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Abstract: Pyrometallurgical metal production results in side streams, such as dusts and slags, which
are carriers of metals, though commonly containing lower metal concentrations compared to the main
process stream. In order to improve the circular economy of metals, selective leaching of copper from
an intermediate raw material originating from primary base metal production plant was investigated.
The raw material investigated was rich in Cu (12.5%), Ni (2.6%), Zn (1.6%), and Fe (23.6%) with the
particle size D80 of 124 µm. The main compounds present were nickel ferrite (NiFe2O4), fayalite
(Fe2SiO4), cuprite (Cu2O), and metallic copper. Leaching was studied in 16 different solutions.
The results revealed that copper phases could be dissolved with high yield (>90%) and selectivity
towards nickel (Cu/Ni > 7) already at room temperature with the following solutions: 0.5 M HCl,
1.5 M HCl, 4 M NaOH, and 2 M HNO3. A concentration of 4 M NaOH provided a superior selectivity
between Cu/Ni (340) and Cu/Zn (51). In addition, 1–2 M HNO3 and 0.5 M HCl solutions were
shown to result in high Pb dissolution (>98%). Consequently, 0.5 M HCl leaching is suggested to
provide a low temperature, low chemical consumption method for selective copper removal from the
investigated side stream, resulting in PLS (pregnant leach solution) which is a rich in Cu and lead
free residue, also rich in Ni and Fe.

Keywords: base metal production; intermediate; nickel iron oxide; fayalite; cuprite; leaching

1. Introduction

The growth in metal production has resulted in a gradual decrease in metal grades of ore deposits.
Therefore, new technologies and flow-sheets are needed for the more efficient utilization of ore
processing tailings, metallurgical slags, flue dusts, etc. In the base metal production, various solid
side-streams are generated, such as slags, dusts, and leach residues. Inherently, these side-streams
contain valuable base metals.

Thermodynamics determines the distributions of metals between metal and slag in high
temperature processing [1–3]. In addition, kinetics and physical entrainment cause metal traces ending
up to the slag in different steps of the production. About 60% of the world’s copper and 50% of world
sulphidic nickel production comes from plants using flash smelting furnace (FSF) technologies [4].
The main advantages of the FSF processes are high sulfur recovery, flexibility to feed materials and the
efficient energy utilization [5]. The subsequent converting takes place in two sequential steps:
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(a) The FeS elimination or slag making stage

2FeS(s) + 3O2(g) + 2SiO2(s) = 2FeO·SiO2(s) + 2SO2(g) (1)

(b) The copper making stage
Cu2S(s) + 2O2(g) = 2Cu (s) + 2SO2(g) (2)

As the process throughputs are generally high [6–8] the slags of the primary production can
present a valuable secondary raw materials for metal recovery in future.

The composition of slags in base metal processing vary depending on the process and raw material.
Copper flash smelting furnace slag generally consist of 30–50% Fe, 30–40% SiO2, 1–10% Al2O3, 1–16%
CaO and 0.2–1.2% of Cu [9]. Copper is mainly entrapped in the slag as chalcocite and metallic copper,
as well as trace copper oxide [10]. The converter slag is usually characterized by 20–25% SiO2, 40–45%
Fe, and 5% Cu. The slags of anode furnace differs from the converter slags due its very high copper
content, containing typically above 50 wt. % CuOx, 30–35 wt. % FeO, 5–15 wt. % SiO2, and minor
amounts of As, Sb, and Pb [11,12]. Nickel flash smelting furnace slag has been reported to contain
8.7% Fe2SiO4, 10% Fe3O4, 20.5% SiO2, 3.1% Al2O3, 1.3% MgO, and 1.1% CaO [13]. Generally, the slag
former used is SiO2.

Industrial smelting and converting slags are cleaned before discarding them. In most cases an
electric furnace settling or reduction is used, but some copper smelters use milling and slag flotation.

