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A B S T R A C T

Recent years have seen a growing interest in methods for predicting an unknown variable of interest, such
as a subject’s diagnosis, from medical images depicting its anatomical-functional effects. Methods based on
discriminative modeling excel at making accurate predictions, but are challenged in their ability to explain their
decisions in anatomically meaningful terms. In this paper, we propose a simple technique for single-subject
prediction that is inherently interpretable. It augments the generative models used in classical human brain
mapping techniques, in which the underlying cause–effect relations can be encoded, with a multivariate noise
model that captures dominant spatial correlations. Experiments demonstrate that the resulting model can be
efficiently inverted to make accurate subject-level predictions, while at the same time offering intuitive visual
explanations of its inner workings. The method is easy to use: training is fast for typical training set sizes, and
only a single hyperparameter needs to be set by the user. Our code is available at https://github.com/chiara-
mauri/Interpretable-subject-level-prediction.

1. Introduction

Single-subject prediction methods aim to infer a subject’s underlying
clinical condition – such as their disease status – from its observed
effect on the subject’s anatomy or function as measured by medical
imaging. The ability to perform this task accurately would have numer-
ous potential applications in diagnosing disease, tracking progression,
and evaluating treatment. It could also help clinicians to prospectively
identify which patients are at highest risk of future disability accrual,
leading to better counseling of patients and better overall clinical
outcomes.

Many methods for automatic single-subject prediction have been
proposed in the literature, using multivariate techniques that combine
the weakly predictive power of many voxels simultaneously to obtain
accurate predictions at the subject level (Arbabshirani et al., 2017; Cole
et al., 2019). Recent years have seen a rapid growth in methods for
predicting a subject’s age from their brain scan, in particular, with the
gap between the estimated and the real age being suggested as a po-
tential biomarker of neurological disease (Cole et al., 2019; Kaufmann
et al., 2019). Although high prediction accuracies can now be achieved,
especially when methods are trained on the very large datasets that
have recently become available (German National Cohort Consortium,

∗ Corresponding author at: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.
E-mail address: cmauri@mgh.harvard.edu (C. Mauri).

2014; Breteler et al., 2014; Schram et al., 2014; Miller et al., 2016;
Alfaro-Almagro et al., 2018), comparatively little attention has been
paid to interpretability, i.e., to the ability to explain the predictions to
clinicians in terms that are biologically meaningful. Nevertheless, such
interpretability is likely required before automated prediction methods
can safely be adopted for widespread clinical use (Rudin, 2019).

A key difficulty in obtaining interpretability is that almost all
subject-level prediction methods are currently based on discriminative
learning, in which a direct mapping from an input image to a variable
of interest is estimated from training examples. Especially with the
deep neural networks that have become prominent in recent years,
this results in ‘‘black box’’ models whose internal workings are hard
to explain to humans. Although many of the post hoc explanation
methods (Ras et al., 2022; Arrieta et al., 2020; Baehrens et al., 2010;
Sundararajan et al., 2017; Springenberg et al., 2014; Selvaraju et al.,
2017; Smilkov et al., 2017; Zeiler and Fergus, 2014; Bach et al., 2015)
that have been developed for such complex models have raised specific
criticism (Arun et al., 2021; Ghassemi et al., 2021; Adebayo et al.,
2018; Rudin, 2019; Wilming et al., 2022; Sixt et al., 2020; Gu and
Tresp, 2019), a more fundamental challenge is that interpretability is
intrinsically hard for discriminative subject-level prediction methods
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Fig. 1. The causal diagrams of the models considered in this paper are illustrated in the
top row: (a) basic model encoding how the unknown variable of interest 𝑥 generates an
acquired brain scan 𝐭; (b) the model with additional known covariates 𝐲 included; and
(c) the model where 𝐲 are known confounders. The arrows indicate causal relationships,
and variables in empty vs. shaded circles are unknown vs. observed, respectively. The
bottom row illustrates two cases that are not considered in this paper: (d) a model
with confounders that are not observed; and (e) a decoding model where the direction
of causality is reversed.

— even when very simple (e.g., linear) models are used. This is
because discriminative methods optimize their prediction performance
not only by amplifying the signal of interest in the data, but also
by suppressing unrelated ‘‘distractor’’ patterns, so that their reason
for looking at specific voxels cannot easily be deduced (Haufe et al.,
2014; Wilming et al., 2022; Weichwald et al., 2015). Therefore, while
e.g., linear discriminative methods are trivially transparent about how
they compute their results (the weight they give to each image area
can readily be inspected), they offer no explanation of why they are
using specific image areas more than others (Ghassemi et al., 2021;
Rudin, 2019; Haufe et al., 2014; Wilming et al., 2022; Lipton, 2018).
Stated differently, their explanation refers to an understanding of how
the model works, as opposed to an explanation of how the world
works (Rudin, 2019).

Classical human brain mapping techniques, originally developed for
analyzing functional images (Friston et al., 1991; Worsley et al., 1992;
Friston et al., 1994; Worsley and Friston, 1995) but later adapted for
structural imaging (Chung et al., 2001; Davatzikos et al., 2001; Wright
et al., 1995; Ashburner and Friston, 2000; Fischl and Dale, 2000; Snook
et al., 2007), are based on generative rather than on discriminative
models: They encode a mapping from a variable of interest to the
image domain, rather than vice versa. Their aim is to identify, on a
population level, brain regions that are significantly correlated with
specific variables of interest (such as disease status or an experimental
condition) or their interactions. Especially when the variables of inter-
est have a causal effect on brain anatomy – as is the case for e.g., age,
gender or a particular brain disease – these methods are inherently
interpretable: The spatial maps they provide indicate how each brain
location would change, on average, if we had the ability to control the
variable of interest at will.1 However, because classical brain mapping
techniques only consider each voxel-level measurement independently
(so-called mass-univariate modeling), they are unsuitable for subject-
level prediction, as each individual voxel by itself is typically only
weakly predictive of the variable of interest.

In this paper, we propose a new method that aims to combine the
predictive power of state-of-the-art multivariate models on the one
hand, with the superior interpretability properties of classical brain
mapping techniques on the other. This is accomplished by generalizing
the independent, voxel-wise noise model in those classical techniques

1 Assuming the absence of uncontrolled confounding variables, see Fig. 1.

with one that also takes into account correlations between voxels. In
particular, we use a linear-Gaussian latent variable model that allows
us to simultaneously capture the dominant spatial correlations in the
noise, control the number of free parameters that need to be learned
from training data, and efficiently ‘‘invert’’ the model to make accurate
subject-level predictions. Because it inherits the cause–effect relation
modeling from classical brain mapping techniques, the approach is
inherently interpretable: It provides both population-level spatial maps
of the average effect of variables of interest on brain shape, as well
as the ability to apply these effects at the level of individual subjects
(so-called counterfactuals). The method is flexible and easy to use:
It has only a single hyperparameter that needs to be tuned by the
user, training is typically fast even without hardware acceleration, and
incorporating additional covariates (and their possible interactions with
the variable of interest) is straightforward.

An early version of this work appeared in Mauri et al. (2022).
Here we significantly expand on the basic algorithm described in that
paper, conducting an in-depth analysis of both the interpretability and
the prediction performance of the method, detailing a fast practical
implementation, and introducing extensions where dependencies on the
variables of interest are nonlinear.

2. Context and related work

2.1. Problem statement

Fig. 1(a) illustrates the problem we address in this paper in its most
basic form. An unknown quantity 𝑥 in a patient is causing anatomical
changes in their brain scan 𝐭. By modeling the causal relationship
between 𝑥 and 𝐭, we aim both to estimate the unknown value of 𝑥
from 𝐭 and to provide intuitive explanations of the estimation procedure
— for instance by synthesizing images at different values of 𝑥 and
letting the user visually compare those with 𝐭 (see Fig. 14 for examples).
Models of the type shown in Fig. 1(a) are known as generative models
in the machine learning community, or as encoding models in the
neuroimaging literature (Friston et al., 2008; Weichwald et al., 2015).

For the purpose of estimating the parameters of the model, we need
access to a set of training images for which the underlying value of 𝑥
is known. It is worth mentioning that, unlike in age-prediction experi-
ments where there is an abundance of available training data, many
scenarios encountered in practice will provide only a few thousand
training subjects at best: Imaging datasets collected for studying specific
diseases typically have at most 1000–3000 subjects (Jack et al., 2008;
Di Martino et al., 2014; Ellis et al., 2009; Satterthwaite et al., 2014),
whereas even the largest prospective cohort imaging studies (German
National Cohort Consortium, 2014; Breteler et al., 2014; Schram et al.,
2014; Miller et al., 2016; Alfaro-Almagro et al., 2018) contain only a
modest number of subjects with specific diseases (e.g., of the 100,000
participants projected to be scanned in the UK Biobank Alfaro-Almagro
et al., 2018, only around 200 and 1000 can be expected to be multiple
sclerosis and epilepsy patients, respectively Mackenzie et al., 2014;
Joint Epilepsy Council, 2011).

