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Fig. 1: A continuous-time diffusion model [1] transforms (left) a Gaussian distribution to (right) an intractable data
distribution through a stochastic process {xτ}τ∈[0,T ] with marginal distributions {pτ (xτ )}τ∈[0,T ]. During training,
the forward diffusion is simulated by adding Gaussian noise and rescaling the data, and a score model sθ with
parameters θ learns the score function ∇xτ

log p(xτ ). During the generative reverse process, the process time τ
is discretized to steps {τ0, . . . , τN} and followed in reverse from τN = T to τ0 = Tmin. (Bottom) The next state
xτn−1

is obtained based on the previous state xτn using an estimate given by the score model. The score model is
conditioned by the noise scale at the current time step, σ(τn), and optional conditioning c to guide the generation
such as e.g. a text description.
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With the development of audio playback devices and fast data transmission, the demand for high sound quality is

rising for both entertainment and communications. In this quest for better sound quality, challenges emerge from

distortions and interferences originating at the recording side or caused by an imperfect transmission pipeline. To

address this problem, audio restoration methods aim to recover clean sound signals from the corrupted input data.

We present here audio restoration algorithms based on diffusion models, with a focus on speech enhancement and

music restoration tasks.

Traditional approaches, often grounded in handcrafted rules and statistical heuristics, have shaped our understanding

of audio signals. In the past decades, there has been a notable shift towards data-driven methods that exploit the

modeling capabilities of deep neural networks (DNNs). Deep generative models, and among them diffusion models,

have emerged as powerful techniques for learning complex data distributions. However, relying solely on DNN-based

learning approaches carries the risk of reducing interpretability, particularly when employing end-to-end models.

Nonetheless, data-driven approaches allow more flexibility in comparison to statistical model-based frameworks,

whose performance depends on distributional and statistical assumptions that can be difficult to guarantee. Here, we

aim to show that diffusion models can combine the best of both worlds and offer the opportunity to design audio

restoration algorithms with a good degree of interpretability and a remarkable performance in terms of sound quality.

In this article, we review the use of diffusion models for audio restoration. We explain the diffusion formalism

and its application to the conditional generation of clean audio signals. We believe that diffusion models open an

exciting field of research with the potential to spawn new audio restoration algorithms that are natural-sounding and

remain robust in difficult acoustic situations.

INTRODUCTION

Traditional audio restoration methods exploit statistical properties of audio signals, such as auto-regressive

modeling for click removal [2] or probabilistic modeling for speech enhancement and separation [3], by using

various representations like time-domain waveforms, spectrograms, or cepstra. Although they are robust to many

scenarios, such methods struggle with highly non-stationary sources or interferences that appear in real-life scenarios.

In the past decade, audio signal processing algorithms have benefited greatly from the introduction of data-driven

approaches based on DNNs [4]. Among these methods, a broad class leverages predictive models that learn to map

a given input to a desired output. Note that the term predictive models covers both classification and regression

tasks, unlike discriminative models [5]. In a typical supervised setting, a predictive model is trained on a labeled

dataset to minimize a certain point-wise loss function between the processed input and the clean target. Following

the principle of empirical risk minimization, the goal of predictive modeling is to find a model with minimal average

error over the training data, where the generalization ability of the model is usually assessed on a validation set of

unseen data. By employing ever-larger models and datasets—a current trend in deep learning—strong generalization
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can be achieved. However, many purely data-driven approaches are considered black boxes and remain largely

unexplainable and non-interpretable. Moreover, these models typically produce deterministic outputs, disregarding

the inherent uncertainty in their results.

Generative models follow a different learning paradigm, namely estimating and sampling from an unknown data

distribution. This can be used to infer a measure of uncertainty for their predictions and to allow the generation of

multiple valid estimates instead of a single best estimate as in predictive approaches [5]. Furthermore, incorporating

prior knowledge into generative models can guide the learning process and enforce desired properties about the

learned distribution. generative adversarial networks (GANs) [6] and variational auto-encoders (VAEs) [7] have been

instrumental in the early developments of generative models. Subsequent to these approaches, diffusion models [1],

[8] have emerged as a distinct class of deep generative models that boast an impressive ability to learn complex

data distributions such as that of natural images [1], [8], music [9], and speech [10]. Diffusion models generate data

samples through iterative transformations, transitioning from a tractable prior distribution (e.g. Gaussian) to a target

data distribution, as visualized in Figure 1. This iterative generation scheme is formalized as a stochastic process

and is parameterized with a DNN that is trained to address a Gaussian denoising task.