In the literature, new methods for slag cleaning have been studied for eliminating trace element
or cutting their internal circulations in the smelter. Thus, the impurity levels in the slags and anode
copper will be lowered. Roasting of the converter slag with ferric sulphate and selective sulphation
roasting are the documented pyrometallurgical methods used for the recovery of nickel, copper and
zinc [14,15]. Also, pyro-hydrometallurgical methods involving acid roasting or thermal decomposition
followed by water leaching have been suggested [16–18]. Various hydrometallurgical methods have
been developed using lixiviants such as acids, bases, and salts for base metal extraction. Atmospheric
leaching of different slag fractions has been studied in H2SO4, FeSO4, (NH4)2SO4, FeS2, NaCl, and
FeCl2 media [19–23]. In addition, pressure leaching of copper slag containing 4.03% Cu, 0.48% Co, and
1.98% Ni at 130 ◦C have resulted in significant recoveries of Cu, Co, and Ni, amounting to 90% [24].
Leaching with aqueous sulfur dioxide has also proven effective in recovering 77% Co and 35% Ni from
a nickel smelter slag [25].

The current study was undertaken to investigate the dissolution behaviour of selected metals,
from the Cu, Ni, Fe, and Zn rich intermediate of base metal production. The focus was to dissolve
copper selectively in order to produce PLS rich in copper and a residue with Fe and Ni, applicable for
recovery of metals. The lixiviants used in the present study were 0.5–0.5 M HCl, 0.5–3.06 M H2SO4,
1–2 M HNO3, 0.5 M NaCl + 0.1 M CuCl2, 4.5 M NaCl + 0.5 M CuCl2, 4.5 M NaCl + 0.1 M CuCl2, and 4
M NaOH.

2. Materials and Methods

Characterization studies by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD),
and Particle Size Distribution (PSD) were conducted to determine the morphology, mineralogical
composition, and elemental distribution of the raw material.

2.1. The Raw Material

Chemical analysis of the raw material was performed by employing microwave-assisted digestion
in aqua regia (ETHOS Touch Control, Milestone Microwave Laboratory Systems, Sorisole, Italy),
as aqua regia is one of the strongest and effective solvent used for metal digestion [26], Table 1.
The solution analyses were conducted by ICP-OES (Inductively Coupled Plasma Optical Emission
Spectroscopy, Perkin Elmer Optima 7100 DV, Waltham, MA, USA) by Milomatic Oy.
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Table 1. Chemical analysis of metals of interest in raw material investigated.

Element Concentration [wt. %]

Cu 12.5
Fe 23.6
Ni 2.6
Al 0.5
Cr 0.1
Zn 1.6
Pb 0.1
As 0.1

The particle size of the crushed intermediate raw material was analyzed by a Mastersizer 2000
laser diffraction particle size analyzer with a Scirocco 2000 Dry Powder Feeder, both manufactured
by Malvern Instruments (UK). Dispersion pressure was varied from 2.0 to 3.0 bar, vibration feed rate
was 50% and measurement time was varied from 12 to 30 s. Fraunhofer diffraction model was used as
an optical model. The particle size distribution of the homogenized raw material is demonstrated in
the volume versus particle size diagram, Figure 1. The size distribution was observed to extend from
1.4 µm to 1905 µm. The cumulative particle size distribution revealed D80 value of 123 µm. The mean
particle size D10 = 13 µm, the surface weighted mean was D32 = 25 µm, and the volume weighted
mean D43 = 114 µm.
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Figure 1. The observed particle size distribution of the homogenized raw material.