As we shall see, it is straightforward to generalize the model of
Fig. 1(a) to additionally include known subject-level covariates 𝐲 that
cause their own anatomical changes in 𝐭 (independent of 𝑥). The
resulting model, which is illustrated in Fig. 1(b), can be used to try and
help improve prediction accuracy. When covariates are (partial) causes
of 𝑥 itself, as illustrated in Fig. 1(c), they are known as confounders –
common underlying causes of both 𝑥 and 𝐭. It is well-known (Pearl and
Mackenzie, 2018) that confounders should be included in the model
to preserve its ability to capture the causal effect of 𝑥 on 𝐭, as will be
illustrated in Section 5.1.

2.2. Scenarios not considered

Scenarios other than those shown in Fig. 1(a)–(c) are not considered
in this paper. For instance, cases where confounders are not observed
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(Fig. 1(d)) would bias the estimated causal effect of 𝑥 on 𝐭 to also
include the effect of 𝐲 on 𝐭, which would lead to misleading visual
explanations (see Section 5.1 for an example). We also do not con-
sider decoding models (discriminative models, illustrated in Fig. 1(e))
in which the direction of causality is reversed, i.e., where the brain
changes visualized in 𝐭 are the cause (rather than the effect) of 𝑥.
In experimental neuroscience, such models are used to investigate
the mapping from functional or structural anatomy to perceptual and
behavioral consequences or their deficits (Friston et al., 2008; Pölsterl
and Wachinger, 2021; Chevalier et al., 2021). In these applications, the
focus is on elucidating the mapping between 𝐭 and 𝑥 rather than on
subject-level prediction, as 𝑥 is already known.

2.3. Related work

The method we propose can be viewed as a generalization of naive
Bayesian classifiers, in which the strong conditional independence as-
sumption between input features is relaxed: When the number of latent
variables is artificially clamped to zero in our method, the resulting
predictor will devolve into a ‘‘naive’’ one. Naive methods have previ-
ously been shown to have surprisingly strong prediction performance
in scenarios where the size of the training set is limited (Domingos
and Pazzani, 1997; Ng and Jordan, 2002), in part because their simple
structure prevents overfitting (Domingos and Pazzani, 1997; Domingos,
2012). Our findings indicate that this property also holds for the pro-
posed method: In training regimes with up to a few thousand subjects
– the typical scenario in many applications – we obtain prediction
accuracies that rival those of the best image-based prediction methods
available to date.

In its most basic (linear) form, the proposed method generates two
spatial maps: a generative one that is suitable for human interpretation,
and a discriminative one, computed from the generative one, that the
method uses to make predictions. The distinct role in interpretation
vs. prediction of these two different type of maps has been recognized
before in the literature. In Haufe et al. (2014), for instance, the authors
proposed a technique for computing a linear generative map that is
compatible with a discriminative one and that is advocated to be more
interpretable. However, as we demonstrate in Appendix D, this tech-
nique can be highly misleading as its always generates the same result
irrespective of which image areas are actually used in the prediction
computations, as long as the predictions themselves are accurate (see
Fig. D.18). At the other end of the spectrum, in Varol et al. (2018)
the authors developed a method in which the discriminative and the
generative maps are forced to be identical. Although good performance
was reported, the requirement to also make good predictions will
inevitably bias the generative map, potentially limiting its validity as a
tool for meaningful neuroanatomical interpretation.

Several methods exist that, like the proposed method, allow one to
generate synthetic images simulating the effect of specific variables of
interest on brain shape — either on a population level (e.g., age-specific
brain templates Dalca et al., 2019; Pinaya et al., 2022; Wilms et al.,
2022; Zhao et al., 2019) or for individual subjects (e.g., artificially
aging an individual brain Pawlowski et al., 2020; Ravi et al., 2019;
Wilms et al., 2022; Xia et al., 2021). However, only a few of these
methods are designed to also be ‘‘inverted’’ to provide accurate single-
subject predictions. Like our method, both (Zhao et al., 2019; Wilms
et al., 2022) use latent variable models, but, unlike ours, they ‘‘decode’’
these latent variables using neural networks: Zhao et al. (2019) is based
on a variational autoencoder (VAE), whereas Wilms et al. (2022) uses
normalizing flows. The resulting nonlinearities increase the expressive-
ness of the models, but come at the price of additional computational
complexity and the need for various approximations during training
and inference (Zhao et al., 2019) or even of the input data itself (Wilms
et al., 2022). In contrast, predicting, generating conditional templates,
computing counterfactuals, and even training involve only evaluating
analytical expressions with the proposed method. An experimental
comparison of our method with the VAE of Zhao et al. (2019), detailed
in Section 4.3, suggests that this simplicity does not come with a loss
in prediction accuracy.

3. Basic linear version

In this section, we describe the proposed method in its most el-
ementary form: a simple causal relationship between a variable of
interest and the resulting image – the situation depicted in Fig. 1(a)
– that is furthermore assumed to be linear. More complex models, with
nonlinear dependencies on the variable of interest or the inclusion
of subject-specific covariates and confounders, will be presented in
Section 5.

3.1. Generative model

Let 𝐭 ∈ R𝐽 denote a vector that contains the intensities in the 𝐽
voxels of a subject’s image, and 𝑥 a scalar variable of interest about
that subject (such as their age or gender). A simple generative model,
illustrated in Fig. 2, is then of the form

𝐭 = 𝐦 + 𝑥𝐰𝐺 + 𝜼. (1)

Here 𝐰𝐺 ∈ R𝐽 is a spatial weight map – referred to as the generative
weight map in the remainder – that reflects how strongly the variable of
interest 𝑥 is expressed in the voxels of 𝐭: Assuming a causal relationship
between 𝑥 and 𝐭, it encodes how a unit increase 𝑥 changes each voxel’s
intensity, on average. Further, 𝐦 ∈ R𝐽 is a spatial template of intensi-
ties at baseline (i.e., when 𝑥 = 0), and 𝜼 ∈ R𝐽 is a random noise vector,
assumed to be Gaussian distributed with zero mean and covariance 𝐂.
For notational convenience we will collect the two spatial weight maps
𝐦 and 𝐰𝐺 in a single matrix 𝐖 = (𝐦,𝐰𝐺) for the remainder of the
paper.

Note that this is the model commonly assumed in traditional mass-
univariate brain mapping techniques, such as voxel- and deformation-
based morphometry (Ashburner and Friston, 2000; Chung et al., 2001),
where diagonal 𝐂 is assumed and 𝐰𝐺 is analyzed with statistical tests to
reveal brain regions with significant effects. In contrast, here we assume
that 𝐂 has spatial structure, allowing us, besides interpreting 𝐰𝐺, to
accurately predict 𝑥 from 𝐭 by inverting the model, as shown below.

3.2. Making predictions

When the parameters of the model (𝐖 and 𝐂) are known, the
unknown target variable 𝑥∗ of a subject with image 𝐭∗ can be inferred
by inverting the model using Bayes’ rule. For a binary target variable
𝑥∗ ∈ {0, 1} with prior probability 𝑝(𝑥∗), it is well-known that the
target posterior distribution takes the form of a logistic regression
classifier (Hart et al., 2000) as shown in Appendix A:

𝑝(𝑥∗ = 1|𝐭∗,𝐖,𝐂) = 𝜎
(

𝐰𝑇
𝐷𝐭

∗ +𝑤𝑜
)

, (2)

where

𝐰𝐷 = 𝐂−1𝐰𝐺 (3)

are a set discriminative spatial weights, 𝜎(𝑎) = 1∕(1 + 𝑒−𝑎) denotes the
logistic function, and 𝑤𝑜 = −𝐰𝑇

𝐷(𝐦 + 𝐰𝐺∕2) + log [𝑝(𝑥∗= 1)∕𝑝(𝑥∗= 0)].
The maximum a posteriori (MAP) estimate of 𝑥∗ is therefore 1 if

𝐰𝑇
𝐷𝐭

∗ +𝑤𝑜 > 0, (4)

and 0 otherwise. In the remainder of the paper, we will assume equal
priors: 𝑝(𝑥∗= 1) = 𝑝(𝑥∗= 0) = 0.5 unless stated otherwise.

For a continuous target variable with a flat prior 𝑝(𝑥∗) ∝ 1, the
posterior distribution is Gaussian with variance

𝑣 =
(

𝐰𝑇
𝐺𝐂

−1𝐰𝐺
)−1 (5)

and mean

𝑥̃∗ = 𝑣(𝐰𝑇
𝐷𝐭

∗ + 𝑏0), (6)

where 𝑏0 = −𝐰𝑇
𝐷𝐦 (see Appendix A). The predicted value of 𝑥∗ is

therefore given by (6), which again involves taking the inner product of
the discriminative weights 𝐰𝐷 with 𝐭∗. An example of model inversion
in case of age prediction is shown in Fig. 3.
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Fig. 2. Example of the forward model (1), applied to modeling the effect of age on brain morphology. Here 𝑥 denotes the difference between the age of the subject and the
average age in a training set.

