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ABSTRACT
This paper evaluates the applicability of Neuber's and equivalent strain energy density (ESED) rules to predict the material 
response below the root of a sharp U-notch under variable-amplitude (VA) loading for crack propagation simulations. The Voce–
Chaboche (V-C) combined hardening constitutive model, coupled with the above-mentioned approximation rules, is used to 
resolve the elasto-plastic response over a range of depths below the notch root. The response at each load reversal is extracted, 
and the maximum and minimum stress and strain quantities are used to evaluate fatigue damage using the Smith–Watson–
Topper parameter. Results from approximation rules are compared to finite element method (FEM) at and below the notch 
root. Prediction accuracy varied at different points below the root depending on the size of the plastic zone, with predictions 
made using the original Neuber's and ESED rules being less accurate below the root. Applying stress redistribution correction 
to the stress field improves its accuracy below the root; however, strain values are significantly amplified as a result. A modified 
Neuber's rule with stress redistribution and constraint corrections predicts the distribution of the material response and fatigue 
damage with consistent accuracy.

1   |   Introduction

Over the past few decades, multiscale modeling has been gain-
ing more attention, which allows for accurate modeling of 
highly nonlinear localized phenomena and their effects on dam-
age [1–4]. This can be leveraged for use in fatigue crack growth 
calculations to model both the crack initiation and growth 
phases [5, 6], using material microstructure-dependent length-
scale parameters and nonlocal continuum damage mechanics. 
In the model of, for example, Remes [5], crack growth is modeled 
using the fatigue damages in process zones along the expected 
crack ligament line. This has been shown to predict both crack 

initiation and propagation in notched members well [7, 8]. Under 
this approach, the fatigue crack growth rate da∕dN is estimated 
by determining the fatigue life Nf  of each process zone with 
size a0, so that da∕dN ≈ a0∕Nf . This provides interesting alter-
natives to elastic–plastic fracture mechanics, which have been 
widely studied and successfully used in predicting fatigue crack 
growth; however, it requires information on the initial crack size 
[9–15].

To calculate crack growth rates from fatigue damages, elasto-
plastic stress and strain fields surrounding a geometrical stress 
concentration are required and significantly impact predictions 
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[16]. Averaged quantities of the stress and strain fields are used 
to give more accurate predictions of material failure than pre-
dictions made using peak quantities [5, 17]. Approximation rules 
such as Neuber's rule [18] are often used to estimate the plastic 
response surrounding notches, as they avoid the use of time-
consuming local elasto-plastic finite element method (FEM) 
simulations.

Neuber's rule [18] and the equivalent strain energy density 
(ESED) rule introduced by Molski and Glinka [19, 20] represent 
two classical plasticity approximation rules that have been used 
in engineering analysis. Neuber's rule can be simply interpreted 
as requiring that the products of stress and strain are equal in 
the pseudo-elastic (with stress and strain variables s, e) and 
elasto-plastic cases (with variables �, �). The ESED rule provides 
an alternative approximation rule essentially requiring that the 
areas under the respective stress–strain curves must be equal 
in pseudo-elastic and elasto-plastic cases. These two approxima-
tion rules read as follows: 

A modification of Neuber's rule was presented by Stephens et al. 
[21], who proposed it to consider different states of constraint be-
tween plane stress and plane strain. The modified rule employs 
an additional parameter m in Neuber's rule, as follows: 

where Kt is the elastic stress concentration factor, K� and K� are 
the plastic strain and stress concentration factors, respectively, 
and m is an empirical parameter (0 < m < 1). Later studies by 
Wang et al. [22–24] showed that, while determining m theoret-
ically is challenging, it can give improved predictions with e.g. 
experimentally determined values. Research shows that the 
accuracy of the Neuber and ESED rules is case-dependent and 
can feature significant differences in predictions compared to 
FEM. In general, Neuber's rule gives conservative estimates 
of stress and strain at the root of a notch, while the ESED rule 
gives nonconservative estimates at the root [25]. This observa-
tion applies to different loading cases, such as tension, torsion, 

or bending loading [25]. Furthermore, the constitutive model 
has been shown to affect predictions [26], as coupling to a con-
stitutive model causes it to play an integral role in stress–strain 
predictions. Most of these earlier studies have focused on the 
stress and strain behavior only at the root of a notch rather 
than on the stress–strain field below the notch root, which is 
crucial for fatigue damage and crack propagation calculations 
using nonlocal continuum damage mechanics.