An X’Pert PRO-PAN Analytical X-ray diffractometer, operating at an anode current of 40 mA at
45 kV with a Cuka, by Rietveld refinement method [27] using HighScore Plus software (PANalytical),
performed mineralogical analysis of the sample. Fixed Divergence Slit (FDS) 1/2◦ was fitted in the
incident beam path to control the equatorial divergence of the incident beam and fixed incident beam.
A copper mask of 15 mm was fitted in the incident beam path to control the axial width of the incident
beam. Fixed Anti-Scatter Slit (FASS) 1◦ was used to reduce background signal. The XRD analysis of
the raw material by Rietveld refinement suggested a composition of 52.2 wt. % NiFe2O4, 25.0 wt. %
Fe2SiO4 (fayalite), 20.5 wt. % of Cu2O (cuprite), and 2.3 wt. % of metallic Cu, Figure 2.

SEM-EDS analysis for two raw material samples was performed with a LEO 1450 VP (Carl Zeiss,
Oberkochen, Germany) scanning electron microscope (SEM) and a X-MAX-50 mm2 energy dispersive
X-ray spectrometer (EDS) with INCA Software (Oxford Instruments, Abingdon, UK). Tungsten filament
was used as a cathode and the acceleration voltage used was 15 kV.

The raw material samples were cast in epoxy and treated in vacuum, for eliminating gas bubbles
attached into the particles, and prepared for SEM-EDS examination polished sections using standard
wet methods. It can be discerned from Figure 3 that a larger particle of size around 500 µm is
encompassed by smaller particles of particle size ranging 2–50 µm in the raw material. Three phases
could be observed, one of the larger particles and two phases in the smaller particles. The average
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weight percentages of the elements detected in spectrum 1–14 in Figure 3 are presented in Table 2.
The lightest color in the back scattered electron (BSE) image corresponds to the phase of the larger
particle. It consisted of an average of 88.6 wt. % Cu, 1.9 wt. % Fe, 8.8 wt. % O, and 0.6 wt. % Si
(Spectra 1–5), suggesting the presence of Cu and Cu2O (cuprite), as analyzed oxygen eventually is trace
from a surface contamination. The light-gray areas in spectra 6, 9, and 12 correspond to an average of
2.2 wt. % Cu, 52.4 wt. % Fe, 14.7 wt. % Ni, 23.8 wt. % O, and 0.6 wt. % Si (Spectra 6–9, 14), indicating
the three main phases, namely Fe2SiO4, possibly NiFe2O4 and Cu2O. Nevertheless, the dark-gray
region represented by Spectra 10–12, consisted of an average of 3.2 wt. % Cu, 3.2 wt. % Fe, 1.1 wt. %
Ni, 45.8 wt. % O, and 32.3 wt. % Si, corresponding to the presence of almost pure SiO2. Spectra 13
corresponds to epoxy, where samples were casted.
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Table 2. SEM-EDS point analysis of the particles presented in Figure 3.

[wt. %] Spectra #1–5 Spectra #6–9, 14 Spectra #10–12

Cu 88.6 2.2 3.2
Fe 1.9 52.4 3.2
Ni - 14.7 1.1
O 8.8 23.8 45.8
Si 0.6 0.6 32.3

Na - - 0.9
Mg - 1.0 3.7
Al - 1.7 3.6
K - - 1.9
Ca - - 0.7
Ti - 0.8 0.4
Cr - 1.9 -
Zn - 2.0 -
Pb - - 4.3
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2.2. Leaching Experiments

In order to investigate the extraction without external heating, leaching was conducted at ambient
temperature (25 ◦C) for 48 h in several solutions (Table 3). Leaching experiments were conducted in
an Erlenmeyer flasks and the solutions were mixed by an IKA RO 10 Multi Station Digital Magnetic
Stirrer at 300 RPM. The used S/L ratio was 0.025 (5 g solids/200 mL solution). To evaluate the leaching
efficiency of Ni, Zn, Cr, Pb, Cu, Fe, and Al, the solution was filtered after the leaching step and the
filtrate was analysed by AAS (atomic absorption spectrophotometer), using a Varian AA240 (Varian,
Palo Alto, CA, USA), and ICP-OES [28,29].

Table 3. Solutions used in the leaching tests.

