
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Järvinen, Juha; Marttinen, Aleksi; Luoma, Marko; Peuhkuri, Markus; Manner, Jukka
Architecture of XMPP proxy for server-to-server connections

Published in:
2017 Military Communications and Information Systems Conference (MilCIS)

DOI:
10.1109/MilCIS.2017.8190423

Published: 14/12/2017

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Järvinen, J., Marttinen, A., Luoma, M., Peuhkuri, M., & Manner, J. (2017). Architecture of XMPP proxy for
server-to-server connections. In 2017 Military Communications and Information Systems Conference (MilCIS)
IEEE. https://doi.org/10.1109/MilCIS.2017.8190423

https://doi.org/10.1109/MilCIS.2017.8190423
https://doi.org/10.1109/MilCIS.2017.8190423

Architecture of XMPP Proxy for Server-To-Server
Connections

Juha Järvinen, Aleksi Marttinen, Marko Luoma, Markus Peuhkuri and Jukka Manner
Critical Infrastructure Research Unit, Aalto University

Postal Address: PO Box 15600, FI-00076 AALTO
Email: {Juha.Tapio.Jarvinen, Aleksi.Marttinen, Marko.Luoma, Markus.Peuhkuri, Jukka.Manner}@aalto.fi

Abstract—The Extensible Messaging and Presence Protocol
(XMPP) is one of the most popular Instant Messaging (IM)
protocols which uses a client-server working mode. This protocol
uses different connection primitives for both client-to-server (c2s)
and server-to-server (s2s) connections. It is actively used in
mission-critical operations where the reliability and security of
communication systems is always imperative. One approach to
secure services and private networks is to use proxy services as
security gateways. Proxies enable interoperability between differ-
ent security domains acting as Information Exchange Gateways
(IEGs).

In this paper we present an architecture of the XMPP proxy for
s2s connections. The system is based on an Openfire XMPP server
with a Hazelcast clustering plugin, and a Hazelcast clustering
link is used between the XMPP server and the XMPP Proxy. We
have constructed an implementation to verify and validate the
presented approach. Our proposal enables an effective seamless
connection for XMPP proxies. Furthermore, it increases the
system security for example, terminating both TCP and XMPP
flows to prevent malicious attacks. Finally, we show that the
proposal does not significantly increase the anticipated delay of
the communication.

I. INTRODUCTION

In the early days of the Internet, security had not yet become
a major issue. However, after numerous malpractices, viruses,
and attacks, times have changed. Hence, nowadays a signif-
icant part of communication engineering is the consideration
of security issues. Meanwhile new communication protocols
are continuously being presented, and old ones are being used
in novel ways, placing security systems in difficulties. The
challenge is the detection of desirable and malicious traffic.
Typically, security is improved in communication networks, by
using with different devices, for example, firewalls or proxies,
depending on the particular use case.

The requirement for fast and effective communication be-
tween computers is continuously on the increase. For the
computer-aided communications between humans, several pro-
tocols and applications have been proposed. One of the most
popular of such has been Internet Relay Chat (IRC) [1].
By default, however, the security of IRC is low, and it
should not be used in mission critical-communications. More
advanced and also suitable for machine-to-machine (M2M)
communications is the Extensible Messaging and Presence
Protocol (XMPP) [2]. As an additional features to IRC, the
XMPP offers presence information notifications and security
features. It is is a federating Instant Messaging (IM) protocol

and carries out a client-server communication method where
client-to-server (c2s) and server-to-server (s2s) methods differ
from each other. Both the c2s and s2s connections are one-way
flows in the XMPP, i.e. both directions have to be established
separately.

Instant messaging is one of the key communication services
in military operations. The challenges of fast messaging have
been extensively tackled in several previous and ongoing
military research projects. For instance, both U.S. DoD (De-
partment and Defence) and NATO (North Atlantic Treaty
Organization) are using widely the XMPP protocol in instant
messaging. However, if XMPP services, servers, and flows
are not properly secured, it is easy for adversaries are enabled
to significantly disturb the communication, which may even
compromise the success of missions.