From a practical point of view, diffusion models have become popular because they can generate high-quality

samples while being simpler to train than GANs. Moreover, combining data-driven machine learning techniques

with mathematical concepts, such as stochastic processes, opens up possibilities for modeling conditional data

distributions and integrating Bayesian inference tools. In audio processing, this has spawned new types of algorithms

that adopt diffusion models for restoration tasks such as speech enhancement [11], [12] or music restoration [9].

Here, we present a comprehensive overview and categorization of novel techniques for solving audio restoration

problems using diffusion models in a data-driven, model-based fashion.

In the following, we first look at the basics of diffusion models and show how they can be used for model-based

processing. We then examine conditional generation with diffusion models for audio restoration tasks, distinguishing

between three different conditioning techniques. In particular, we look at diffusion models for audio inverse problems

with a known degradation operator and its extension to blind inverse problems when the degradation operator is

unknown. We conclude by discussing the practical requirements of diffusion models for audio restoration tasks,

examining sampling speed and robustness to adverse conditions.

BASICS OF DIFFUSION MODELS

With the development of DNNs and the increase in computational power, deep generative modeling has become

one of the leading directions in machine learning with a variety of applications. Deep generative models aim to

design a generation process for data that resembles real-world examples, e.g., natural speech produced by a human

speaker. This involves modeling the probability distribution of highly structured and complex data such that learning
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and sampling are computationally tractable. One way to realize generative modeling is based on the assumption that

the data is generated by some random process involving unobserved variables. Such hidden variable models map

samples from a tractable distribution, such as the Gaussian distribution, to samples that are likely to represent target

data points. From this perspective of hidden variable models, we discuss diffusion models as a distinct class of deep

generative models whose hidden variables are parameterized via a stochastic process.

Diffusion models break down the problem of generating high-dimensional complex data into a series of easier

denoising tasks. Training such a denoising model first requires defining a forward diffusion process, which gradually

adds noise to the data points of a dataset. This corruption process progressively turns the data distribution into a

Gaussian distribution, as shown in Figure 1 from right to left (gray arrows). In turn, data generation is accomplished

by reversing the corruption process. First, a random sample is drawn from a Gaussian distribution, and then the

model iteratively removes noise from this initial point, ultimately yielding a sample from the data distribution. This

reverse diffusion process is illustrated in Figure 1 from left to right (blue arrows).

Formally, the forward diffusion process can be represented by the Markov chain x0 → x1 → · · · → xN with

x0 ∈ Rd sampled from the data distribution and fixed Gaussian transition probabilities q(xn|xn−1). The resulting

directed graphical model is depicted with gray circles in Figure 1. The generative model is then described by a

Markov chain in reverse order xN → xN−1 → · · · → x0 with xN sampled from the prior distribution N (0, I). To

accomplish the generation task, a DNN is trained to denoise the sample xn. Specifically, it learns to approximate

the transition probabilities of the reverse Markov chain p(xn−1|xn) [8].

This discrete-time Markov chain formulation of diffusion models can be generalized to continuous-time stochastic

processes by letting the number of steps N grow infinitely, conversely making the distance between steps infinitely

small. This facilitates the design of novel diffusion processes and allows the use of more flexible sampling

schemes [1]. Specifically, the corresponding forward diffusion process is defined as a stochastic process {xτ}τ∈[0,T ],

i.e. a collection of random variables indexed by a continuous process time τ ∈ [0, T ] [13]. The process time τ

in stochastic processes intuitively corresponds to the index n in Markov chains. It is important to note that the

process time τ is completely unrelated to the time dimension of the audio signal. A single random realization of the

stochastic process {xτ}τ∈[0,T ] is depicted by the green trajectory traversing Figure 1. The conditional distribution

characterizing the forward diffusion model is the transition kernel qτ (xτ |x0) instinctively related to the probability

q(xn|x0) :=

n∏
i=1

q(xi|xi−1) in Markov chains. The transition kernel qτ (xτ |x0) can be computed by solving a

stochastic differential equation (SDE), which is a differential equation where some of the coefficients are random