Solution Concentrations Chemicals Manufacturer (Grade)

HCl

0.5 M

HCl 37% EMPARTA ACS (for analysis)
1.5 M
2.5 M
3.0 M
5 M

H2SO4

0.51 M

H2SO4 95–97% EMSURE ISO (for analysis)
1.22 M
1.93 M
2.65 M
3.06 M

HNO3 1 M HNO3 65% EMSURE (for analysis)

CuCl2, pH 1
0.5 M NaCl + 0.1 M CuCl2

CuCl2·2H2O VWR Chemicals (technical)4.5 M NaCl + 0.5 M CuCl2
4.5 M NaCl + 0.1 M CuCl2

NaOH 4 M NaOH SIGMA-ALDRICH (technical)

No external oxidation by gas bubbling was used in the experiments. Redox potential was
measured by a Fluke 115 True RMS Multimeter using platinum wire and Saturated Calomel Electrode
(SCE). Mettler Toledo Seven (Easy pH meter) was used for pH measurements, except in the NaOH
solutions, where Hanna Instruments Edge pH meter was employed.
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3. Results and Discussion

Leaching was performed on the raw material to get an insight into the dissolution phenomena
related to Cu, Ni, Zn, and Fe in various lixiviants. Also leaching of trace metals, such as Cr, Pb, and
Al, was explored. The aim was to find a selective, low temperature, and low chemical consumption
leaching procedure for copper present in the raw material. Furthermore, the target was to leave nickel
in the leach residue in the leaching stage.

Table 4 presents the metal yields to the solution in all 16 investigated media. The corresponding
redox potentials, as well as pHs before and after the experiment are presented in Figure 4. It can be seen
that there is some variety in the recovery percentage—this is most likely attributed to the heterogeneous
nature of the investigated raw material with big particle size and wide particle size range combined
with small solid/liquid ratio in the leaching experiments. This leads in to some variation in the
representativeness of each sample, thus also resulting some error in the recovery calculations.

Table 4. Extraction of investigated metals from the raw material (%).

Solution Ni Cu Fe Zn Cr Pb Al

0.5 M HCl 10 * 55 40 20 98 39
1.5 M HCl 18 * 78 48 45 93 56
2.5 M HCl 43 95 81 64 67 97 69
3 M HCl 97 72 54 66 84 99 71
5 M HCl 96 86 74 92 55 97 79

0.5 M H2SO4 35 70 53 63 84 21 51
1.22 M H2SO4 64 77 60 76 56 23 63
1.93 M H2SO4 77 81 82 80 62 23 69
2.65 M H2SO4 86 71 78 86 57 23 65
3.0 M H2SO4 81 65 62 86 56 17 65

4.5 M NaCl + 0.5 M Cu2+ pH 1 1 5 - 1 - 65 7
4.5 M NaCl + 0.1 M Cu2+ pH 1 1 3 - 1 - 62 5
0.5 M NaCl + 0.1 M Cu2+ pH 1 3 61 - 27 - 53 5

1 M HNO3 3 79 - 30 - 98 16
2 M HNO3 4 93 - 30 - * 13
4 M NaOH 0.3 * - 2 - 59 22

* Full leaching.
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3.1. Leaching of Copper

Table 4 shows that copper was dissolved well into most lixiviants investigated. The highest
extraction of Cu was achieved with 1.5 M HCl. Also 4 M NaOH, 0.5 M HCl, 2.5 M HCl, and 2 M HNO3

resulted in yields higher than 93%, and 1 M HNO3,1.22 M H2SO4, and 1.93 M H2SO4 showed >75%
extraction. The chloride leaching experiments (0.1 and 0.5 M of copper (II) as oxidant along with
4.5 M NaCl) showed only minor Cu dissolution (≤5%), most likely due to a final pH close to 3
(see Figure 4), indicating copper precipitation as atacamite [30]. Sulfuric acid concentration increase
was shown to increase Cu extraction up to 80% at 1.93 M, however at higher concentrations the
extraction was decreased, being 65% at 3.0 M H2SO4. The extraction efficiency of copper was found
to be comparatively lower in H2SO4 than in HCl and HNO3 medium (Table 4). Habashi et al. [31]
have suggested that since HCl and HNO3 generate 1 mole of H+ ions when dissolved in water,
they produce similar dissolution efficiency compared to H2SO4, which produces 2 moles of H+ ions.
Also, the extraction efficiency of Cu was higher in 2 M HNO3 than in 1 M HNO3 (Table 4) as the
oxidizing potential of NO3