In recent years several scientific articles have discussed
the usage of instant messaging services in military com-
munications. Lass et al. proposed several extensions to the
XMPP protocol in [3]. Their approach included, for instance,
a serverless method of XMPP. Furthermore, they discussed
the utilization of the gateway and proxying components of
the XMPP. The proposals of the paper is based on their
earlier work on the GUMP (Generic Unicast-to-Multicast)
proxy. [4] Skjegstad et al. proposed a mechanism to improve
the message delivery rate of the XMPP in tactical MANETs
(Mobile Ad hoc Networks). Their proposal also enables server-
less communications, which is highly useful in the tactical
MANETs where connections may be very unreliable due to
highly dynamic environments. [5]

The contribution of this paper is a novel architecture to
improve the security of XMPP instant messaging systems. The
presented architecture separates the direct s2s connection from
the Mission Network (MN). Our research scenario is related to
mission networks, however the proposed architecture is also
current over more vicious public Internet connections. The
architecture enables attaching numerous nodes in the XMPP
clusters in the name of load sharing, enabling seamless inter-
nal communication even during the denial-of-service (DoS)
attacks. Under a DoS attack an internal XMPP system is
functioning continuously, since the attack can be blocked by
an XMPP proxy.

In our solution, communication between an XMPP server
and the proxy is not utilized using the XMPP protocol.
Instead, a Hazelcast clustering protocol is used which operates

on top of the TCP. This mechanism offers natively proxy
functionalities and prevents various attacks since both XMPP
and TCP connections are terminated. Moreover, the solution
enables Deep Packet Inspection (DPI) functionalities between
the domains on the Hazelcast links. In the proposed architec-
ture, proxies can also be used between security domains when
they are acting as infromation exchange gateways (IEGs).

This article is organized as follows. We start with an
overview of the XMPP and proxies in Section II. Our so-
lution for an XMPP proxy for s2s connection is presented in
Section III. We then discuss the future work of our solution
in Section IV and conclude the article with recomendations in
Section V.

II. XMPP AND PROXIES OVERVIEW

A. XMPP

The Extensible Messaging and Presence Protocol (XMPP) is
a communications protocol for message-oriented middleware
based on open Extensible Markup Language (XML), originally
called Jabber [2]. The Internet Engineering Task Force (IETF)
formed an XMPP working group in 2002 and this working
group formed four RFCs (Request for Comments), which
define the basic functionalities and protocols of the XMPP [6]–
[9]. Furthermore, the XMPP Standards Foundation develops
extensions to the protocol in the XEP series [10]. Currently
there are approximately 170 extensions, XEPs, for the XMPP.
Different XMPP server and client software exploit XEPs solely
for their own interests.

The XMPP protocol supports presence information and
contact list maintenance. Additionally, itl can be used in
addition in publish-subscribe systems, signaling for VoIP,
video streaming, file transfers, gaming and Internet of Things
(IoT) applications.

The XMPP uses a client-server architecture – clients do
not talk directly to one another, i.e. the XMPP model is
decentralized. There are different methods for both client-
to-server (c2s) and server-to-server (s2s) connections. The
connections can be either encrypted or unencrypted. All the
messages are sent in an XML message structure, called stanza.

The basic idea of the XMPP is presented in Fig. 1. When a
client user1@example.com wants to communicate with a client
user2@example.com, it first establishes a client-to-server con-
nection to communicate with a server hosting user1’s account
information. Since the destination client, user2, resides in the
same domain (example.com), the local server notifies via a c2s
connection user2 that user1 wants to communicate with it.

When a client needs to communicate with a node re-
siding in a different domain, such as a connection from
user1@example.com to jarvinen@example.fi, the communica-
tion must be similarly first established between the source
client and the hosting server. Since the server example.com
does not have a direct connection to the destination client
jarvinen@example.fi, it must first establish a server-to-server
connection to the server hosting the destination node. Finally,
the server example.fi can communicate with the destination
node and deliver the required transmissions to enable the

communication between the source and destination nodes. The
opposite end of the s2s connections is found with the help
of DNS SRV records. The s2s connection is always directly
connected to the opposite server not via relays or proxies [6],
[7]. Depending on the client software and network topology,
conventionally DNS is not required for the c2s connections as
frequently as for the s2s connections.

Fig. 1. The basic idea of XMPP.

B. Proxies

A proxy server is a method to split up a connection between
a client and a server (see Fig. 2) or two clients. This kind
of intermediators are used to hide information about private
networks from adversaries. For example, we can secure the in-
formation about network topologies, IP addresses, connection
pairs, physical locations [11] to increase network capacity by
caching [12], or to scan content [13]. For each service, such
as HTTP traffic, a separate proxy is required.