A few studies have emerged in the past two decades regard-
ing stress and strain behavior below a notch root using plas-
ticity approximation rules. Neuber's rule, coupled with the 
Ramberg–Osgood (R-O) constitutive law, is typically used in 
these studies under constant-amplitude loading [16, 27, 28] to 
predict the entire stress and strain fields below a notch. These 
studies have shown that Neuber's rule becomes nonconserva-
tive below the root. When obtaining average quantities of the 
stress and strain fields for, for example, crack propagation cal-
culations, this is a potential problem as the resulting fatigue 
damage can become nonconservative when averaged. The 
studies by Wang et al. [27] and Ince and Glinka [28] correct for 
the nonconservativeness by accounting for the redistribution 
of stresses under plasticity using load equilibrium arguments, 
which was shown to give more realistic stress field predictions. 
Under plasticity, the stress field redistributes itself to allow for 
the same load to be carried over the cross-section of the ma-
terial under yielding. However, in the above studies, the re-
sponse under variable-amplitude loading is not studied and 
must be inspected to assess the performance of the proposed 
ideas under realistic loading conditions. Furthermore, fatigue 
damages should also be investigated as stress redistribution 
correction can easily lead to overestimated notch strains [28] 
and thus errors in damage estimation.

To investigate the effect of complex loading histories on the 
evolution of the stress and strain fields, it is important to use 
a plasticity model accounting for cyclic hardening or softening 
[24, 29]. In the studies by Wang et al. [27] and Ince and Glinka 
[28], the R-O constitutive model was used as it is simple to im-
plement along with an approximation rule. Since the R-O model 
assumes cyclically stabilized material behavior, it neglects, for 
example, cyclic hardening/softening. This is particularly im-
portant in crack propagation calculations, where both isotropic 
and kinematic hardening can affect subsequent crack growth, 
particularly after an overload [30]. Therefore, the behavior of 
approximation rules using combined isotropic and kinematic 
hardening models needs to be clarified regarding the stress and 
strain fields below the notch and resulting fatigue damages.

To further develop the utilization of plasticity approximation 
rules for crack growth analysis, this paper carries out a numer-
ical study on how the Neuber and ESED rules behave when 
coupled with the combined hardening model of V-C under uni-
axial variable–amplitude (VA) loading containing overloads. 
Focus is placed on predicting the cyclic stress and strain dis-
tributions along the crack ligament line below a notch as well 
as their resulting damage values, which are essential in crack 
growth calculations. A computational framework is developed 
to study a sharply notched specimen under uniaxial VA load-
ing. The numerical study considers the use of stress correction 
to account for stress redistribution under plasticity, similarly 

(1)s e = � � (Neuber),

(2)∫
e

0

s de = ∫
�

0

� d� (ESED).

(3)K�K� = K2
t (original),

(4)
(
K�

Kt

)(
K�

Kt

)m

= 1 (modified).

Summary

•	 Fatigue damage distribution below notch predicted for 
variable-amplitude loading has been widely studied.

•	 Quick calculations of elasto-plastic stress and strain 
fields below sharp notch tip are important.

•	 Approximation rules combined with Voce–Chaboche 
(V-C) mixed hardening model are used.

•	 Stress redistribution correction and modified Neuber 
rule predict the distribution of the material response 
and fatigue damage with consistent accuracy.
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to the approaches by Wang et al. [27] and Ince and Glinka [28]. 
Also, the modified Neuber's rule by Stephens et al. [21] is used 
to study the influence of constraint correction on fatigue dam-
age estimation.

2   |   Framework

The computational framework is visualized in Figure 1. Like 
earlier studies [27, 28], a linear elastic solution is used as a 
starting point, but the plasticity modeling is further developed 
to account for combined hardening. The fundamental idea is 
that the V-C constitutive model is integrated into a form where 
the state at each load reversal is determined. The constitutive 
model is coupled with an approximation rule such as Neuber's 
/ ESED rule to obtain elasto-plastic equivalent values �eq, �eq 
for a notched case. These values are obtained for each mate-
rial point along the crack ligament line below the surface. The 
method by Hoffmann and Seeger [31, 32] is then used to con-
vert from equivalent to principal stress and strain values. This 
lets us obtain the maximum principal stress and strain com-
ponents that are used in damage predictions using the Smith–
Watson–Topper (SWT) damage parameter. Redistribution of 
stresses under plasticity is then accounted for by finding a 
stress distribution that ensures equilibrium. The above steps 
can be condensed as follows:

1.	 Calculate elasto-plastic �eq(x), �eq(x) for each load reversal 
using approximation rule and constitutive model

2.	 Transform �eq, �eq into �i, �i (i = 1, 2, 3) using Hoffmann and 
Seeger's method [31]

3.	 Account for redistribution of stresses under plasticity by re-
quiring equilibrium

4.	 Use crack-driving stress and strain quantities of each cycle 
to determine fatigue damages

The assumptions used in formulating the framework can be 
summarized as follows: 

1.	 Uniaxial loading

2.	 Plasticity does not affect stress triaxiality

3.	 Stress redistribution under plasticity governed by �yy field

The assumptions will be described in more detail in this section, 
and the effects of the assumptions are studied in the results.