− ions has been reported to increase with increase in solution acidity [32].
In chloride media, it is suggested that cuprous chloride complexes CuCl32− and CuCl43− will

be produced sequentially from CuCl2− with chloride concentration above 1 M [33]. Chloride ions
complexes can stabilize Cu(I) ions thereby increasing copper solubility. The complexation also increases
the redox potential of Cu(II)/Cu(I) thereby enhancing the oxidative power of the solution. Copper is
also known to be dissolvable at high pHs such as in 4 M NaOH media. The pH values measured in
NaOH leaching (Figure 4) suggest the prevailing species as Cu(OH)3

− [34].
The suggested reactions acid/basic leaching reactions in HCl (3), sulfuric acid (4), and basic

NaOH (5) for Cu2O, are presented below with their standard Gibbs energies of the reactions at 25 ◦C
from HSC Chemistry database [35]:

Cu2O + 8HCl(a) = 2CuCl43−
(a) + 6H+

(a) + H2O(a), ∆G◦ = −121.28 kcal/mol (3)

Cu2O + H2SO4(l) = Cu + CuSO4(ia) + H2O(a), ∆G◦ = −14.71 kcal/mol (4)

Cu2O + 4NaOH(a) + H2O(a) = 2Cu(OH)3
−

(a) + 4Na+
(a) + 2e−, ∆G◦ = −28.13 kcal/mol (5)

The species (a), (ia) and (l) refers to aqueous, neutral aqueous and liquid phase.

3.2. Ni Leaching and Selectivity between Copper and Nickel

According to the mineralogy, the prevailing nickel phase in the raw material investigated is nickel
ferrite NiFe2O4. Ferrites are known to be refractory in leaching. This is confirmed by the results which
showed that the maximum Ni extraction (97%) was observed in aggressive concentrated leaching
media (3–5 M HCl). The suggested leaching reactions in HCl are presented in (6) and (7). From the
speciation diagram of nickel containing NiCl2 and HCl [36], most nickel is suggested to exist as Ni2+

up to 5 M HCl. However, the concentration of NiCl+ gradually increases with increases in HCl. Nickel
dissolution did not show any selectivity versus iron in any of the leaching media investigated. This is
due to the dominating Ni phase NiFe2O4 resulting in a simultaneous Ni and Fe dissolution. Also,
in the absence of neutralization, no back precipitation was observed.

NiFe2O4 + 8HCl(a) = Ni+2
(a) + 2FeCl+2

(a) + 4H2O(a) + 6Cl−(a), ∆G◦ = −127.78 kcal/mol (6)

NiFe2O4 + 8HCl(a) = NiCl+(a) + 2FeCl2+
(a) + 4H2O(a) + 3Cl−(a), ∆G◦ = −161.17 kcal/mol (7)

The current study aims to selectively dissolve Cu versus nickel. Figure 5 presents the dissolved
Cu/Ni ratio in solution with eight of the most selective lixiviants. It can be seen that the highest
selectivity was achieved with 4 M NaOH (w(Cu):w(Ni) = 340 in solution). Also 1 and 2 M
HNO3 (w(Cu)/w(Ni) = 26 and 23) provided excellent selectivity as well as 0.5 M HCl solution
(w(Cu)/w(Ni) = 10).
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Figure 5. Cu selectivity against Ni in the best eight selective leaching media.