Fig. 2. An example of a proxy in use when it is located between clients and
a server.

Conventionally, proxies are used in between private LANs
(Local Area Networks) and the public Internet. The motivation
may be to speed up an outbound Internet connection (caching
in the proxy) or to hide the IP addresses of the client computers
as presented in Fig. 2. Alternatively, clients do not have to
know a complete route to the other end and vice versa. They
both only see the proxy as a connection pair.

C. XMPP and Proxies

For c2s connections there are available open-source proxy
implementations, for example, IMSpector. [14]. Several of
those proxies act as connection managers by joining client
connections to improve the scalability of the XMPP server as

illustrated in Fig. 3. Usually each XMPP server has a dedicated
connection manager, for example, Openfire1.

Fig. 3. The idea of XMPP c2s proxies.

Additionally, the Bidirectional-streams Over Synchronous
HTTP (BOSH) technique [15] can be utilized in client proxies.
BOSH is designed for asynchronous XMPP communication
between a client and server using HTTP. This makes it possible
for a client to reside, for example, on a web browser. In this
case, the proxy is an HTTP proxy, not a pure XMPP. This
scenario is illustrated in Fig. 4.

Fig. 4. The idea of the XMPP c2s proxy using BOSH.

Naturally, there are no proxies for s2s connections because
the core RFCs of the XMPP protocol define that the s2s
connections are directly connected to the opposite server
where the other client resides [6], [7].

To enable interoperability of two IM protocols, a gateway
mechanism between the protocols must be implemented. For
example, a user using the XMPP can chat to a person, who
is using the Internet Relay Chat (IRC) protocol when there is
a gateway in between the networks. However, it is important
to keep in mind that all IM networks do not support similar
functionalities. For example, IRC does not support a user
presence functionality. Otherwise, using an IRC node between
two XMPP nodes requires an implementation of an XMPP
proxy as described in Fig. 5. In addition, when the solution
requires an extra component to a path, the service availability
decreases.

Proxies are needed for s2s connections for the same reason
as proxies are used for other services. For instance, proxies
may be used to hide the internal structure of a network, hide
connection pairs or perform content scanning.

1http://igniterealtime.org/projects/openfire/connection manager.jsp

Fig. 5. The idea of using IRC between two XMPP nodes and, in this way,
to produce an XMPP proxy.

III. IMPLEMENTING XMPP S2S PROXY WITH
CLUSTERING MECHANISM

As stated previously in Section II-C, there are no open-
source XMPP proxies for server-to-server connections avail-
able on the markets. Thus, there are only two realistic options
for building up a working solution of an XMPP s2s proxy:

1) To implement a XMPP server which acts like a proxy
from scratch.

• As Pros: This option is successful as long as there
is enough resources and the platform is chosen
correctly. The solution is fully independent.

• As Cons: Time consumption. Source code requires
constant updates and upgrades, when novel stanza
models or XEPs are published.

2) To use an existing XMPP server and modify it to
function like a proxy.

• As Pros: When we are using a popular open-
source XMPP software application which is updated
constantly, we can be sure that the software is up-
to-date, and follows latest RFCs and XEPs. All the
SSL/TLS issues are solved.

• As Cons: Finding a software solution where modifi-
cations can be added to work as a proxy. Solutions
are not independent. Changes in new versions of
original software may make our modifications use-
less or impossible to run.

After thorough discussions, we decided to reuse the source
code of an existing XMPP server implementation. Hence,
we could focus on the proxy functionalities and not the
basic operational principles of the XMPP. As a basis for our
implementation, we used Openfire XMPP servers (3.10.3)2.

A. Architecture proposal

Our proposal for an XMPP server is based on the idea that
the proxy functionality could utilize clustering protocols for
s2s connections. In addition to the Openfire XMPP servers,
we used a Hazelcast clustering plugin3 in our implementation.
The Openfire was chosen since it is supported by a viral and
active community, continuously developing the software. In
Openfire, new functionalities can be added by using plugins.
Plugins are .jar packets with a certain internal structure.