Fig. 3. Illustration of how a subject’s age is estimated by inverting the model shown
in Fig. 2.

3.3. Model training

In practice the model parameters 𝐖 and 𝐂 need to be estimated
from training data. Given 𝑁 training pairs {𝐭𝑛, 𝑥𝑛}𝑁𝑛=1, their maxi-
mum likelihood (ML) estimate is obtained by maximizing the marginal
likelihood

𝑝
(

{𝐭𝑛}𝑁𝑛=1|{𝑥𝑛}
𝑁
𝑛=1,𝐖,𝐂

)

=
𝑁
∏

𝑛=1


(

𝐭𝑛| 𝐖𝝓𝑛,𝐂
)

(7)

with respect to 𝐖 and 𝐂, where we have defined 𝝓𝑛 = (1, 𝑥𝑛)𝑇 . For the
spatial maps, the solution is given in closed form (see Appendix B):

𝐖 =

( 𝑁
∑

𝑛=1
𝐭𝑛𝝓𝑇

𝑛

) ( 𝑁
∑

𝑛=1
𝝓𝑛𝝓𝑇

𝑛

)−1

. (8)

However, obtaining the noise covariance matrix 𝐂 directly by ML
estimation is problematic: 𝐂 has 𝐽 (𝐽 + 1)∕2 free parameters, which
is orders of magnitude more than there are training samples (recall
that 𝐽 is the number of voxels). To be able to control the number of
parameters while still capturing the dominant correlations in the noise,
we impose a specific structure on 𝐂 by using a latent variable model
known as factor analysis (Bishop, 2006). In particular, we model the
noise as

𝜼 = 𝐕𝐳 + 𝝐, (9)

where 𝐳 is a small set of 𝐾 unknown latent variables distributed as
𝑝(𝐳) =  (𝐳|𝟎, I𝐾 ), 𝐕 contains 𝐾 corresponding, unknown spatial weight
maps, and 𝝐 is a zero-mean Gaussian distributed error with unknown di-
agonal covariance 𝜟. Marginalizing over 𝐳 yields a zero-mean Gaussian
noise model (Bishop, 2006) with covariance matrix

𝐂 = 𝐕𝐕𝑇 + 𝜟,

which is now controlled by a reduced set of parameters 𝐕 and 𝜟. The
number of columns in 𝐕 (i.e., the number of latent variables 𝐾) is a
hyperparameter in the model that needs to be tuned experimentally.

Plugging in the ML estimate of 𝐖 given by (8), the parameters 𝐕
and 𝜟 maximizing the marginal likelihood (7) can be estimated using an
Expectation–Maximization (EM) algorithm (Rubin and Thayer, 1982).
Defining

𝜼𝑛 = 𝐭𝑛 −𝐖𝝓𝑛 (10)

as the noise vector of training subject 𝑛, this yields an iterative al-
gorithm that repeatedly evaluates the posterior distribution over the
latent variables:

𝑝(𝐳𝑛|𝜼𝑛,𝐕,𝜟) =  (𝐳𝑛|𝝁𝑛,𝜮), ∀𝑛 (11)

where 𝝁𝑛 = 𝜮𝐕𝑇𝜟−1𝜼𝑛 and 𝜮 = (I𝐾 + 𝐕𝑇𝜟−1𝐕)−1, and subsequently
updates the parameters accordingly:

𝐕 ←

( 𝑁
∑

𝑛=1
𝜼𝑛𝝁𝑇

𝑛

) ( 𝑁
∑

𝑛=1

(

𝝁𝑛𝝁𝑇
𝑛 +𝜮

)

)−1

(12)

𝜟 ← diag

(

1
𝑁

𝑁
∑

𝑛=1
𝜼𝑛𝜼𝑇𝑛 − 𝐕 1

𝑁

𝑁
∑

𝑛=1
𝝁𝑛𝜼𝑇𝑛

)

. (13)

Here diag(⋅) sets all the non-diagonal entries to zero.

3.4. Practical implementation

The method outlined above involves manipulating matrices of size
𝐽 ×𝐽 . Despite the high dimensionality (recall that 𝐽 is the number of
voxels), computations can be performed efficiently by exploiting the
structure of these matrices: As detailed in Appendix C, both training
and predicting can be implemented in a way that only involves the
posterior covariance of the latent variables 𝜮, which is of much smaller
size 𝐾×𝐾.

In our implementation, we center the target variable 𝑥, i.e., we
use values from which the sample mean in the training set has been
subtracted. As shown in Appendix D, this has the advantage that the
estimated template 𝐦 then represents the anatomy of the ‘‘average’’
subject in the training set, i.e., 𝐦 = 1∕𝑁 ∑𝑁

𝑛=1 𝐭𝑛. For estimating the
parameters 𝑽 and 𝜟 of the noise model, we first perform a voxel-
wise rescaling of the noise vectors {𝜼𝑛}𝑁𝑛=1, such that each voxel has
unit variance across the training subjects. We then initialize the EM
algorithm by using a matrix with standard Gaussian random entries for
𝐕, and the identity matrix for 𝜟. Convergence of the EM procedure is
detected when the relative change in the log marginal likelihood drops
below 10−5 between iterations. The elements in the estimated 𝐕 and 𝜟
are then rescaled back to the original intensity space to obtain the final
parameters of the noise model.

The code for the proposed model is available at https://github.com/
chiara-mauri/Interpretable-subject-level-prediction, with both Matlab
and Python implementations.
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4. Experiments on age and gender prediction

In this section, we present experiments on the task of predicting a
subject’s age and gender from their brain MRI scan. Specifically, we
compare the behavior of the basic linear model described in Section 3
with that of three state-of-the-art benchmark methods, when the size
of the training set is varied.

4.1. Experimental set-up

The benchmarks we used consist of a nonlinear-discriminative
(SFCN Peng et al., 2021), a linear-discriminative (RVoxM Sabuncu and
Van Leemput, 2012), and a nonlinear-generative (VAE Zhao et al.,
2019) method for image-based prediction. Together with the proposed
method, which is linear-generative in the basic form analyzed here,
these benchmarks form a representative sample of the spectrum of
methods available to date.

We trained each of these methods on randomly sampled subsets
of 26,127 T1-weighted scans of healthy subjects drawn from the UK
Biobank (Alfaro-Almagro et al., 2018). Each of these subjects was
between 44 and 82 years old, and was scanned on one of three identical
3T scanners using the same MRI protocol. In our experiments, we used
the skull-stripped and bias-field corrected T1-weighted scans that are
made publicly available, which are computed using a nonlinear reg-
istration with the MNI152 template (see Alfaro-Almagro et al. (2018)
for details). We took advantage of these nonlinear registrations to warp
and resample all the scans to the same MNI152 template space using
linear interpolation. The resulting 1 mm isotropic T1-weighted images
then formed the input of the various image-prediction algorithms.

To analyze the behavior of the different methods when the training
set size is gradually increased from 100 to almost 10,000 subjects,
we trained each method multiple times for each training set size.
Specifically, each training run was repeated 10 times, with different
randomly sampled training subjects, except for the larger training sizes
(𝑁 >1000) where the number of repetitions was limited to 3 to reduce
the computational burden. After training, the prediction performance
of each model was evaluated on a fixed set of 1000 randomly sampled
test subjects not overlapping with the training subjects. The size of this
test set (and of a separate validation set, see below) was chosen to be
similar to the one used in Peng et al. (2021) so that our results could be
compared to those reported in that paper. For the age prediction task,
the Mean Absolute Error (MAE)2 was used as the evaluation criterion,
whereas the average classification accuracy was used in the gender
prediction experiments.

Consistent with the set-up of Peng et al. (2021), we also had a
separate, fixed validation set of 500 randomly sampled subjects. This
was used to tweak the hyperparameter(s) for each method (see details
below), using a grid search to optimize MAE (for age) and classification
accuracy (for gender) for each training run. The details about the
hyperparameter values considered in the grid search for each method
are provided in Sec. 3 of the supplementary material.

4.2. Implementation of the benchmark methods

The four methods under comparison were implemented as follows:

- Proposed method: We performed all the experiments with the
proposed method in Matlab, running on a Linux CPU machine
(Intel Xeon E5-2660V3 10 Core CPU 2.60 GHz, 128 GB RAM).
To speed up computations, the number of voxels was reduced by
masking out the background (by thresholding the average of all
images in each training set), and by downsampling the input data

2 MAE is defined as the absolute difference between predicted and real
value of the target variable, averaged across all test subjects.

to a 3 mm isotropic resolution. This downsampling was found
not to affect the prediction performance in pilot experiments (see
supplementary material). For each training run, performance on
the validation set was used to set the number of latent variables
𝐾, which is the only hyperparameter of the method. An example
of a model trained this way is shown in Figs. 4–6.