[13]. Specifically, we define the so-called forward SDE as

dxτ = f(xτ , τ) dτ + g(τ) dwτ , (1)
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where the function f : Rd × R → Rd is referred to as the drift coefficient and relates to the deterministic part of

the SDE. The function g : R → R is called the diffusion coefficient and controls the amount of randomness in the

SDE. More precisely, the diffusion coefficient g(τ) scales the noise injected by the stochastic process wτ . In most

cases, wτ is chosen to be a Wiener process, which is a stochastic process with independent and normally distributed

increments, i.e. wτ+dτ −wτ ∼ N (0, dτ I) [13]. If the SDE drift f is an affine function of xτ and the diffusion g

is independent of xτ , then the transition kernel has a simple Gaussian form

qτ (xτ |x0) = N (µ(x0, τ), σ(τ)
2I) , (2)

where the mean µ(x0, τ) and standard deviation σ(τ) can be obtained by solving the SDE and computing the first

and second moments of the solution [13].

The reverse diffusion process, i.e. the generation process, is also a stochastic process {xτ}τ∈[0,T ] parameterized

by the process time τ ∈ [0, T ] flowing in the reverse direction, with xT ∼ N (0, σ(T )2I). Reversing the process

time axis in (1) results in another SDE called the reverse SDE whose marginal distributions match those of the

forward SDE [1]. Therefore, denoising the sample xτ boils down to solving the reverse SDE

dxτ =
[
f(xτ , τ)− g(τ)2∇xτ

log p(xτ )
]
dτ + g(τ) dw̄τ , (3)

where dτ < 0 as the process axis is traveled in the reverse direction. The stochastic process w̄τ is another Wiener

process associated to this reverse process axis, i.e. w̄τ+dτ − w̄τ ∼ N (0,−dτ I). The quantity ∇xτ
log p(xτ ) (with

∇xτ
representing the gradient operator with respect to xτ ) is called score function and is a vector field informative

about the variations of the process state’s logarithmic probability density. The score function ∇xτ
log p(xτ ) is

generally intractable and we need to approximate it with a DNN called score model sθ(xτ , τ) with parameters θ.

Vincent et al. [14] have shown that the score model sθ(xτ , τ) can be optimized using denoising score matching, i.e.

matching the score of the Gaussian transition kernel qτ (xτ |x0) instead of the score of the unknown probability

p(xτ ). The score of the transition kernel qτ (xτ |x0) can be obtained from Eq. (2) as

∇xτ
log qτ (xτ |x0) = −xτ − µ(x0, τ)

σ(τ)2
. (4)

The score model sθ is therefore trained using the denoising score-matching objective [14]

Ex0∼p(x0)
τ∼U(0,T )
xτ∼qτ (xτ |x0)

[
λ(τ)

∥∥∥∥sθ(xτ , τ) +
xτ − µ(x0, τ)

σ(τ)2

∥∥∥∥2
2

]
, (5)

where a data example x0 is first sampled from the training set. Then, a process time τ is sampled uniformly

between 0 and T , and the diffusion state xτ is obtained by sampling from the transition kernel (2). Here λ(τ) is a
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time-dependent scaling factor, chosen empirically to stabilize training [1].

Generative reverse process

Forward diffusion
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1: Sample initial state xτN ∼ N (0, σ(τN )2I)

2: for n ∈ {N, . . . , 1} do
3: Get reverse step size ∆τn = τn−1 − τn < 0

4: Obtain score estimate sθ(xτn , σ(τn))

5: if Deterministic sampler then
6: Take probabilty-flow ODE step
7: else if Stochastic sampler then
8: Take reverse SDE step

9: Obtain next state xτn−1
= xτn + dxτn

10: Output: x0

Fig. 2: Stochastic (green solid lines) and deterministic (white dashed lines) sampling trajectories. The stochastic
sampler discretizes the reverse SDE (3) where noise is added at each sampling step by the Wiener process wτ . The
deterministic sampler uses the probability-flow ordinary differential equation (ODE), which does not re-introduce
noise. Two different initial points x

(1)
τN , and x

(2)
τN are sampled, and two realizations of the stochastic sampler are

shown for the same initial state x
(1)
τN . The target distribution has two modes x

(a)
τ0 and x

(b)
τ0 .