Hazelcast is an open-source in-memory data grid which is
based on Java. In a Hazelcast grid, data is distributed among
the nodes of a computer cluster, allowing horizontal scaling

2http://www.igniterealtime.org/projects/openfire/
3https://www.igniterealtime.org/projects/openfire/plugins.jsp

in both speed and command execution. Hazelcast clustering
is utilized in several open source products [16]. Hazelcast is
implemented in Openfire using the plugin method.

One attractive benefit of utilizing the Hazelcast clustering is
that in Hazelcast clustering the transmitted communication can
not be observed as XMPP traffic, since the Stanza structure
is removed from the packets prior to transmissions, and later
re-constructed at the receiving end.

We built a topology as presented in Fig. 6 to study whether
our clustering approach can be used to enable an XMPP
proxy. There is no IP route from the MN to xmpp2.example.se
or vice versa and no DNS record visible on the MN, only
xmpp1.example.se has a connection to the Mission Network.
Nodes xmpp1 and xmpp2 are in a Hazelcast cluster. Client A
is connected only to the xmpp2 node.

Fig. 6. The initial testing topology to find out whether a cluster mechanism
would be a solution for enabling an XMPP proxy on s2s connections.

As a result we observed:
1) Client A cannot chat to Client B if there is not a

connection (IP, DNS) between xmpp2.example.se and
xmpp.example.com (dashed red line connection is down)
but conversely Client B can chat to Client A.

2) Chatting in a Multi-User chat (MUC) room is working
between clients A and B if the room resides at xmpp2.

3) Client A can chat to Client B if both clients al-
ready have an MUC session which is located at the
xmpp2.example.se node.

It seems that some functions are working very well (Multi-
User Chat) but private chat messaging between clients is
functional only in one direction. The xmpp2 node, although
it is a cluster, tries to establish a new s2s connection from
itself. If there already exists an old connection, for example,
established by an MUC connection, we can use it, and private
chatting in both directions works. During this initial test, there
was an error ”Couldn’t make an s2s connection, no route.” in
the xmpp2 log. The error may indicate that even in the cluster
mode another node cannot initialize an s2s connection on
behalf of a node where the fail happens. In other words, only
the server serving the client can establish an s2s connection
in Openfire cluster mode.

The problem seems to be the following: When Client
A (in Fig. 6) tries to communicate with Client B, the

server (xmpp2.example.se) tries to initiate the s2s connection.
This initialization fails even if the server does not have a
route to the opposite domain nor it receives a reply to the
DNS query. However, in such cases that the proxy instance
(xmpp1.example.se) has a connection to Client B, the XMPP
connection between Client A and Client B can be established.
The connection may be established, for instance, by an MUC
connection or intialized by Client B.

A similar problem decreases the service availability even
in normal Openfire Hazelcast clustering mode, since if a c2s
connection is established with the node whose outgoing link is
not working properly, connection to the outside is not possible.

B. Implementation

The correction for this problem requires modifications to
Openfire source code. The required algorithm is presented in
Algorithm 1: First, the algorithm must find out the node ID
of the xmpp1. When the ID is found, the algorithm transmits
all the s2s initialization queries to the node which handles
them. Both nodes have unique IDs (Node ID) in the cluster
mode, and with this ID any node can be commended. No
modifications were made to the xmpp1 server.

Algorithm 1: Algorithm for finding another node in a
cluster and force it to initialize s2s connections. Static
mapping parsing (lines 3-9) is an optional mechanism.
Data: my own node ID OwnNodeID, chat domain
Result: initialization of the s2s connection from the

other node.
1 cluster entry found=0;
2 static entry found=0;
3 while static entry found==0 && not at the end of the

document do
4 read static mapping file entrys

(NextNodeID domains);
5 if chat domain ' NextNodeID domain then
6 NodeId = NextNodeID;
7 static entry found=1;
8 else
9 static entry found=0;

10 while cluster entry found == 0 && not at the end of
the list do

11 read next nodeID of the cluster, NextNodeID;
12 if OwnNodeID != NextNodeID then
13 NodeID=nextNodeID;
14 cluster entry found=1;
15 else
16 cluster entry found=0;

17 if cluster entry found || static entry found then
18 initialize s2s connection by using a node with

NodeID;

C. Result and Testing

As a result, we were able to succesfully get two Openfire
XMPP servers connected with a Hazelcast clustering link.
With such a connection, they function as a single Openfire
server. Hence, a Hazelcast cluster works in parallel as pre-
sented in Figure 7. Openfire needs a common external user
database which is also included in the figure.