- RVoxM: This is a discriminative method that imposes sparsity
and spatial smoothness on its weight map as a form of regular-
ization (Sabuncu and Van Leemput, 2012). As reported in the
supplementary material, it yields competitive prediction perfor-
mances compared to other commonly used linear-discriminative
methods, and was therefore chosen to represent this family of
models (although other methods could also have been chosen).
We used the Matlab code that is publicly available,3 with some
adaptations to make it more efficient (by parallelizing part of the
training loop) and, for gender prediction, more robust to high-
dimensional input. The same background masking, downsampling
procedure and computer hardware was used as for the proposed
method in the experiments. The method has a single hyperparam-
eter to control the spatial smoothness of the weight map that it
computes, which was tuned on the validation set for each training
run.

- SFCN: This is the lightweight convolutional neural network pro-
posed by Peng et al. (2021), who, to the best of our knowledge,
have reported the best performance for brain age prediction to
date. Since code for training this method is not publicly available,
we modified the implementation of Mouches et al. (2022)4 to
match the description provided in Peng et al. (2021) as closely as
possible. In particular, we replicated the same data augmentation
scheme, network architecture, L2 weight decay and batch size,
deviating only in the last network layer as discretizing age into 40
bins (as described in Peng et al. (2021)) did not benefit prediction
accuracy in our experiments. The method directly takes 1 mm
isotropic images as input, and was therefore run on a high-end
GPU with a sufficiently large amount of memory (NVIDIA A100
SXM4 GPU with 40 GB of RAM) in our experiments. For each
training run, the validation set was used to determine the optimal
number of training epochs of this method.

- VAE: This is a generative method for age prediction (Zhao et al.,
2019) with publicly available training code.5 It can be regarded as
a generalization of the proposed method, where the latent vari-
ables are expanded nonlinearly through a deep neural network,
which precludes exact model inversions and makes computations
more involved. Since the method is designed to work with images
that are downsampled to 2 mm isotropic resolution and cropped
around the ventricles (Zhao et al., 2019), the comparison with
this method was performed separately from the other two bench-
marks, with both the VAE and the proposed method running on
the same cropped 2 mm volumes. We tested only training sizes
in a similar range (from 100 to 400 training subjects) as the
one used in the original paper (196 subjects), running the VAE
on a RTX 6000 GPU with 65G of RAM. Although the method
originally only contains two hyperparameters (dropout factor
and L2 regularization), for a fair comparison we also varied the
number of latent variables (originally hardcoded to 16) as an
extra hyperparameter. As for the other methods, the values of the
three resulting hyperparameters were tuned on the validation set
for each training run.

3 https://sabuncu.engineering.cornell.edu/software-projects/relevance-
voxel-machine-rvoxm-code-release/.

4 https://github.com/pmouches/Multi-modal-biological-brain-age-
prediction/blob/main/sfcn_model.py.

5 https://github.com/QingyuZhao/VAE-for-Regression.
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Fig. 4. The estimated template 𝐦 (the average image in the training set) when the model is trained on 𝑁 = 2600 subjects in an age prediction task.

Fig. 5. Top: the generative map 𝐰𝐺 – expressing the effect of aging – estimated from 𝑁 = 2600 subjects, overlaid on the template of Fig. 4. Voxels with zero weight are transparent.
Bottom: the corresponding discriminative map 𝐰𝐷 that is used for making age predictions. The discrepancy between these two maps is analyzed in Section 4.5.

4.3. Prediction performance and training times

Fig. 7 shows the prediction performance of the proposed method,
RVoxM and SFCN as the number of training subjects is varied, both
for predicting age (Fig. 7 left) and gender (Fig. 7 right). As expected,
all prediction performances improve as the training size increases. In
the age prediction task, the proposed method yields generally the best
performance when the training set size is up to 2600 subjects, after
which SFCN is the better method. For gender prediction, SFCN is clearly
outperformed by both RVoxM and the proposed method.

For completeness, Fig. 7 also includes the results for SFCN as re-
ported by its authors in Peng et al. (2021), where a similar experimental
set-up as ours was used. It can be seen that, although our implementa-
tion closely followed the description provided by the authors, we were
not always able to match their reported performance: Especially for
gender prediction, and for age prediction with very large training sets,
there are considerable discrepancies between the two implementations.
One possible explanation is that SFCN is a complex model with many
more ‘‘knobs’’ to be tuned correctly than the proposed method, which
has only a single hyperparameter. Another explanation is that the
experimental set-up is not entirely comparable: In Peng et al. (2021)
the model is only trained on one training set for each training size; the
subjects in their test set are different from ours; and they used affinely
instead of nonlinearly registered scans (although the latter point is
reported to yield only minimal differences in Peng et al. (2021), which
we can confirm based on our own experiments).

Table 1 reports, for the age prediction experiment, the training
times required by the proposed method, RVoxM and SFCN. SFCN is
by far the slowest to train, requiring many hours even for very small
training sizes, and several days for large ones. Up to training sizes of
1000 subjects, the proposed method is considerably faster to train than
RVoxM (dozens of minutes CPU time at most), but slows down for
larger training sizes. This can be explained by the fact that the optimal
number of latent variables in our model (hyperparameter 𝐾) increases
rapidly with the number of training subjects, as shown in Table 2. When
interpreting the training times of RVoxM and the proposed method on
the one hand, and those of SFCN on the other, it should be taken into
account that the latter uses hardware acceleration but also works with
much larger (non-downsampled) input volumes.

Finally, Fig. 8 shows the age prediction performance of the VAE
and the proposed method, as a function of the training set size. The
proposed method achieves better results for every training size tested.
This suggests that, at least when only a few hundred subjects are avail-
able for training, adding nonlinearities in the method’s noise model is
not beneficial. Furthermore, the VAE is considerably slower to train
than the proposed method: around 8 min GPU time for 200 training
subjects, vs. 1 min CPU time with the proposed method.

4.4. Bias–variance trade-off

More insight into the prediction performances reported in the pre-
vious section can be obtained using the so-called bias–variance de-
composition. Specifically for age, which is a continuous variable, a
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Fig. 6. Illustration of the major modes of variation captured by the linear-Gaussian noise model, when trained on 𝑁 = 2600 subjects in an age prediction task. Each mode illustrates
the effect of applying one of the three first eigenvectors of 𝐕𝐕𝑇 (the component of 𝐂 that has spatial structure) on the template of Fig. 4. (We note that directly showing the
learned basis vectors in the columns of 𝐕 is not meaningful, since the model is invariant to rotations in the latent space (Bishop, 2006): using 𝐕̃ = 𝐕𝐑 for an arbitrary orthogonal
matrix 𝐑 yields the same covariance matrix 𝐕̃𝐕̃𝑇 = 𝐕𝐕𝑇 .) The top and bottom figures show the template modified in the positive and negative direction of the eigenvectors,
respectively. Note that the first eigenvector seems to encode a general brightening/darkening of the image intensities, while the second one models residual bias fields that were
not removed in the preprocessing of the UK Biobank data.

Fig. 7. Prediction performance of the proposed method, RVoxM and SFCN for age (left) and gender (right) as the number of training subjects is varied. For each method, the full
line shows the average performance across multiple training runs, and the whiskers extend to one standard deviation away from the average. The test MAE for age is indicated
in years. For reference, we also include the performance of SFCN as reported in Peng et al. (2021), although the results are not entirely comparable.
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Table 1
Training times in the age prediction task for the proposed method, RVoxM and SFCN. These training times were evaluated at the optimal value
of a single hyperparameter for each method, determined on an external validation set. The reported times are the average across all training
runs for each training set size 𝑁 .

N = 100 N = 200 N = 300 N = 500 N = 1000 N = 2600 N = 5200 N = 7800

Proposed method 1.20 min 0.67 min 1.94 min 9.53 min 32 min ≈3 h ≈15 h ≈69 h
RVoxM 92 min 66 min 75 min 76 min 129 min 127 min ≈22 h ≈21 h
SFCN ≈8 h ≈11 h ≈16 h ≈18 h ≈34 h ≈76 h ≈69 h ≈102 h

Table 2
Optimal number of latent variables 𝐾 of the proposed method when predicting age, as determined on an external validation
set. The reported number is the rounded average across all training runs for each training set size 𝑁 .