2.1   |   Plasticity modeling

Wang and Rose [24] and Chaboche et al. [29] showcase the use 
of a V-C model which determines the material response at each 
load reversal coupled with Neuber's rule. The V-C model is cho-
sen since it is a classical isotropic and kinematic hardening model 
featuring relative simplicity in modeling complicated hardening 
material behavior. The basis of this cyclic model is that the uni-
axial stress � can be obtained at a load reversal as [29] follows: 

with � = 1 in tension and � = − 1 in compression, �y0 represent-
ing the von Mises equivalent nominal yield strength, with � and 
R representing the amount of kinematic hardening and isotropic 
expansion, respectively. Using several backstress components 
�k , this becomes: (5)� = � + � ⋅ (R + �y0),

FIGURE 1    |    Visual flowchart of numerical framework used in this 
study. [Colour figure can be viewed at wileyonlinelibrary.com]

Fatigue & Fracture of Engineering Materials & Structures, 2025902
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The values of the backstresses �k and isotropic expansion R are 
commonly modeled to depend on the plastic strain �p present 
in the material, so that �k → �k(�p), R → R(�p). Under the strain 
decomposition assumption, �p is taken as the difference between 
the total strain � and the elastic strain �e, that is, �p = � − �e. 
Explicit expressions for �k(�p) and R(�p) are then needed that 
can be inserted into Equation  (6). The Armstrong–Frederick 
rule gives a differential equation for each backstress component 
[29]: 

where Ck and �k are material parameters for each backstress 
component k. Integrating the above from the time of the previ-
ous load reversal, t0, to t  gives after simplifying the following: 

where quantities with a subscript of 0 denote their known value 
at the previous load reversal. The rate of isotropic expansion Ṙ 
can also be modeled similarly as a differential equation [29]: 

where Q, b are material parameters and ṗ is the rate of accu-
mulated plastic strain. The increment of accumulated plastic 
strain dp is related to the increment of the plastic strain d�p in 
the uniaxial case as dp = |d�p| [33]. Integrating the above simi-
larly gives after simplification 

giving an expression for monotonic isotropic expansion as func-
tion of the plastic strain. For cases with a notch, coupling with 
an approximation rule must be performed. Neuber's rule reads 
as follows: 

into where the expression for the actual elasto-plastic stress 
� above, Equation  (6), can be inserted. This gives a govern-
ing equation that is still a function of only one unknown, 
�p , since according to the strain decomposition assumption 
� = �e + �p = �(�p)∕E + �p. The nominal stress S is defined as 
F∕A, where F is the applied load over the cross-section and A 
the cross-sectional area at the notch. The elastic stress concen-
tration factor of the nominal equivalent stress Kt,eq is used in this 
paper. Equation (11) then becomes 

where according to Equation (6), 

Coupling with an approximation rule other than Neuber's rule, 
such as the ESED rule, is achieved through similar arguments. 
During cyclic loading, Neuber's rule is recast into a form ac-
counting for the change in quantities from one load reversal to 
the next [34]: 

where �0 and �0 are quantities at the previous load reversal. The 
modified Neuber relation of Equation (4) is also used here. With 
m = 1 as default (0 < m < 1), the original Neuber's rule is recov-
ered. This governing equation is then solved numerically using, 
for example, the Newton–Raphson algorithm, to obtain the stress 
and strain state at each load reversal. To obtain the subsurface 
stress and strain fields, the expressions above are applied to each 
inspected material point over the crack ligament line, using the 
values of the stress concentration factors over depth x, Kt,eq(x).

The implementation is verified in Figure  2 for a uniaxial 
strain-controlled case (without a notch or Neuber's rule) using 
S355 structural steel. Here, a VA strain-controlled load his-
tory obtained from Hartloper et al. [35] is inserted into a FEM 
model representing a uniaxial flat bar and the stresses are 
determined. Material parameters used are shown in Table  1 
appearing later in Section  3. Figure  2 shows that the above 
implementation matches well with FEM at each load reversal.

2.2   |   Transformation to Multiaxial Quantities

With the uniaxial stress and strain distribution obtained, 
the method given by Hoffmann and Seeger [31, 32] is used to 
transform from equivalent quantities to multiaxial quantities 
pertaining to a notch that are needed for damage calculations. 
The idea of their method is that the stress and strain states from 
a uniaxial simulation (here, the results obtained from using 
Equation (14)), are taken to instead represent equivalent quan-
tities �eq, �eq. The eneralized Hooke's law is then used to solve 
for the principal notch stress and strain quantities. Denoted 
as Hencky's rule, together, the equations read [31] as follows: 

(6)� =

nk∑

k=1

�k + � ⋅ (R + �y0).

(7)�̇k(t) = [Ck − �k�k(t)] �̇p(t),

(8)�k(�p) = �

[
Ck

�k

−

(
Ck

�k

− ��k,0

)
⋅ e−��k (�p−�p,0)

]
,

(9)Ṙ(t) = b[Q − R(t)] ṗ,

(10)R(�p) = Q − (Q − R0) ⋅ e
−�b(�p−�p,0),

(11)� ⋅ � =
(Kt,eq ⋅S)

2

E
,

(12)

[
�(�p)

E
+ �p

]
⋅ �(�p) =

(Kt,eq ⋅S)
2

E
,

(13)�(�p) =

nk∑

k=1

�k(�p) + � ⋅ [R(�p) + �y0].