Fig. 7. The structure of a working solution of an XMPP s2s proxy in Openfire.
The IP networks can also include protecting mechanisms, for example,
firewalls, deep packet inspection (DPI) functionalities, intrusion prevention
systems (IPSs), or data loss prevention (DLP) systems.

After the modifications, Instant Messaging (IM) which was
a problem in Section III-A, also began to work properly.
IM is working in the both directions: Client A −→ Client
B and Client B −→ Client A (See Figure 6) without any
”initialization” by MUC room traffic as was the case initially.

Our solution also improves the route availability in Hazel-
cast clustering, and hence also the service availability as
dedmonstrated in Fig. 6 can be improved internally as well.

In Figure 8 is illustrated the flow diagram of the trans-
mission of one message in our XMPP proxy implementation.
After the XMPP server receives a message from a client, it
simultaneously transmits an acknowledgement of the received
message to the client and informs the XMPP proxy of an
upcoming message. Then the XMPP proxy establishes a
server-to-server connection to the XMPP server of the required
domain, and delivers a message to the server. Finally, the
server is again reponsible for transmitting the message to the
correct client. Each of these flows are utilizing TCP.

Fig. 8. The flowchart of our XMPP proxy implementation.

We have also studied the impact of our proposal from the
perspective of connection delay. First, we tested the normal
situation with two domains communicating without an XMMP
proxy approach. The test scenario is illustrated in Fig. 9. The
second scenario is presented in Fig. 10. In the second test
scenario the XMPP proxy server was utilized. Both scenarios

were tested under two cases: In the first case, messages were
transmitted frequently, and the s2s connection was not dis-
connected between message transmissions. In the latter case,
the s2s connection was disconnected between two consecutive
messages, and hence the connection was initialized for each
message transmission. The delay was measured from the
initializing TCP segment (SYN) of the TCP connection from
Client A to the acknowledging (SYN,ACK) TCP segment from
the MN. The sample count for the test scenarios was between
270 and 2080. The transmitted message was a short 5 byte
message from Client A to Client B.

Fig. 9. Single node test scenario.

Fig. 10. Test scenario with proxy.

The results of this study are presented in Fig. 11. The results
demonstrate that our proposal does not impact significantly on
the anticipated delay. For instance, if the interval between con-
secutive messages were short, the expected delay, if the XMPP
proxy was not used, was approximately 60 ms. Similarly, when
the proxy was utilized, the expected delay was approximately
70 ms.

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Both nodes, short interval

Both nodes, long interval

Single node, short interval

Single node, long interval

Fig. 11. The cumulative distribution function of delays.

D. Limitations

In this implementation we assume that all the other XMPP
domains reside behind a proxy node; all the server-to-server
traffic is directed to the proxy node. However, when needed,
such limitations can be dissolved easily by defining a static

mapping/routing mechanism. The static mapping file includes
entries to combine NodeIDs and chat domain names. The
algorithm goes through all chat domains presented in the file,
and compares them to the domain it wants to communicate
with. When the equivalent entry is found, also the required
NodeID is discovered. The functionality how the approach
utilizes the static mapping is presented in Algorithm 1 lines
3-9.

E. Pros and Cons of Implementations

The benefit of our implementation is that, the approach
functions like a conventional proxy. Hence, a TCP connection
is terminated at the servers. Furthermore, since a cluster link
is used, only the content of messages is forwarded between
the nodes, not the XMPP stanza structure. This means, that
for example, attacks targeting the XMPP stanza structure are
blocked automatically. At the cluster link we are able to
implement DPI functionalities, for example, virus scanning
and a sanity check, even TLS is used on s2s connections and/or
c2s connections. The cluster link also enables the proxy to
act as an IEG to enable the interoperability between different
domains at various security levels. On the other hand, however,
it enables filtering unauthorized communications with Data
Loss Prevention (DLP) mechanism and implementing release
control between security domains.

The only drawback of this architecture is the dependency
of the software used in the XMPP server – the proxy server
software version has to be the same across all nodes. In such
a case, one single vulnerability can give an attacker complete
access to an internal network.