N = 100 N = 200 N = 300 N = 500 N = 1000 N = 2600 N = 5200 N = 7800

𝐾 20 21 52 86 120 367 1833 3333

Fig. 8. Age prediction performance of the VAE and the proposed method, when applied
to 2 mm isotropic images cropped around the ventricles, represented in the same way
as in Fig. 7.

particular method’s mean squared error (MSE) can be decomposed as
follows (Bishop, 2006):

E𝐷

[

(

𝑥∗ − 𝑥̃∗𝐷
)2
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀 𝑆 𝐸

=
(

𝑥∗ − E𝐷
[

𝑥̃∗𝐷
])2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏𝑖𝑎𝑠2

+E𝐷

[

(

𝑥̃∗𝐷 − E𝐷
[

𝑥̃∗𝐷
])2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑣𝑎𝑟𝑖𝑎𝑛𝑐 𝑒

. (14)

Here 𝑥∗ denotes the real age of a given test subject, 𝑥̃∗𝐷 is the predicted
age when the method is trained on a particular dataset 𝐷 of a cer-
tain size, and E𝐷[⋅] denotes the average over multiple such training
sets. In our set-up, in which each method is trained multiple times
using different randomly sampled subjects, the bias component in (14)
reflects a systematic error that is persistent across the training runs,
whereas the variance component indicates how much the predictions
change between the different training runs (Hart et al., 2000; Bishop,
2006; Domingos and Pazzani, 1997). Typically, flexible models tend to
have low bias but high variance, reflecting an overfitting to the training
data, while strongly constrained methods display the opposite behavior,
resulting in underfitting of the training data (Hart et al., 2000; Bishop,
2006; Domingos and Pazzani, 1997).

Fig. 9 (left) shows how the bias, the variance and the resulting MSE
change in the age prediction experiment, when the training set size is
varied. The various curves were obtained by averaging (14) across all
test subjects for our method (blue), RVoXM (red) and SFCN (black).
The proposed method generally has the highest bias among the three
methods; however this is off-set by a lower variance, resulting in a
strong overall prediction performance in training set sizes of up to
2600 subjects. Its low variance is obtained by controlling the flexibility
of the method: when the number of training subjects is small, only a
limited number of latent variables is selected (see Table 2), resulting in
a simple, highly regularized model that successfully avoids overfitting
to the training data. As the training size increases, the number of latent

variables is allowed to grow, resulting in gradually more flexible mod-
els with decreased bias and therefore better prediction performance
(see Fig. 9 (left)). However, for very large training sets (over 2600
subjects), the method’s strong modeling assumptions prevent it from
decreasing its bias further, and the nonlinear SFCN can now take
advantage of its flexibility (lower bias) without overfitting (variance
comparable to the proposed method), resulting in a better prediction
performance.

Fig. 9 (right) shows the results of the bias–variance decomposition
for the VAE and our method, when applied to age prediction from 2 mm
cropped data. It can be seen that the VAE’s lower prediction perfor-
mance (reported in Section 4.3) can be attributed to its significantly
higher bias, presumably due to the variational approximations (Kingma
and Welling, 2013) that are used to invert its model.

4.5. Interpretability analysis

A key advantage of the proposed method over discriminative meth-
ods such as RVoxM and SFCN is that, in addition to the discriminative
map 𝐰𝐷 that it uses to make predictions, it also computes a generative
map 𝐰𝐺 that expresses the causal effect of the variable of interest
on brain morphology. To illustrate why this is important, Fig. 10
shows, for three different training set sizes, the discriminative map
𝐰𝐷 computed by our method for predicting age, along with the corre-
sponding discriminative map of RVoXM and the SmoothGrad saliency
map (Smilkov et al., 2017) – a generalization of linear spatial maps to
nonlinear methods (Adebayo et al., 2018) – of SFCN. The inconsisten-
cies of these maps across both the training set sizes and the different
methods, and their overall lack of correspondence with the known
neurobiology of aging, illustrate the difficulty of using discriminative
maps for human interpretation.

More insight can be gained by examining the proposed method
specifically, since it uses discriminative maps that are derived from
generative ones. It is worth noting that estimating the generative maps
from training data is itself quite stable, since it merely amounts to
fitting two basis functions to hundreds of measurements in each voxel
(see (8)). Furthermore, as illustrated in Fig. 11, the resulting maps are
intuitive to interpret, since they show typical age-related effects such
as cortical thinning and ventricle enlargement (Fjell et al., 2009; Fjell
and Walhovd, 2010). When the discriminative maps are subsequently
computed as 𝐰𝐷 = 𝐂−1𝐰𝐺, however, a strong dependency on the
training set size is introduced, because the method explicitly controls
the complexity of its noise model 𝐂 in response to the size of the
available training set (the bias–variance trade-off of Section 4.4). 𝐂 can
also capture peculiarities in the data that may be relevant for improving
prediction performance, but not for human interpretation. An example
of this was shown in Fig. 6, where overall brightness variations and
residual MR bias field artifacts were picked up by the noise model.
Through 𝐂, such noise patterns can find their way into 𝐰𝐷, producing
hard-to-interpret spatial maps that no longer reflect the expected age-
related brain atrophy patterns. This is clearly illustrated in Fig. 5,
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Fig. 9. Left: bias–variance decomposition for the age prediction results shown in Fig. 7 (left). Right: the same for the results shown in Fig. 8.

where the discriminative map 𝐰𝐷 is contrasted with the corresponding
generative map 𝐰𝐺.

The reason the noise covariance 𝐂 is taken into account in 𝐰𝐷 –
which in turn makes 𝐰𝐷 hard to interpret – can be illustrated with
a simple toy example involving only two ‘‘voxels’’, shown in Fig. 12.
When the method is tasked with computing the prediction 𝑥̃∗ from an
image 𝐭∗, it effectively decomposes 𝐭∗ into its most likely constituent
components: 𝐦 (a population template), 𝑥̃∗𝐰𝐺 (the estimated causal
effect), and 𝜼̃∗ (the most likely noise vector) – see (1) and Fig. 2. In
this process, parts of the signal that are well-explained by the noise
model 𝐂 can be attributed to the noise component 𝜼̃∗, and therefore
effectively discarded when estimating 𝑥̃∗. This is illustrated in Fig. 12
(middle). Mathematically, the same value 𝑥̃∗ can also be obtained by
simply computing the inner product 𝐰𝑇

𝐷𝐭
∗ (see (6) and Fig. 3), which

folds the process of separating the effect of interest from noise patterns
into a single operation. This amounts to projecting the given data point
𝐭∗ orthogonally onto the direction 𝐰𝐷, as illustrated in Fig. 12 (right).
However, this projection operation is hard to interpret on its own: 𝐰𝐷
only reveals the final recipe of how predictions are computed, but no
longer the underlying logic.

In addition to visualizing its generative maps directly for human
interpretation, the causal interpretation of our model can also be used
to simulate the effect of aging on actual images. On the population
level, this can be achieved by computing age-specific templates 𝐦 +
𝑥𝐰𝐺 for different values of 𝑥, as illustrated in Fig. 13. More detailed
explanations can also be provided at the level of the individual sub-
ject, using counterfactuals (Pearl and Mackenzie, 2018) – imaginary
images of specific individuals if they had been younger or older. Given
an image 𝐭 and the real age 𝑥, (10) can be used to compute the
subject-specific noise vector 𝜼, which captures the subject’s individual
idiosyncrasies that are not explained by the population-level causal
model. Counterfactual images can then be obtained by re-assembling
the forward model from its constituent components, using a different,
imaginary age 𝑥 in (1). Examples of this process are shown in Fig. 14.

The ability to generate synthetic images that are conditioned on
the target variable 𝑥 provides alternative visual explanations of the
method’s prediction process beside simply showing the generative map
𝐰𝐺. These will be particularly useful when the model is extended to
include nonlinear effects (so that the cause–effect relationship can no
longer be described using a single linear map, see Section 5.2), or when
features are used that are more difficult to interpret than the voxel-
level intensities used here (e.g., parameters of a deformation field, as
discussed in Section 6). Counterfactual images in particular are thought
to be closely aligned with human intuition (Pearl and Mackenzie,

2018): In a disease classification task where a subject is predicted to
suffer from a particular disease, for instance, a counterfactual would
show their presumed brain shape in health for comparison, mimicking
how a human expert would explain their prediction to others.

5. More complex variants

Here we show how the basic form of the model described in
Section 3 can easily be extended to take into account additional subject-
specific covariates and confounders, as well as nonlinear dependencies
on the variable of interest.

5.1. Covariates and confounders

When additional demographic or clinical information is available
about the subjects, it is straightforward to include this in the model —
either as additional covariates (Fig. 1(b)) or as confounders (Fig. 1(c)).
This can be useful for further improving prediction accuracy, or for
removing the effect of confounders that would otherwise invalidate the
causal interpretation of the generative maps as demonstrated below.