(14)Δ� ⋅ (Δ�)m =
(Kt,eq ⋅ΔS)

(m+1)

E
,

(15)Δ� = �(� − �0),

(16)Δ� = �(� − �0),

(17)�1 =
�eq

�eq

[�1 − �
�(�2 + �3)],

(18)�2 =
�eq

�eq

[�2 − �
�(�3 + �1)],

(19)�3 =
�eq

�eq

[�3 − �
�(�1 + �2)],

(20)�eq =

√
1

2
[(�1−�2)

2 + (�2−�3)
2 + (�3−�1)

2],
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where the directions of the principal axes are shown in Figure 1 
for the special case of a simple notched specimen under uniaxial 
tension. �′ is the “effective” Poisson's ratio: 

The above is a system of four equations for six unknowns. Under 
plane strain, the out-of-plane strain component is zero so that 
�2 = 0, leaving only one additional equation to be needed.

Hoffmann and Seeger originally presented their method spe-
cifically for the free surface of a notch where �3 = 0. However, 
when points below the surface along the crack ligament line 
are inspected, this does not hold, and additional assumptions 

must be made. Here, the ratio of the in-plane stress compo-
nents is set to a constant value to give an additional equation, 
�3∕�1 = constant, which Wang et al. [27] found to be a reason-
able assumption. To predict the response at locations below the 
root, values must be given according to some distribution of 
values, �3(x)∕�1(x) = f (x). For example, the analytical Creager–
Paris solution [37] can be used to provide the distribution. In the 
case of symmetry, which is respected in the case of a fixed crack 
ligament line perpendicular to the notch root, the above equa-
tions can be used to obtain the crack-driving �yy in Cartesian 
coordinates.

2.3   |   Stress Redistribution Correction

To correct the nonconservativeness of the Neuber or ESED 
rule below the root, redistribution of stresses under plasticity 
is accounted for. Figure  3 displays the underlying concept. 
Under a linear elastic stress distribution, a certain amount 
of elastic strain energy exists surrounding the notch, with 
more energy concentrated closer to the root. When yield-
ing occurs, this elastic strain energy closest to the root does 
not fully develop. The stresses must then redistribute them-
selves to maintain force equilibrium. The differences between 
the pseudo-elastic and elasto-plastic stress distributions are 
shown schematically in Figure  3, displaying how the plastic 
boundary �0 predicted by the pseudo-elastic stresses increases 
to the actual plastic boundary �. To respect equilibrium, Wang 
et al. [27] and Glinka [38] required that the areas of the elastic 

(21)�
� =

1

2
−
(
1

2
− �

) �eq

E�eq
.

FIGURE 2    |    Verification of cyclic V-C model under strain-controlled VA load history for a uniaxial specimen. Numerical indices show associated 
time values. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1    |    V-C and Coffin–Manson material parameter values, 
from Hartloper et al. [35] and Petry [36].

E (GPa) �y0 (MPa) Q (MPa) b (–)

197.4 338.8 134.3 14.7

C1 (MPa) �1 (-) C2 (MPa) �2 (-)

26 242.0 199.0 2 445.3 11.7

�′
f ,cm

 (MPa) bcm (-) �′
f ,cm

 (-) ccm (-)

887.9 −0.09 0.584 −0.56

Fatigue & Fracture of Engineering Materials & Structures, 2025904
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and elasto-plastic �yy(x) stress distributions are equal up to �0 
and �, respectively. Their approach is also used in this paper.

The equivalency F1 = F2 is solved for numerically so that first 
the pseudo-elastic stress distribution is amplified, with Neuber's 
and Hencky's rule then applied to determine the elasto-plastic 
�yy(x) distribution. Different elastic stress distributions are tri-
aled until the condition F1 = F2 is met. The result of this step 
is that the stresses in the plastic region 0 < x < 𝜔 are estimated 
more precisely. The stress distribution outside the plastic region 
is meanwhile taken to be equal to the pseudo-elastic stress dis-
tribution that has instead been shifted along x by � − �0, shown 
in Figure 3 as the dotted curve.

3   |   Numerical Study Setup

The computational framework introduced above is used to an-
alyze a VA load case. The obtained stress and strain fields and 
fatigue damages resulting from the load history are compared 
to corresponding FEM calculations. In the current study, 
the elastic stress field from the FEM model is input to the 
computational framework instead of using, for example, the 
Creager–Paris solution. The FEM model provides the equiv-
alent pseudo-elastic �eq(x) distribution needed to apply the 
approximation rule, as well as the elastic distribution of the in-
plane stress components required for Hencky's rule. Since the 

discrete distributions from the FEM model are used as input, 
the studied case essentially features the same “elements” or 
inspection points as the FEM model.