The lowest Ni dissolution (≤4%) was observed with 4 M NaOH, 1–2 M HNO3, and all the
investigated NaCl solutions. Dilute HCl (0.5 M) dissolved only 10% of nickel.

3.3. Leaching of Iron

Iron originated from the two main minerals of the raw material, NiFe2O4 and Fe2SiO4.
Most notable extractions of Fe (81–82%) was observed in 1.93 M H2SO4 and 2.5 M HCl. Furthermore,
the Fe extraction was high (>50%) in all hydrochloric and sulphuric acid media. Generally, no selectivity
between iron and nickel or copper was found. However, minor selectivity between Cu and Fe was
observed in 0.5 M and 1.5 M HCl (Cu/Fe = 1.9 and 1.5, respectively).

In chloride media, Fe(III) forms FeCl2+ and Fe3+ at lower Cl− concentrations, whereas FeCl2+ is
formed at higher chloride concentration [37,38]. The suggested reactions for NiFe2O4 are presented
earlier in (6) and (7), in addition fayalite is suggested to leach according to reactions (8) and (9):

Fe2SiO4 + 2H2SO4 (l) = 2FeSO4 (ia) + H4SiO4(a), ∆G◦ = −51.67 kcal/mol (8)

H4SiO4 (colloid) = SiO2·2H2O (9)

It is clear that iron dissolution is strongly related to the solution pH. At pHs < 2 iron is known
to remain soluble [39]. This can be taken as an advantage in the leaching, as pH adjustment can
significantly improve the selectivity between Cu and Fe.

3.4. Leaching of Zinc

The maximum extraction of Zn (90%) was achieved in 5 M HCl. Several researchers [40,41] have
reported 90% recovery of Zn in leaching of zinc ferrite in the concentration range of 0.5–6 M HCl.
When Zn(II) is dissolved into chloride media, it is known to form complex such as ZnCl3− [42].
Decrease in the Zn yield from 86% to 40% was noticed in the following order of the lixiviants:

2.65 M H2SO4 > 3.0 M H2SO4 > 1.93 M H2SO4 > 1.23 M H2SO4 > 3 M HCl > 2.5 M HCl
> 0.5 M H2SO4 > 0.5 M HCl

However, Zn extraction was ≤30% in 1–2 M HNO3 and 0.5 M NaCl + 0.1 M Cu2+. The alkaline
leaching of zinc ferrite (4 M NaOH) was shown to result in lower Zn extraction compared to HCl and
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H2SO4. Zn extraction was found to be 2% in 4 M NaOH. Thus, zinc ferrite fraction of magnetite was
not decomposed even in strong alkaline media. The suggested reactions for Zn dissolution in HCl (10),
and sulfuric acid (11) media are:

ZnFe2O4 + 8HCl(a) = ZnCl3−(a) + 2FeCl2+
(a) + 4H2O(l) + 3Cl−(a), ∆G◦ = −124.77 kcal/mol (10)

ZnFe2O4 + H2SO4(l) = ZnSO4 (a) + Fe2O3 + H2O(l), ∆G◦ = −26.98 kcal/mol (11)

3.5. Leaching of Cr, Pb, and Al

The dissolution of minor elements, such as Cr, Pb, and Al, was observed in the investigated
leaching solutions. Figure 6 displays a complete 3D schematic representation of the elements of Al, Pb,
and Cr and shows that generally aluminum had a high solubility into sulfuric acid and HCl media.
Lead had high tendency towards HCl, NaOH, HNO3, and chloride leaching, but it was dissolved only
slightly into sulfuric acid media, evidently due to the low solubility of lead sulfate.
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It was also observed from the above graph (Figure 6) that the maximum Cr yield was 83% in
3 M HCl. Furthermore, the yield of Cr decreased from 66 to 20% in presence of lixiviants in the
following order: 2.5 M HCl > 1.93 M H2SO4 > 0.5 M H2SO4 > 2.65 M H2SO4 > 3.06 M H2SO4 > 1.22 M
H2SO4 > 5 M HCl > 1.5 M HCl.