Once the score model sθ has been trained, it allows the generation of new samples from the learned data

distribution by solving the reverse SDE (3). In practice, this is done by first discretizing the process time axis into

N steps {τN , τN−1, . . . , τ0} with a step size ∆τn := τn − τn−1, often chosen uniformly. Then an initial condition

xτN is sampled and the reverse SDE (3) is integrated between τN = T and τ0 = 0 using a numerical approximation

method called SDE solver [15]. A differential equation solver approximates the trajectory between successive steps

xτn and xτn−1
as a piecewise polynomial function (linear if first-order solver, quadratic if second-order, etc.), whose

coefficients depend on the terms in Eq. (3). An SDE solver, in particular, considers two polynomial functions

(with potentially distinct degrees) to model the deterministic and stochastic terms, respectively. For instance, the

widespread Euler-Maruyama method is an SDE solver with first-order polynomial approximation for both the

deterministic and stochastic components [15]. The generation process is summarized in the algorithm in Fig. 2.

Deterministic sampling can also be used in place of stochastic sampling by deactivating the randomness source,

i.e. removing the Wiener process wτ in (3), and adapting the diffusion coefficient g. This turns the reverse SDE in

a so-called probability flow ODE [1]. A comparison between stochastic and deterministic sampling is presented

in Figure 2. We display three realizations of the stochastic and deterministic sampler. Note that because of the

stochastic noise injected at each step, two stochastic sampler trajectories starting at the same initial state may

end up reaching two different modes of the target data distribution, whereas the corresponding mean trajectory

systematically reaches the same mode. This suggests that a stochastic sampler could be used to obtain more diverse
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Fig. 3: A diffusion model may be trained in (top-left) waveform [16], (top-right) STFT [17], (bottom-left) latent [21],
or (bottom-right) CQT [9] domains. Sampling from the transition kernel qτ (xτ |x0) can be realized by rescaling the
clean data sample x0 and adding Gaussian noise ϵ with standard deviation σ(τ) (see (2)). In the top-left, top-right,
and bottom-left figures, the noise and the score functions are in the same domain. In the bottom-right figure, the
diffusion process is formulated in the time domain but the score model pipeline includes a CQT and its inverse.

samples and also to improve mode coverage, i.e. better represent the modes of the data distribution p(x0) regardless

of the initial state.

Diffusion processes can be defined for various data representations, depending on the audio application considered.

Early works such as [10], [11], [16] directly use the waveform representation, whereas some speech enhancement

approaches employ the complex short-time Fourier transform (STFT) domain [12], [17], [18], and several music

restoration works consider the Constant-Q Transform (CQT) domain, which is a natural space for harmonic music

signals [9], [19], [20]. Learned domains like, e.g., auto-encoder latent spaces, can also be exploited for diffusion

to reduce the dimensionality of the original audio data or leverage auto-encoding properties, which gives birth to

latent diffusion models [21]. Figure 3 offers a schematic overview of diffusion models defined in various domains.

It should be noted that a connection between score-based diffusion models and continuous normalizing flows

has been drawn by Lipman et al., creating a new category of so-called flow matching models [22]. Flow matching

methods generalize Gaussian diffusion models and allow to design more flexible probability paths (based on e.g.

optimal transport) between arbitrary terminal distributions. This approach has been used to train a foundational

speech model, which can be finetuned to perform restoration tasks such as speech enhancement and separation [23].

Model-based processing with diffusion models

In statistical model-based speech enhancement, each time-frequency bin of the speech and noise spectrograms is

often assumed to be mutually independent and to follow a zero-mean complex Gaussian prior distribution [3]. For

an additive mixture model, this yields a Gaussian likelihood model for the mixture and a Gaussian posterior model



8

for the clean speech estimate using Bayes’ rule. Under this Gaussian assumption, the posterior mean can be derived

as the celebrated Wiener filter solution, providing the optimal speech estimate in the minimum mean square error

(MMSE) sense. However, distributional and independence assumptions are merely approximations utilized out of

convenience for the derivation of closed-form estimators, e.g. the mentioned Wiener filter. With diffusion models,

there are no distributional and independence assumptions on the speech and noise signals themselves. Indeed, the

very intent of deep generative modeling is to allow more flexibility by inferring the signal structure from data rather

than the parameters of a fixed distribution.