Assuming each subject has 𝐿 extra variables 𝑦1,… , 𝑦𝐿, the model
(1) can be extended to

𝐭 = 𝐦 + 𝑥𝐰𝐺 +
𝐿
∑

𝑙=1
𝑦𝑙𝐰𝑙

𝑦 + 𝜼,

where 𝐰1
𝑦,… ,𝐰𝐿

𝑦 are now extra spatial weight maps that also need
to be estimated. During training, the corresponding parameters 𝐖 =
(𝐦,𝐰𝐺 ,𝐰1

𝑦,… ,𝐰𝐿
𝑦 ), 𝐕 and 𝜟 can still be estimated using (8), (12) and

(13), provided that 𝝓𝑛 = (1, 𝑥𝑛, 𝑦1𝑛,… , 𝑦𝐿𝑛 )𝑇 is used instead of 𝝓𝑛 =
(1, 𝑥𝑛)𝑇 . To predict an unknown variable of interest 𝑥∗ from a subject
with image 𝐭∗ and covariates 𝑦∗1,… , 𝑦∗𝐿, (4) and (6) remain valid when
𝐭∗ is replaced by

(

𝐭∗ −
∑

𝑙 𝑦
∗𝑙𝐰𝑙

𝑦

)

.
To demonstrate the resulting model, we considered a classification

experiment of Alzheimer’s disease (AD) patients vs. healthy controls.
For this experiment, we used the OASIS-1 dataset6 (age range 18–
96 years) consisting of T1-weighted scans of 100 AD subjects (average
age 77 ± 7.12 years) and 336 controls (average age 44 ± 24 years).
Importantly, we included age as a known confounder, since it both
affects the imaging data 𝐭 directly and is a partial cause of the disease
status 𝑥 (because AD occurs more frequently in older subjects, and the

6 https://www.oasis-brains.org.
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Fig. 10. Discriminative maps of proposed method, RVoxM, and SFCN (with SmoothGrad) obtained for age prediction with varying training set sizes, overlaid on a template. Voxels
with zero weight are transparent. Since SmoothGrad yields subject-specific maps, we averaged across all test subjects to obtain population-level maps for SFCN.

Fig. 11. Generative maps 𝐰𝐺 computed by the proposed method for age prediction, for different training set sizes. In addition to expressing known aging patterns in the brain,
these maps also show consistency across the different training sizes.

two disease groups are not age-matched in this dataset). Because there
are also more controls than AD subjects, we used unequal priors of 0.77
vs. 0.23, respectively.

As input features we used probabilistic gray matter segmentations
computed with SPM12, after warping them to standard space and

modulating them (Ashburner et al., 2014) to preserve signal that would
otherwise be removed by the spatial normalization. Given the limited
number of subjects in the dataset, we determined the optimal value of
the method’s hyperparameter 𝐾 in a nested 5-fold cross-validation (CV)
setting: For each data split of the outer CV loop into a training and a
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Fig. 12. Left: illustration of a the image generation process in a toy example. The figure shows the template 𝐦, the generative map 𝐰𝐺 , and contour plots of the noise covariance
matrix 𝐂. Also shown are randomly generated 2D data points (dots in the figure), corresponding to 5 discrete values of a continuous variable of interest 𝑥 (marked with different
colors). The discretization was performed for visualization purposes. Middle: when the model is inverted to compute a predicted value 𝑥̃∗ for a given data point 𝐭∗, the signal
is effectively decomposed into 𝐭∗ = 𝐦 + 𝑥̃∗𝐰𝐺 + 𝜼̃∗. Right: the same result 𝑥̃∗ can also be obtained by projecting the data point 𝐭∗ orthogonally onto the direction 𝐰𝐷 = 𝐂−1𝐰𝐺 .
This operation is mathematically equivalent to decomposing the signal into its components as in the middle figure, but not in terms of interpretability, since causal effect and noise
pattern are intermingled in 𝐰𝐷 .

Fig. 13. Age-specific templates synthesized by the proposed method trained on 𝑁 = 2600 subjects, representing the expected ‘‘average’’ image for a specific age. Known age-related
effects, such as wider sulci and bigger ventricles (Fjell et al., 2009; Fjell and Walhovd, 2010), are clearly displayed.

Fig. 14. Two examples of counterfactuals synthesized by the model for age prediction, trained on 𝑁 = 2600 subjects. Left: real and counterfactual image of a 47-year old subject
who is artificially aged to 80 years. Right: the same for a 80-year old subject who is rejuvenated to age 47.

test set, an internal 5-fold CV was performed within the training set,
evaluating different values of 𝐾. The value with the highest classifi-
cation accuracy was then retained and used to re-train the model on
the entire training set, which was then evaluated on the test set. This
procedure was repeated for each data split in the outer loop, to yield
an overall prediction score.

We obtained an overall classification accuracy of 0.881. Fig. 15
shows the obtained spatial map 𝐰𝐺 of the disease effect in one of the
folds, together with the estimated age effect 𝐰𝑦. Since the confounding
effect of age is automatically controlled for in the model, 𝐰𝐺 reflects
the average brain changes that occur in direct response to AD disease

(highlighting hippocampal atrophy in particular). For comparison, we
repeated the same experiment but this time without including age as a
confounder, simulating the setting of uncontrolled confounding shown
in Fig. 1(d). Although the model still predicts well in this setting
(classification accuracy 0.874), the estimated ‘‘disease effect’’ 𝐰𝐺 is
now misleading as it is biased to strongly reflect the effect of aging (see
Fig. 16). The spatial map still indicates which image areas the method
is paying attention to when making predictions, but now merely shows
a statistical association rather than a direct causal relationship.
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Fig. 15. Generative maps obtained in a disease classification experiment based on gray matter segmentations, when age is included as a confounder: 𝐰𝐺 (top) and 𝐰𝑦 (bottom)
express the effect of AD and age, respectively. The maps are overlaid on the population template. Voxels with zero weight are transparent.

Fig. 16. Generative map 𝐰𝐺 obtained in the same disease classification experiment shown of Fig. 15, but without controlling for age in the model. The map is now biased to also
reflect the effect of aging instead of just the AD effect.

5.2. Nonlinearities in the causal model

Another extension of (1) is to consider nonlinear cause–effect rela-
tions in the model:

𝐭 = 𝐦 + 𝑥𝐰𝐺 +
𝐿
∑

𝑙=1
𝑓𝑙(𝑥)𝐰𝑙

𝑦 + 𝜼,

where each 𝑓𝑙(𝑥) is some nonlinear function of the (continuous) vari-
able of interest 𝑥. Although this corresponds to the simple causal
diagram shown in Fig. 1(a), during training it can be viewed as a special
case of the model extension of Section 5.1: the mappings 𝑓𝑙(⋅), 𝑙 =
1,… , 𝐿 can be evaluated for each training subject, and treated as
known additional covariates in the model. Predicting with a trained
model is no longer governed by the linear Eq. (6), though. We therefore
invert the model by finely discretizing 𝑥∗ into 𝑃 distinct values 𝑥𝑝, 𝑝 =
1,… , 𝑃 , and evaluating the posterior probability of each. Assuming a
flat prior, this yields

𝑝(𝑥∗ = 𝑥𝑝|𝐭∗,𝐖,𝐂) = 𝛾𝑝
∑𝑃

𝑝′=1 𝛾𝑝′
,

where 𝛾𝑝 =  (𝐭|𝐦+𝑥𝑝𝐰𝐺+
∑𝐿

𝑙=1 𝑓𝑙(𝑥𝑝)𝐰
𝑙
𝑦,𝐂) can be evaluated efficiently

using (C.2), (C.3) and (C.4). Predictions are then obtained as the
expected value of this posterior distribution:

𝑥̃∗ =
𝑃
∑

𝑝=1
𝑥𝑝𝑝(𝑥∗ = 𝑥𝑝|𝐭∗,𝐖,𝐂).

In order to demonstrate this variant, we tested whether the inclusion
of an extra quadratic term in the forward model (i.e., 𝑓1(𝑥) = 𝑥2) can
improve age estimation results compared to the basic linear model. For
this purpose, we used modulated gray matter segmentations (computed
in the same way as described in Section 5.1) of T1-weighted scans of
562 healthy subjects from the IXI dataset.7 This dataset was selected
because aging has been shown to have an approximately quadratic
effect across adulthood on some brain structures (Walhovd et al., 2005),
and the IXI dataset covers an age span that is large enough (20–
86 years) to possibly exploit this behavior for prediction purposes. In
our experiment, we treated the possible inclusion of the quadratic term
as an extra binary hyperparameter, determined in the same way as the
other hyperparameter 𝐾 of the method within a nested 5-fold CV (as in
Section 5.1). For the discretization, we used 𝑃 = 20 intervals covering
the entire age range.

Using this set-up, we found that the quadratic model was selected
in all the CV folds, and yielded significantly smaller age prediction test

7 https://brain-development.org/ixi-dataset/.
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Fig. 17. (a) Age-specific maps expressing the effect of aging, overlaid on the population template, when a quadratic aging model is used. These maps were obtained by computing
for each voxel the tangent to the quadratic model at the specified age. Voxels with zero weight are transparent. (b) Corresponding generative map 𝐰𝐺 expressing the age effect
obtained when a basic linear model is used instead. (c) Training data in a selected voxel (marked in red in figures (a) and (b)), together with the fitted quadratic and linear
models.

errors than the linear method (MAE of 4.36 vs. 4.73 years, 𝑝-value
< 0.001 with a one-sided paired t-test). Fig. 17 shows linearized maps
demonstrating the effect of aging, evaluated as several age points, for
the quadratic model estimated in one of the folds (a), together with
the corresponding map 𝐰𝐺 obtained with the linear model (b). We
observe that the aging effect is more pronounced in elderly subjects,
as is also clearly displayed by the curve fitted in a single selected
voxel shown in Fig. 17(c). In nonlinear cases such as this, subject-
specific counterfactuals – such as the ones shown in Fig. 14 – remain
straightforward to compute with the model, and may provide more
useful individualized explanations than the group-level linearizations
of Fig. 17(a).