Highest aluminum extraction (>70%) was observed in 3 and 5 M HCl solutions. Additionally,
all sulphuric acid solutions and HCl solutions ≥1.5 M resulted in higher than 50% leaching.
Yield percentage of Pb in all the investigated HCl solutions was high (93–99%), as Pb dissolves
forming chloride complexes PbCl+ and PbCl2 at low Cl− concentrations, and forms PbCl3− and
PbCl42− at higher concentrations [43].

3.6. A Comparison of the Used Lixiviants

Table 5 shows a comparison of the best copper lixiviants and the selectivities of copper dissolution
for nickel and iron. It can be seen that 4 M NaOH has the highest selectivity in copper extraction.
In addition, it has the highest selectivity for Zn as well. The goal of mild, selective, and low temperature
leaching of copper is best approached by the 0.5 M HCl media, which was able to dissolve all
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copper with only 10% nickel extraction, selectivity between copper and nickel concentrations in the
solution being 10. Furthermore, 0.5 M HCl was the media showing the highest selectivity towards
Fe (Cu/Fe = 1.9) without pH adjustment.

Table 5. The best lixiviants selected for Cu, Fe, Pb, and Zn extraction.

Solution Cu Extraction
(%)

Cu/Ni
Selectivity

Cu/Zn
Selectivity

Cu/Fe
Selectivity

Pb Extraction
(%)

Zn Extraction
(%)

1.5 M HCl * 7 3 1.5 93 48
0.5 M HCl * 10 3 1.9 98 40
4 M NaOH * 340 51 - 59 2
0.5 M NaCl,
0.1 M Cu2+ 61 20 2 - 53 27

2 M HNO3 93 23 3 - * 30
1 M HNO3 79 26 3 - 98 30

* Full leaching.

The calculated composition of the residue after 0.5 M HCl leaching suggests the leach residue
composition being 23 mg/g Ni, 106 mg /g Fe, 9 mg/g Zn, 2 mg/g Al, 1.9 mg/g Cu, 0.9 mg/g Cr,
and 0.02 mg/g Pb. The advantage of 0.5 M HCl is that it could dissolve also almost all Pb (98%).

4. Conclusions

Along the principles of circular economy, the recovery of metals from industrial side streams,
waste, and intermediate fractions is of increasing importance. In the current study, the leaching
phenomena and selective leaching of copper was investigated from an intermediate raw material
originating from base metal production, with a mineralogy of 52.2% NiFe2O4, 25.0% Fe2SiO4 (fayalite),
20.5% of Cu2O (cuprite), and 2.3% of metallic Cu. In the raw material, the large particles were shown
to consist mainly of Cu2O and elemental Cu.

Copper present in the raw material was shown to be easily dissolvable, over 98% Cu could be
dissolved with 0.5 M, 1.5 M HCl, and 4 M NaOH. In addition, 0.5 M HCl was shown to provide
selectivity towards Ni, with the Cu/Ni concentration ratio in solution being 10. Alkaline leaching in
4 M NaOH resulted in the highest selectivity for copper leaching, with the ratio of dissolved elements
of Cu/Ni = 340 and Cu/Zn = 51. Also 1 and 2 M HNO3 provided high selectivity for copper dissolution
with a Cu/Ni ratio of 26 and 23, respectively. Aluminum showed high dissolution into sulfuric acid
and hydrochloric acid media, the highest Al extraction being 79% in 5 M HCl whereas lead dissolution
was strong in HCl, chloride, NaOH, and HNO3. The highest extraction for Ni was obtained in 5 M HCl.

The results indicate that from the 16 investigated leaching media, hydrochloric acid leaching
(0.5 M HCl) presents the lowest concentration solution matrix for selective and high copper extraction,
even at room temperature.
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