In contrast to other deep learning approaches to audio restoration, two aspects make diffusion models well suited

for the introduction of domain knowledge, showcasing them as model-based approaches. The first property is

derived from the physical inspiration of diffusion models and their connection to Gaussian denoising [24], which

makes them easier to interpret in comparison to other deep generative models such as GANs. In particular, the

Gaussian parameterization of the transition kernel qτ (xτ |x0) enables the injection of knowledge in the form of

specific schedules for the mean µ and standard deviation σ [11], [17], [25]. Furthermore, domain knowledge can be

leveraged to posit a distributional hypothesis for the noise process wτ used during forward and reverse diffusion.

For instance, Nachmani et al. [26] propose a Gamma distribution instead of the usual Wiener process wτ with

Gaussian increments, as it better fits the estimation error distribution. The authors consequently show improvements

in speech generation quality compared to the Gaussian case.

The second powerful property of diffusion models is their natural integration within stochastic optimization and

posterior sampling using Bayes’ theorem, making them particularly suited for conditional generation. We consider

the case of audio restoration under the scope of inverse problem solving, i.e. retrieval of clean audio x0 from a

measurement y. There, an approximation of the measurement likelihood p(y|x0) can be obtained via a closed-form

model of the operation corrupting x0 into y. Combining this likelihood model and the learned deep generative

prior with Bayes’ rule can provide sampling or stochastic optimization algorithms for the conditional generation of

samples from the posterior distribution p(x0|y) [9], [20], [27], [28].

In summary, first, we see that the data-driven nature of diffusion models allows a higher degree of versatility

than traditional signal processing methods, which are often strictly based on simple closed-form distributions and

independence assumptions. Secondly, it is important to note that diffusion models transcend the stereotype of being

non-interpretable black-boxes. Instead, they benefit from strong integration within stochastics and enable significant

potential for the injection of domain knowledge for model-based audio processing.

CONDITIONAL GENERATION WITH DIFFUSION MODELS

One of the most fundamental uses of diffusion models is to perform unsupervised learning from a finite collection

of samples to learn an underlying complex data distribution. This provides the ability of unconditional generation,
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i.e., to generate new samples from the learned data distribution. To solve audio restoration tasks, a diffusion model

must be adapted to generate audio that not only conforms to the learned clean audio distribution but, importantly, is

also a plausible reconstruction of a given corrupted signal. This effectively requires the diffusion model to perform

conditional generation. We distinguish between three families of approaches for diffusion-based generative audio

restoration: (i) input conditioning, where the score model is provided with a task-specific conditioning signal as

input, (ii) task-adapted diffusion, where the forward and reverse diffusion processes are modified to interpolate

between clean and corrupted signals, and (iii) external conditioning, where the score model is trained purely on

clean audio data and is later combined with an external conditioner during inference. Approaches that use input

conditioning (i) or external conditioning (iii) often initialize the iterative generation process with pure Gaussian

noise, and then generate a clean signal by iteratively filtering this noise while being guided by the conditioning

signal. In contrast, in task-adapted diffusion (ii), the corrupted audio itself is used for initialization and iteratively

filtered, making this approach conceptually closer to a denoising procedure.

(i) Input conditioning: Diffusion models that use input conditioning are provided with a task-specific conditioning

signal c (usually some representation of the corrupted signal y) as an additional input during training and inference.