6. Discussion

In this paper, we have proposed a lightweight method for image-
based prediction that is inherently interpretable. It is based on classical
human brain mapping techniques, but includes a multivariate noise
model that yields accurate subject-level predictions when inverted.
Despite its simplicity, the method predicts well in comparison with
state-of-the art benchmarks, especially in typical training scenarios
(those with no more than a few thousand training subjects) where more
flexible techniques become prone to overfitting.

The method we described here represents a basic algorithm that
can be further developed with more advanced techniques. For example,
while we used external cross-validation to determine a suitable number

of latent variables in the noise model, methods exist to infer this hyper-
parameter automatically from the training data itself (Bishop, 1998).
It should also be possible to address problems where the prediction
targets 𝑥 are not fully known in the training data, for instance by
having the EM algorithm that currently estimates the noise covariance
also infer missing mixture class memberships (Ghahramani and Hinton,
1996). Examples of such scenarios include disease classification tasks
in which the ‘‘ground truth’’ diagnosis is noisy, or semi-supervised
learning tasks in which a small training dataset is augmented with a
large unlabeled one to improve prediction performance (Kingma et al.,
2014). Finally, the generative model can be further extended to allow
for more complex imaging data, such as a combination of multimodal
images (Liem et al., 2017; Engemann et al., 2020; Cole, 2020), or
longitudinal data where temporal correlations need to be explicitly
taken into account (Bernal-Rusiel et al., 2013a,b).

This paper only addressed encoding scenarios in which an unknown
condition 𝑥 is assumed to be the cause of changes observed in imaging
data 𝐭 (see Fig. 1(a)–(c)). In this setting, it is well-known that only the
forward model – represented by the generative maps 𝐰𝐺 in the basic
linear version of the proposed method – can be unambiguously inter-
preted, whereas methods working in the inverse, anti-causal direction
(to predict 𝑥 from 𝐭) cannot: Their discriminative maps 𝐰𝐷 may include
areas merely to remove variations in 𝐭 that are not due to 𝑥, while at
the same time missing other areas affected by 𝑥 that do not help in
the prediction process (interpretation rules S7 and S4 in Weichwald
et al. (2015), respectively). The contribution of this paper is therefore
to provide users with access to a causal forward model, so that intuitive
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explanations of the resulting prediction procedure can be generated.
Unfortunately, this framework is not applicable in decoding scenarios
where 𝐭 causes 𝑥 rather than vice versa (see Fig. 1(e)), excluding
many important applications aimed at understanding how brain-based
abnormalities give rise to symptoms. This is because the interpretation
of such models works very differently: for instance, while 𝐰𝐷 remains
difficult to interpret directly (rules R3 and R4 in Weichwald et al.
(2015)), areas highlighted in 𝐰𝐺 no longer necessarily imply a causal
relationship with 𝑥 (rule R1).

Although we have used causal language to motivate a generative
modeling approach to subject-level prediction, the generative maps
depicted in this paper should not be over-interpreted as representing
unbiased estimates of causality inferred from observational imaging
data. Due to various measurement and selection biases, each model will
necessarily be specific only to the dataset it was derived from, without
generalizing to other datasets the way a population-level unbiased
model would (Wachinger et al., 2021). For instance, the UK Biobank
cohort is known to not be representative of the general population with
regard to a number of sociodemographic, physical, lifestyle, and health-
related characteristics (Fry et al., 2017), and this will be reflected in
the generative maps that are produced. Similarly, there is a strong
dependency of MRI-derived features on such factors as the scanners,
the pulse sequences and the image processing pipelines that are used,
which will also find their way into the model estimates. Finally, a key
assumption to preserve interpretability in the proposed model is that
all confounders are known, so that the situation depicted in Fig. 1(d)
can be excluded. Although the requirement of affecting both a patient’s
condition and their imaging data independently dramatically reduces
the number of potential confounders (for instance, of the hundreds
of potential confounds studied for UK Biobank brain imaging (Alfaro-
Almagro et al., 2021), very few beyond age, gender and perhaps
imaging site would likely qualify), we may not know all relevant
factors nor have data on them in practice, resulting in confounding
bias (Wachinger et al., 2021).

Although this paper focused on interpretable models for prediction,
it is worth remembering that the interpretability of the resulting system
also depends on the type of features that are used. In the examples given
throughout this paper, the features consisted of voxel-level intensities
obtained after warping each subject into a common template space
with nonlinear registration. While nonlinear registration helps remove
irrelevant inter-subject shape variations from the data, it can also hide
biological effects: In the age-conditioned synthesized images of Figs. 13
and 14, for instance, a significant portion of the atrophy patterns caused
by aging (namely the part encoded in the nonlinear warps) is missing.
This could potentially be avoided by using the parameters governing
the warps – such as the stationary velocity fields in diffeomorphic
registration models (Ashburner, 2007) – as (additional) features in the
proposed model.

A related issue is how much of a prediction method’s robustness to
inter-subject variability should be the responsibility of data preprocess-
ing vs. that of the prediction model itself. It could be argued that, in our
experiments, much of the ‘‘heavy lifting’’ was done by the preprocessing
so that even simple linear-Gaussian models could work well. This point,
however, is nuanced by the fact that some form of preprocessing is
currently required for all subject-level prediction methods in the liter-
ature. In the SFCN paper, for instance, it is demonstrated that a neural
network can ‘‘model away’’ nonlinear deformations that have not been
removed from the input images; however the images have still been
preprocessed with affine registration and a full segmentation pipeline
(paradoxally involving nonlinear registration) for skull stripping, bias
field correction and intensity normalization.

The question of data preprocessing vs. modeling is further compli-
cated by the issue of scanner- and sequence-dependent MRI contrast
in real-world applications: A subject-level prediction method that is
trained on raw intensities will rarely be directly applicable to data
acquired elsewhere. In principle, all these issues can be addressed

by integrating the type of forward models used in Bayesian segmen-
tation (Ashburner and Friston, 2005; Puonti et al., 2016) – which
include subject-specific template deformation, bias field correction and
contrast-adaptive intensity modeling — within the proposed generative
approach itself. Whether this will yield a tangible benefit compared
to preprocessing the data depends on the difficulty of training and
inverting such integrated models in practice. As demonstrated by the
VAE example analyzed in this paper, if building higher-capacity mod-
els requires making approximations to keep computations feasible,
prediction performance may be hurt rather than helped.

In conclusion, we have proposed a lightweight generative model
that is inherently interpretable and that can still make accurate pre-
dictions. Since it can easily be extended, we hope it will form a useful
basis for future developments in the field.
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Appendix A. Derivations of model inversion

Here we derive the expressions for making predictions about the
variable of interest. For a binary target variable 𝑥∗,

𝑝(𝑥∗= 1|𝐭∗,𝐖,𝐂)

=
𝑝(𝐭∗|𝑥∗= 1,𝐖,𝐂)𝑝(𝑥∗= 1)

𝑝(𝐭∗|𝑥∗= 1,𝐖,𝐂)𝑝(𝑥∗= 1) + 𝑝(𝐭∗|𝑥∗= 0,𝐖,𝐂)𝑝(𝑥∗= 0)
= 1

1 + 𝑝(𝒕∗|𝑥∗=0,𝑾 ,𝑪)𝑝(𝑥∗=0)
𝑝(𝒕∗|𝑥∗=1,𝑾 ,𝑪)𝑝(𝑥∗=1)

= 𝜎
[

log 𝑝(𝐭∗|𝑥∗= 1,𝐖,𝐂) − log 𝑝(𝐭∗|𝑥∗= 0,𝐖,𝐂)

+ log 𝑝(𝑥∗= 1) − log 𝑝(𝑥∗= 0)
]

,

where

log 𝑝(𝐭∗|𝑥∗= 1,𝐖,𝐂) − log 𝑝(𝐭∗|𝑥∗= 0,𝐖,𝐂)
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= −1
2
(𝐭∗ −𝐦 − 𝐰𝐺)𝑇𝐂−1(𝐭∗ −𝐦 − 𝐰𝐺)

+1
2
(𝐭∗ −𝐦)𝑇𝐂−1(𝐭∗ −𝐦)

= 𝐰𝑇
𝐺𝐂

−1(𝐭∗ −𝐦) − 1
2
𝐰𝑇
𝐺𝐂

−1𝐰𝐺 .