3.1   |   Numerical Setup

The geometry used in this numerical study is shown in 
Figure 4. A 2D plane strain plate geometry is modeled with a 
sharp notch resembling a short crack. The plate has a thick-
ness of 3 mm with unit out-of-plane depth, with a 5-µm notch 
root radius. The specimen choice is motivated by notch ge-
ometries that can appear in, for example, welded joints with 
small imperfection sizes. The FEM model is constructed in the 
Abaqus 2023 software featuring quarter-symmetry, to rep-
resent a double-notched specimen. Uniaxial traction is applied 
on the far end of the model. In the material model verification 
of Figure  2 (smooth specimen under strain-controlled load-
ing), large deformations were included. However, in the subse-
quent case study of a notched specimen under load-controlled 
loading, large deformations were not included as negligible 
differences in results were observed (approximately 1% differ-
ence in normal strains �yy at the notch root). The smallest ele-
ments at the notch root are on the order of 0.1 µm to properly 
capture the traction-free �xx = 0 condition at the notch root 
and to resolve the highly local gradients caused by the sharp 
notch employed. A generic S355 structural steel is used, with 

FIGURE 3    |    Schematic of the methodology behind correcting the predicted elasto-plastic stress field for redistribution of stresses occurring during 
plasticity. [Colour figure can be viewed at wileyonlinelibrary.com]
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V-C material parameters from Hartloper et al. [35] (S355J2+N 
25 mm plate), as shown in Table 1.

The VA load history used is shown in Figure 5. The load history 
includes a main overload event of magnitude SOL = 0.7�y0 near 
the end of the sequence. The history is offset by 0.1�y0 to include 
a mean stress.

Table 2 explains the model variations used in this study. These 
are Neuber's rule, modified Neuber's rule, and the ESED rule, ei-
ther with or without stress redistribution correction. An m-value 
of m = 0.6 is used as an example in the variant Neuberm=0.6

corr. .

3.2   |   Results Analysis

To analyze the results, damage values are inspected in addition 
to stress and strain values. To obtain damage and average dam-
age values, the SWT parameter is used, expressed as [34] follows: 

where �max is the maximum value of the crack-driving stress 
over a closed cycle and �amp is the amplitude of the correspond-
ing strain over that same cycle. In this paper, these values 
correspond to �yy,max and �yy,amp. Simple-range cycle counting 
according to ASTM E1049-85 [39] is used to examine how the 
stress–strain response of each tensile-compression pair evolves 
as a function of time. It is worth noting that the simple-range 
counting method gave results similar to those produced by the 
commonly accepted Rainflow counting method. The difference 
in damage results was between 3% and 6%. The fatigue damage 
is then obtained using the Coffin–Manson relation [34]: 

where �′
f ,cm

, bcm, �
′
f ,cm

, and ccm are the Coffin–Manson material 
parameters, with the values used in this work shown in Table 1. 
The number of cycles to failure Nf  is solved for each cycle of 
the stress and strain history, and the corresponding damage is 
obtained as D = 1∕Nf . The damages from each cycle are then 
summed up as per Miner's rule [34] for each “element”, to form a 
distribution of accumulated damage values Dsum(x).

To obtain a measure of the average damage, the distribution of 
Dsum(x) over the depth below the notch root is calculated and 
then averaged over a certain distance. Remes et  al. [5] intro-
duced the concept of a process zone size that models the effect 
of the grain size in metals on fatigue crack growth. When de-
termining fatigue damage based on quantities averaged over a 
certain distance, this process zone size or radius of the represen-
tative volume element (RVE), rRVE, appears as an additional pa-
rameter influencing crack growth. In this study, the distribution 
of fatigue damage values is averaged over select rRVE values to 
assess the impact of averaging on results. The average damage 
Davg is defined by taking an arithmetic average over the RVE: 

In this study, rRVE sizes relevant to S355 structural steel are em-
ployed, obtained from Remes [7]. Sizes of 2, 10, and 30 µm are 
used, as shown in Table 3, along with what microstructural area 
they represent in welded S355 steel joints. The 2 µm RVE size 

(22)PSWT = �max ⋅ �amp,

(23)PSWT =
(��

f ,cm
)2

E
(2Nf )

2bcm + �
�
f ,cm

�
�
f ,cm

(2Nf )
bcm+ccm ,

(24)Davg =
1

rRVE

x=rRVE∑

x=0

Dsum(x).

FIGURE 4    |    Schematic of FEM geometry and boundary conditions. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5    |    VA load history used in this study.
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approximately represents the average grain size davg in the heat-
affected zone (HAZ) after welding in S355, the 10 µm size repre-
senting the HAZ grain size at a probability level of 99%, d99%, and 
30 µm the d99% grain size of the base metal. These RVE sizes give 
relevant averaging distances that could be used in various crack 
propagation calculations for this material.

4   |   Results and Discussion

4.1   |   Monotonic Tension

Figure 6 displays the error, that is, difference between FEM and 
approximation rules in equivalent stress and strain distributions 
along the crack ligament line �eq(x), �eq(x) for two monotonic 

tension load magnitudes. Errors are measured relative to FEM 
values, and the x axis is normalized with respect to the plas-
tic zone size predicted by FEM, �FEM. Both the cases with and 
without stress redistribution correction are shown, using the 
approximation rules of Neuber, modified Neuber (Equation (4) 
with m = 0.6), and the ESED rule. Circular markers denote the 
predicted � values for each model variant.