IV. FUTURE WORK

For now the approach focuses on single servers and they are
not redundant in any way. However, we think that clustering
is not a problem and it is possible to define separately proxies
and conventional servers in the source code, as presented in
Fig. 12. The functionalities of Hazelcast take care of the rest.
Nevertheless, this should still be built up and tested in order
to be verified.

Fig. 12. The structure of a backuped XMPP proxy with a Hazelcast cluster
method.

V. CONCLUSION

In this paper we proposed an architecture of an XMPP
security proxy for s2s connections to improve security and
prevent malicious attacks toward an XMPP server.

We have implemented the presented XMPP proxy archi-
tecture by exploiting a Hazelcast clustering plugin for an
Openfire XMPP server, and by modifying source code of
Openfire. Our solution enables Deep Packet Inspection func-
tionalities between domains on a Hazelcast clustering link.
Since messages are transferred between nodes without any
XMPP stanza structure, our solution could also act as an IEG.
By using our architecture there is no longer any direct XMPP
s2s connection between local and remote XMPP servers. In
addition to DPI functionalities, the approach enables attaching
numerous nodes in the XMPP clusters. This enables load
sharing, and complicates the implementation of denial-of-
service attacks.

Our implementation is only suited for system where Open-
fire is used as an XMPP server with a Hazelcast clustering
plugin. Generally, we cannot state that there is an option to
produce an XMPP proxy with the help of clustering by using
other software even though that may be capable of clustering.

As a by-product we have also sketched an improvement to
increase the availability of a clustered Openfire XMPP server.

REFERENCES

[1] J. Oikarinen and D. Reed. Internet Relay Chat Protocol. Legacy RFC
1459, March 2013.

[2] The XMPP Blog: What is XMPP? https://xmpp.org/2007/10/
what-is-xmpp/. [Online; accessed 27-January-2016].

[3] Robert Lass, Joe Macker, David Millar, C Regl William, and Taylor
Iani. XO: XMPP overlay service for distributed chat. In Military
Communications Conference, MILCOM 2010, pages 1116–1121. IEEE,
2010.

[4] Robert N Lass, Joe Macker, David Millar, and Ian J Taylor. Gump:
adapting client/server messaging protocols into peer-to-peer serverless
environments. In Proceedings of the 2nd workshop on Bio-inspired
algorithms for distributed systems, pages 39–46. ACM, 2010.

[5] M. Skjegstad, K. Lund, E. Skjervold, and F. T. Johnsen. Distributed
chat in dynamic networks. In Military Communications Conference,
MILCOM 2011, pages 1651–1657, Nov 2011.

[6] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Core. IETF RFC 3920, October 2015.

[7] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence. IETF RFC 3921, October 2015.

[8] P. Saint-Andre. Mapping the Extensible Messaging and Presence
Protocol (XMPP) to Common Presence and Instant Messaging (CPIM).
IETF RFC 3922, October 2015.

[9] P. Saint-Andre. End-to-End Signing and Object Encryption for the
Extensible Messaging and Presence Protocol (XMPP). IETF RFC 3923,
October 2015.

[10] XMPP - xmpp.org. [Online; accessed 06 February 2016].
[11] V. Kambhampati, C. Papadopolous, and D. Massey. Epiphany: A

location hiding architecture for protecting critical services from DDoS
attacks. In 2012 42nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 1–12, June 2012.

[12] Marc Necker, Michael Scharf, and Andreas Weber. Performance of tcp
and http proxies in umts networks. In 11th European Wireless Confer-
ence 2005 - Next Generation Wireless and Mobile Communications and
Services (European Wireless), pages 1–7, April 2005.

[13] Dwen-Ren Tsai, A.Y. Chang, Sheng-Chieh Chung, and You Sheng Li.
A proxy-based real-time protection mechanism for social networking
sites. In 2010 IEEE International Carnahan Conference on Security
Technology (ICCST), pages 30–34, Oct 2010.

[14] IMSpector. http://www.imspector.org/. [Online; accessed 03 April
2016].

[15] I. Paterson, D. Smith, P. Saint-Andre, J. Moffitt, L. Stout, and W. Tilanus.
XEP-0124: Bidirectional-streams Over Synchronous HTTP (BOSH),
April 2014.

[16] Hazelcast The Operational In-Memory Computing Platform.
https://hazelcast.com/. [Online; accessed 12 February 2016].