This explains (2).
For a continuous target variable with flat prior, the log-posterior

log 𝑝(𝑥∗|𝐭∗,𝐖,𝐂)

= −1
2
(𝐭∗ −𝐦 − 𝑥∗𝐰𝐺)𝑇𝐂−1(𝐭∗ −𝐦 − 𝑥∗𝐰𝐺) + const

is quadratic with derivative
𝑑 log 𝑝(𝑥∗|𝐭∗,𝐖,𝐂)

𝑑 𝑥∗ = 𝐰𝑇
𝐺𝐂

−1(𝐭∗ −𝐦 − 𝑥∗𝐰𝐺) (A.1)

and curvature
𝑑2 log 𝑝(𝑥∗|𝐭∗,𝐖,𝐂)

𝑑 𝑥∗2 = −𝐰𝑇
𝐺𝐂

−1𝐰𝐺 .

Therefore, the posterior is Gaussian, with variance given by (5). The
mean is obtained by setting (A.1) to zero, which yields (6).

Appendix B. Expression for 𝐖

For training, the log marginal likelihood is given by

log 𝑝
(

{𝐭𝑛}𝑁𝑛=1|{𝑥𝑛}
𝑁
𝑛=1,𝐖,𝐂

)

=
𝑁
∑

𝑛=1
−1
2
(𝐭𝑛 −𝐖𝝓𝑛)𝑇𝐂−1(𝐭𝑛 −𝐖𝝓𝑛) + const,

which has as gradient with respect to 𝐖:
𝑁
∑

𝑛=1
𝐂−1(𝐭𝑛 −𝐖𝝓𝑛)𝝓𝑇

𝑛 .

Setting to zero and re-arranging yields (8).

Appendix C. Efficient implementation

Using Woodbury’s identity, we obtain

𝐂−1 = 𝜟−1 − 𝜟−1𝐕
(

I𝐾 + 𝐕𝑇𝜟−1𝐕
)−1 𝐕𝑇𝜟−1

= 𝜟−1 − 𝜟−1𝐕𝜮𝐕𝑇𝜟−1, (C.1)

and therefore (3) can be computed as

𝐰𝐷 = 𝜟−1𝐰𝐺 − 𝜟−1𝐕𝜮
(

𝐕𝑇𝜟−1𝐰𝐺
)

.

Using this result, (5) is given by 𝑣 = 1∕(𝐰𝑇
𝐷𝐰𝐺).

Computing the marginal likelihood (7) – which is needed both to
monitor convergence of the EM algorithm during model training, and to
invert the model with nonlinearities (Section 5.2) – involves numerical
evaluations of the form:

log (𝜼| 𝟎,𝐂) ∝ 𝜼𝑇𝐂−1𝜼 + log |𝐂| + const. (C.2)

Using (C.1), the first term can be computed as

𝜼𝑇𝐂−1𝜼 = 𝜼𝑇𝜟−1(𝜼 − 𝐕𝜮𝐕𝑇𝜟−1𝜼)

= 𝜼𝑇𝜟−1(𝜼 − 𝐕𝝁), (C.3)

with 𝝁 = 𝜮𝐕𝑇𝜟−1𝜼 being an estimate of the latent variables. The second
term can be computed using Sylvester’s determinant identity (Akritas
et al., 1996):

|𝐕𝐕𝑇𝜟−1 + I𝐽 | = |𝐕𝑇𝜟−1𝐕 + I𝐾 |

= |𝜮|

−1,

so that

log |𝐂| = log |𝜟| − log |𝜮|. (C.4)

Finally, the EM update (13) of the diagonal matrix 𝜟 can be com-
puted one element at a time: the diagonal element corresponding to the
𝑗th voxel is given by

𝜟𝑗 𝑗 = 1
𝑁

𝐫𝑇𝑗
(

𝐫𝑗 −𝐌𝐯𝑗
)

= 1
𝑁

‖𝐫𝑗 −𝐌𝐯𝑗‖2 +
1
𝑁

𝐫𝑇𝑗 𝐌𝐯𝑗 −
1
𝑁

𝐯𝑇𝑗 𝐌
𝑇𝐌𝐯𝑗

= 1
𝑁

‖𝐫𝑗 −𝐌𝐯𝑗‖2 +
1
𝑁

𝐯𝑇𝑗
(

𝐌𝑇𝐌 +𝑁𝜮
)

𝐯𝑗

− 1
𝑁

𝐯𝑇𝑗 𝐌
𝑇𝐌𝐯𝑗

= 1
𝑁

‖𝐫𝑗 −𝐌𝐯𝑗‖2 + 𝐯𝑇𝑗 𝜮𝐯𝑗 .

Here 𝐯𝑇𝑗 is the 𝑗th row of 𝐕, 𝐌 =
(

𝝁1,… ,𝝁𝑁
)𝑇 , and 𝐫𝑗 = (𝜂 𝑗

1 ,… , 𝜂 𝑗
𝑁 )𝑇

where 𝜂 𝑗
𝑛 denotes the 𝑗th element of 𝜼𝑛. The next to last step makes

use of the fact that (see (12))

𝐯𝑗 =
(

𝐌𝑇𝐌 +𝑁𝜮
)−1 𝐌𝑇 𝐫𝑗 .

Appendix D. Analysis of the Haufe transformation

When the target variable 𝑥 has zero mean in the training data,
i.e., (∑𝑁

𝑛=1 𝑥𝑛)∕𝑁 = 0, the solution of (8) is given by

𝐦 =
∑𝑁

𝑛=1 𝐭𝑛
𝑁

and

𝐰𝐺 =

( 𝑁
∑

𝑛=1
𝐭𝑛𝑥𝑛

) ( 𝑁
∑

𝑛=1
𝑥2𝑛

)−1

, (D.1)

because
𝑁
∑

𝑛=1
𝝓𝑛𝝓𝑇

𝑛 =
(

𝑁 0
0

∑𝑁
𝑛=1 𝑥

2
𝑛

)

.

Using the notation 𝐓 =
(

𝐭1,… , 𝐭𝑁
)

and 𝐱 = (𝑥1,… , 𝑥𝑛)𝑇 , (D.1) can also
be written as

𝐰𝐺 = 𝐓𝐱(𝐱𝑇 𝐱)−1. (D.2)

Given some linear discriminative method with weight vector 𝐰,
the method in Haufe et al. (2014) aims to recover a corresponding
generative weight vector 𝐰̃𝐺 as follows. Rather than using the available
real training targets {𝑥𝑛} – which were used to obtain 𝐰 – (D.2) is in-
stead applied to estimated targets {𝑥̃𝑛} obtained with the discriminative
method:

𝑥̃𝑛 = 𝐰𝑇 𝐭𝑛, ∀𝑛,

where it is assumed that the training images have been preprocessed to
have zero mean (𝐦 = 𝟎). Writing 𝐱̃ = 𝐓𝑇𝐰 and plugging this into (D.2)
then yields

𝐰̃𝐺 = 𝐓𝐱̃(𝐱̃𝑇 𝐱̃)−1 = 𝐓(𝐓𝑇𝐰)(𝐱̃𝑇 𝐱̃)−1 = 𝜮𝑡𝐰𝜎̃−2𝑥

where 𝜮𝑡 = 𝑁−1𝐓𝐓𝑇 and 𝜎̃2𝑥 = 𝑁−1𝐱̃𝑇 𝐱̃. This corresponds to (6)
in Haufe et al. (2014).

A fundamental issue with the obtained expression

𝐰̃𝐺 = 𝜮𝑡𝐰𝜎̃−2𝑥

(the Haufe transformation) is that it obscures the fact that the de-
pendency of 𝐰̃𝐺 on 𝐰 is only through the predictions 𝐱̃ = 𝐓𝑇𝐰. This
is a problem, because good predictions can be obtained with very
different 𝐰’s – including those ignoring entire image areas – which
prevents 𝐰̃𝐺 from being a reliable indication of feature importance.
To illustrate this point, in Fig. D.18 we trained two different 𝐰’s to
predict age in the UK Biobank dataset used in Section 4 with the
RVoxM method, while clamping the weights 𝑤𝑗 to zero in large (and
very different) image areas that are therefore necessarily ignored when
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Fig. D.18. Illustration of why the Haufe transformation should not be used to explain
the prediction process of a discriminative method. Top: weights obtained when RVoxM
is trained to predict age from 𝑁 = 2600 subjects when the weights are clamped to
zero outside of two different ROIs indicated by the black outline. On the left the ROI
encompasses only a cuboid area around the ventricles, whereas on the right only one
hemisphere is included. Bottom: the corresponding maps 𝐰̃𝐺 obtained with Haufe’s
transformation hide the fact that voxels outside of the respective ROIs are never used
in the predictions.

making predictions. Since both regimes still predict well (MAE within
6% of what is obtained with RVoxM without clamping), the resulting
𝐰̃𝐺 ’s look very similar to each other and to the corresponding map
𝐰𝐺 shown in Fig. 11(middle), completely failing to reveal that certain
image areas are never actually looked at.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.media.2024.103436.

Data availability

The code is available online. The UK Biobank dataset is accessible
upon applications via the website: https://www.ukbiobank.ac.uk/.
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