As shown in Figure 6, without stress redistribution correction, 
the equivalent stresses are conservative at the root and become 
nonconservative quickly below the root. The change in slope at 
x∕�FEM ≈ 0.6 for the original Neuber and ESED rules (dashed 
curves) represents the edge of plasticity �0 as predicted by the 
pseudo-elastic stress distribution. This forms an area of noncon-
servativeness surrounding and increasing towards �FEM. Using 
stress redistribution correction (solid curves) improves � predic-
tions for S∕�y0 = 0.3 although still causes nonconservative stress 
and strain distributions in certain areas below the root. Under 
the higher load magnitude of S∕�y0 = 0.7, however, the pre-
dictions of the plastic boundary size � for the stress-corrected 
models are not improved over the uncorrected model variants. 
Furthermore, while the stresses at the root are amplified to an 
error of approximately 15% when using correction, the strain er-
rors become significantly conservative, with a maximum error 
of approximately 100%. This issue does not appear however 
when using also the modified Neuber's rule with m = 0.6. Since 
the ESED models display the same basic behavior as the Neuber 
models, for simplicity, only results of the Neuber models will be 
shown in the following VA results sections.

4.2   |   VA Results—Stress Distributions

The crack-driving �yy(x) stress values are shown in Figure  7 
for three different load reversals of the VA simulation: Cycle 1 
tension, Cycle 1 compression, and Cycle 21 tension. Stress tri-
axiality � = �H∕�eq values for the same time instances are also 

TABLE 2    |    Model variations used in this study.

Model Stress correction m-value

Neuber No 1.0

Neubercorr. Yes 1.0

Neuberm=0.6
corr.

Yes 0.6

ESED No N/A

ESEDcorr. Yes N/A

TABLE 3    |    RVE sizes rRVE used in numerical study for average 
damage calculations; obtained from Remes [7].

Size Location Metric

2 µm HAZ davg

10 µm HAZ d99%

30 µm BM d99%

FIGURE 6    |    Equivalent stress and strain distributions, �eq, �eq, for a case of uniaxial monotonic tension, under two different load magnitudes. 
Circular markers correspond to plastic zone edge locations � predicted by each simulation. [Colour figure can be viewed at wileyonlinelibrary.com]
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shown. Results are shown for the Neuber model variants (see 
Table 2) and are compared against FEM results.

The effect of using elastic in-plane stress component values 
�xx∕�yy in Hencky's rule can be studied from the triaxiality 
values in Figure  7. Hencky's rule gives good predictions at 
the root, but the triaxiality values feature inaccuracies sur-
rounding the plastic boundary � (vertical gray lines �tens.

FEM
 and 

�
compr.
FEM

). It is worth noting that the triaxiality values are equal 

for all Neuber cases. Stress redistribution correction does not 
affect triaxiality values, as they are controlled by the �xx∕�yy 
values employed. Looking at the �yy values for the first load 
reversal, the Neuber model with stress correction deviates the 
most from FEM at both the root and near �. The deviation in 
�yy at the root is also seen from the �eq distribution in Figure 6, 
while the deviation surrounding � is due to the overpredicted 
triaxiality values when using Hencky's rule with elastic �xx∕�yy 
values.

FIGURE 7    |    Distribution of triaxiality factor � values and �yy stresses for three different time instances of the VA load history. Vertical gray lines 
indicate plastic boundaries � obtained from FEM for tensile and compressive load reversals. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8    |    Relative error with respect to FEM for different model variants. [Colour figure can be viewed at wileyonlinelibrary.com]
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The compression load reversal of Cycle 1 displays the stress distri-
bution between the plastic zones caused by tension and compres-
sion, �tens.

FEM
 and �compr.

FEM
. The corresponding triaxiality values of the 

FEM results display again a reduction in triaxiality surrounding 
the compressive plastic boundary with an opposite increase in � 
after the tensile plastic boundary. This behavior is also seen in the 
last tensile load reversal, where the gradual reduction in applied 
loads following the overload gives rise to seemingly erratic distri-
butions of � and �yy.

Figure 8 presents the relative errors to FEM of the �yy(x) distribu-
tions at the first and last tensile load reversals. In addition to the 
Neuber model variants, the figure also shows the result of using 
the ‘exact’ FEM �eq(x) values in Hencky's rule. The �eq(x) values 
from the same elasto-plastic FEM simulation to which errors are 
compared are extracted. These values are transformed to �yy(x) 
quantities using Hencky's rule with the same elastic �xx∕�yy 
values as used in the Neuber models. This highlights the error 
arising from the use of elastic triaxiality values. Figure 8 shows 
how stress correction gives good results for the first load reversal; 
however, the accuracy of the predictions deteriorates over time.

4.3   |   VA Results—Cyclic Values

The cyclic quantities for select cycles as distributed over depth 
are shown in Figure 9. The figure shows the quantities relevant 
to the calculation of PSWT quantities, as follows: 

The crack-driving yy-components of the above cyclic quanti-
ties are inspected. The plastic boundary locations � in tension 
and compression obtained from FEM are shown for each cycle.

