments need to be connected
- The bus stops at which the vehicle stops are also randomized

Passenger flow is sampled from a multivariate distribution

Driving cycle and passenger load uncertainty - results

- Energy consumption distribution acquired
 - Resembles normal distribution
 - Mean: 0.913 kWh/km, Range: 0.301 kWh/km
- Consumption correlates
 strongly with number of stops
 - Pearson coefficient: 0.778
- Lesser correlation with passenger load

Aalto University

Robust Design – Approach (1/2)

- Noise factors cause unwanted variation in vehicle performance
- Robust design = make the system insensitive to these variations
- Identify noise factors and their range of values

Aalto University

• Study control factors that reduce the effect of noise factor variation

Robust Design – Approach (2/2)

 Robustly optimize control **Payload** KG factors to guarantee long lasting quality design, without **User Behavior** unnecessary oversizing of components Temperature Age & Wear **Energy Storages** Waves & Storms Propulsion Aalto University

Robust Design – Methods

Robust Design – Results Case: Electric City Bus

The consumption varied from 0.4 to 2.3 kWh/km in the selected route

Key noise factors

- 1. Ambient temperature
- 2. Rolling resistance
- 3. Mission
- 4. Driver aggressiveness
- 5. Traffic
- 6. Payload
- 7. Headwind

- 1. Can be inspected with all senses on location
- 2. Obeys laws of physics
- 3. Doesn't have intelligence
- 4. Is constantly changing

- 1. Can be inspected through a user interface from anywhere around the world
- 2. Laws of physics must be simulated
- 3. Can have artificial intelligence that can be used to control physical twin
- 4. Must be updated to match the physical twin

IoT & Digital Twin, Approach

Ship energy systems are constantly producing vast amount of data. This data could be utilized better with enhanced connectivity and data management

Currently, there is no standardized way of transferring and displaying data. Standardizing work is necessary, and good standards can only be achieved through experience

Functional demonstrators will crucial for creating the future standards.

IoT & Digital Twin, Benefits

Benefits of Digital Twin come from multiple factors:

- 1. Deeper knowledge of the energy process state
- 2. Centralized data interface
- 3. Deductions from comparing large populations with e.g with artificial intelligence
- 4. Truly integrating connected products to each other with standardized data formats
- \rightarrow Energy system optimisation
- \rightarrow Operation optimisation
- → Fleet management

Future outlook

11.1.2018 32

Technologies (to be) studied

IoT: automation systems provide with various measurements Computer power enables on-line control and e.g.

- Uncertainty and sensitivity in design
- Tracking simulator approaches

Emerging technologies:

- Electrification (hybridization), DC grid, variable AC
- Energy storages, electric and thermal
- Waste Heat Recovery (ORC, connection to energy storages)
- Absorption chillers
- Power turbines and multi-stage turbo charging

SET final publication in VTT Technology series http://www.vtt.fi/inf/pdf/technology/2017/T306.pdf.