Figure 9 shows that both the stress and strain amplitudes are 
consistently predicted for each cycle. The differences become 
more significant with larger load magnitudes, but the shapes 
of the distributions remain similar. Mean stresses show larger 
differences for cycle 21, occurring after load levels have gradu-
ally been reduced from the main overload event of cycle 18. For 
the earlier cycles, the main trends are captured in all models 
although stress correction is slightly more beneficial in these 
instances.

4.4   |   VA Results—Fatigue Damages

PSWT values are determined for each inspection point along the 
crack ligament line below the surface and their corresponding 
fatigue damages from each cycle of the VA load history are 
added up. Figure  10 shows the predicted accumulated dam-
ages Dp

sum(x) of each point below the notch root. Damage val-
ues are normalized to the maximum damage obtained from 
FEM, max(DFEM

sum ), that is, the damage at the root. Different 
rRVE sizes are also shown in the figure for reference, as well as 

(25)PSWT = �max ⋅ �amp = (�mean + �amp) ⋅ �amp.

FIGURE 9    |    Stress and strain amplitudes and mean stress as distributed over depth for select load cycles of the VA simulation. Vertical gray lines 
indicate plastic boundaries � obtained from FEM for tensile and compressive load reversals. Plastic boundaries for cycles 2 and 18 exceed the x-limits 
shown. [Colour figure can be viewed at wileyonlinelibrary.com]
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plastic zone sizes in tension for select load cycles, �nom.
FEM

 corre-
sponding to a “nominal” cycle (cycle 1), and �OL

FEM
 to the main 

overload event of cycle 18. The rRVE = 30 µm size is not shown 
as the damage values have already reduced by 2 orders of mag-
nitude after 10 µm.

Results for the noncorrected Neuber's rule show how it gives 
nonconservative damage values after x∕� ≈ 0.2, while stress 
correction causes damage predictions to be more conservative 
nearer to the root. Similar observations apply to ESED rule 
results.

Finally, Table  4 shows predicted averaged damage values 
compared with respective FEM values, Dp

avg∕D
FEM
avg , when av-

eraged over the different rRVE sizes of 2, 10, and 30 µm. Values 
above 1.0 indicate conservative life estimates relative to FEM, 
while values below 1.0 are nonconservative. When averaging 
the damage values obtained from Neuber's rule without stress 
correction, the conservativeness at the root is balanced by the 
subsequent nonconservativeness below the root, although it 
is close to becoming nonconservative for the rRVE = 30 µm 
case. When applying stress redistribution correction, the av-
eraged values become significantly conservative due to higher 
predicted strain amplitudes. The ESED rule with stress cor-
rection performs well with the current sharp notch geome-
try. Using stress correction with the modified Neuber's rule 
(Equation  (4)) with m = 0.6 flattens the errors of the stress 
and strain fields compared to FEM, giving slightly improved 
predictions and consistently conservative averaged damage 
values.

4.5   |   Results Discussion

In the crack propagation models employing nonlocal continuum 
damage mechanics (see, e.g., Remes et al. [5] and Mikheevskiy 
and Glinka [6]), the stress and strain fields are used to determine 
the fatigue damage corresponding to fatigue crack growth. After 
enough damage has accumulated within the representative vol-
ume element, the crack is propagated by advancing the crack 
front. It is therefore important to correctly capture the distribu-
tion of stress and strain below a notch root.

When stress redistribution correction is used, the general trends 
of the stress distributions are captured with approximation rules, 
although the mean stresses well beyond the plastic boundary, 
�, become increasingly wrong over a VA simulation. However, 
in this case, when looking at averaged damages using the PSWT 
quantity for a sharp notch, the error beyond � is secondary to 
the error closer to the root. This can also be seen in Figure 10 by 
looking at the markers �nom.

FEM
 for the size of the plastic boundary 

of a “nominal” load cycle and �OL
FEM

 for the largest load peak of 
S = 0.7�y0. Most of the accumulated damage is concentrated be-
tween 0 < x < 1𝜌. The behavior between 0 < x < 𝜔 is consistent 
from cycle to cycle and can be studied by looking at a constant-
amplitude loading case. VA loading, meanwhile, influences the 
results beyond � as the triaxiality, and mean stresses are seen to 
vary between FEM and the studied models.

When using stress correction, the overestimation of strain am-
plitudes is expected as finding the “correct” value for � essen-
tially amplifies the pseudo-elastic stresses. Results become more 

FIGURE 10    |    Distribution of predicted accumulated damage values Dp
sum for each inspection point. Values are normalized by the maximum scalar 

value obtained from FEM (i.e., the FEM-obtained damage value at the root). [Colour figure can be viewed at wileyonlinelibrary.com]
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balanced when this is accounted for by modifying the approxi-
mation rule, such as the modified Neuber's rule (Equation (4)); 
see Figure 10 and Table 4. To estimate the optimal value of m, 
no directions are given by Stephens et al. [12]. Nonetheless, it is 
possible that a prediction made at the root with another model 
can be used to “calibrate” the m parameter to determine the field 
response. Neuber's rule without stress correction (m = 1) is one 
example of this since it reliably gives conservative results at the 
root [25].

The results of this study indicate that stress redistribution 
correction improves stress field predictions under VA loading. 
However, the increased strain energy surrounding the root 
must be controlled via, for example, an alternative approxi-
mation rule in order for damage values to be correctly esti-
mated. The framework studied under VA loading needs to be 
implemented in a crack growth model to assess the effect of 
the steps taken here on predictions of component failure. The 
effect of the m-parameter also needs to be evaluated for differ-
ent geometries and load cases to understand its behavior and 
effect on results.

5   |   Conclusions

In this study, the applicability of the classical plasticity approx-
imation rules for nonlocal continuum damage-based crack 
growth modeling under variable-amplitude loading was inves-
tigated. Focus was placed on evaluating the performance of 
Neuber's rule [18] and Molski and Glinka's ESED rule [19] below 
the root of a notch. The combined hardening constitutive model 
of V-C was used to determine the material response at every 
load reversal during cyclic loading. A calculation framework 
was presented that determines the elasto-plastic response below 
a notch under variable-amplitude loading, accounting also for 
notch stress redistribution under plasticity. The resulting stress 
and strain fields were evaluated, and their combined effect on 
the distribution of fatigue damage in the material as well as the 
averaged damage values were compared to FEM results. The 
main findings are as follows:

1.	 Using stress redistribution correction, stresses were con-
sistently predicted from cycle to cycle for both Neuber's and 
ESED rules.

2.	 When stress redistribution correction was applied, the pre-
dicted strains at the root became more conservative with 
both Neuber's and ESED rules, with a maximum error of 
approximately 100% at the notch root. This increased strain 
impacted fatigue damage values and caused significant 

error in damage values. A modified Neuber's rule, including 
stress and strain constraint correction, successfully coun-
teracts this.

3.	 While point-wise stresses and strains were not well-
predicted below the notch root due to local variations in-
duced by plasticity, averaged damages were conservative 
by approximately 30% at most compared to FEM, using a 
modified Neuber's rule.

4.	 Considering the obtained accuracy of the introduced com-
putational framework, it shows good potential for giving 
quick engineering predictions of averaged damage values 
for crack growth analysis.

Nomenclature
�	 Total backstress
�k	 Backstress component k
f0	 Value of quantity at previous load reversal
Ck	 Chaboche kinematic hardening parameter C for back-

stress component k
�k	 Chaboche kinematic hardening parameter � for back-

stress component k
nk	 Number of backstress components
R	 Isotropic expansion
Q	 Voce isotropic hardening parameter
b	 Voce isotropic hardening parameter
�	 Sign of loading direction (1 or -1)
t 	 Current time/load step
p	 Accumulated plastic strain
a	 Notch depth
�	 Notch root radius
rRVE	 Size of representative volume element
davg	 Average grain size
d99%	 Grain size at a probability level of 99%
S	 Nominal stress
E	 Elastic modulus
�y0	 Nominal yield strength
�	 Poisson's ratio
�′	 Effective Poisson's ratio
�′
f ,cm

	 Coffin–Manson parameter
bcm	 Coffin–Manson parameter
�′
f ,cm

	 Coffin–Manson parameter
ccm	 Coffin–Manson parameter
m	 Parameter in modified Neuber relation
Kt	 Elastic stress concentration factor
Kt,eq	 Elastic equivalent stress concentration factor
K�	 Plastic stress concentration factor
K�	 Plastic strain concentration factor

TABLE 4    |    Ratios of predicted average damages to values given by FEM, Dp
avg∕D

FEM
avg

, when using Equation (24) to obtain average damages.

rRVE Neuber Neubercorr. Neuberm=0.6
corr.

ESED ESEDcorr.

2 µm 1.29 2.39 1.27 0.8 1.58

10 µm 1.01 1.89 1.09 0.64 1.27

30 µm 1.0 1.86 1.09 0.64 1.26

Note: Values above 1.0 imply conservative life estimates compared to FEM and vice versa.
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�	 Plastic zone size
�0	 Plastic zone size predicted by linear pseudo-elastic 

stress field
F1, F2	 Areas used in stress redistribution correction
PSWT	 Smith–Watson–Topper parameter
Nf 	 Load cycles to fatigue failure
D	 Fatigue damage of one cycle
Dsum	 Accumulated fatigue damage
Davg	 Averaged accumulated fatigue damage
�	 Stress triaxiality
s	 Pseudo-elastic stress
e	 Pseudo-elastic total strain
�	 Actual elasto-plastic stress
�	 Actual elasto-plastic total strain
�i, �i	 i:th principal stress/strain component
�eq, �eq	 Equivalent stress/strain
�amp, �amp	 Amplitude of stress/strain over a load cycle
�mean, �mean	 Mean of stress/strain over a load cycle
�max , �max	 Maximum value of stress/strain over a load 
cycle
�H	 Hydrostatic stress
�e	 Elastic strain
�p	 Plastic strain
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