To this end, they employ DNNs as score models that are specifically designed to perform feature fusion between

the inputs xτ and c. It should be noted that, in most cases, input conditioning approaches require the use of paired

data, as the conditioning signal c and the target data sample y should be representations of the same data instance,

or at least share some semantics. The earliest works to follow this approach include DiffWave [16], which uses

mel-spectrograms as conditioning signals for neural vocoding and text-to-speech tasks. While DiffWave focuses

on audio generation rather than restoration, the authors of DiffWave also provide preliminary evidence that an

unconditional speech diffusion model can perform speech enhancement by using the corrupted audio y as a starting

point of the sampling process even though the diffusion model was only trained to remove Gaussian noise. DiffuSE

[29] builds upon DiffWave to solve speech enhancement tasks, using noisy spectral features as conditioning c.

In the worst case, the score model may not use conditioning c at all, thus inadvertently performing unconditional

rather than conditional generation. One possible solution to this is classifier-free guidance, where the conditioning

signal is randomly set to zero with a fixed probability during training. This results in a single model that can

both provide an estimate for the conditional score ∇xτ
log p(xτ |c) and the unconditional score ∇xτ

log p(xτ ). At

inference, the two estimates can then be weighted at will to trade quality (more weight on conditional score) for

variety (more weight on unconditional score). This idea has been used, for instance, by Liu et al. [21] to perform

controllable full-band audio synthesis and can also be employed for various audio restoration tasks.

(ii) Task-adapted diffusion: In many restoration tasks such as denoising, dereverberation and separation, the

corrupted signal y and the clean signal x0 have same dimensionality. This allows one to define what we denote as
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Fig. 4: Comparison of different diffusion processes. (left) Classical variance-preserving (VP) diffusion: mean
exponentially interpolates between clean audio x0 and 0, irrespectively of the degraded audio y [1]. (middle)
Task-adapted Ornstein–Uhlenbeck variance exploding (OUVE) diffusion: mean exponentially interpolates between
clean audio x0 and degraded audio y [12], [17]. (right) Task-adapted brownian bridge with exponential diffusion
(BBED): mean linearly interpolates between clean audio x0 and degraded audio y [25].

task-adapted diffusion processes, i.e. diffusion processes whose mean µ(x0,y, τ) is x0 at τ = 0 and y at τ = T , and

that interpolates between these terminal values for τ ∈]0, T [. This is a form of conditioning which is not introduced

as an auxiliary variable to the score model sθ as for input conditioning, but rather directly injected in the parameters

of the diffusion process itself. Examples of classical and task-adapted diffusion processes are visualized on Figure 4.

CDiffuSE [11] is one of the earliest methods using task-adapted diffusion, formulating the process in discretized

time steps. Score-based generative model for speech enhancement (SGMSE) [17] and SGMSE+ [12] extend this

idea to the continuous SDE-based formalism of diffusion models to derive pairs of forward and backward processes.

Subsequent works [18], [25] build upon this formalism to design alternative forward and backward processes which

result in fewer sampling steps and/or higher reconstruction quality. In practice, these methods combine task-adapted

diffusion processes with input conditioning, by also providing y as an auxiliary input to the score model.

The interpolation between x0 and y underlying these approaches assumes an additive signal model typical

for denoising tasks, which can also be treated as natural for separation tasks [30] or for convolutive corruptions

such as reverberation. The aforementioned methods also achieve excellent reconstruction quality for non-additive

corruptions like in bandwidth extension [18] and STFT phase retrieval [31], which shows their ability to perform

blind restoration, i.e. when the corruption operator is not perfectly known during inference.

(iii) External conditioning: External conditioning approaches combine an unconditional diffusion model with an

external conditioner that provides a conditioning signal during inference. Since the diffusion model is unconditional,

no knowledge of the restoration task is accessed during the training stage and no supervision nor paired data is

required. Instead, the task-specific information is injected only at inference by the external conditioner. Therefore,

external condition methods can leverage diffusion-based foundation models pre-trained on large-scale data, and

adapt them for inference without further re-training. One such type of external conditioner is a pre-trained classifier

enabling the combined model to perform class-conditional data generation. For audio restoration, the external
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conditioner usually takes the form of a task-specific closed-form measurement model. This results in an overall

model that combines a strong data-driven prior for clean audio (score model) with a model-based formulation of the

specific restoration task (measurement model). This approach shows good results even when the observation y is

affected by measurement noise [9], [28] and has the advantage of not requiring retraining of the diffusion model for

new restoration tasks. These approaches can be applied to blind restoration tasks if a good parameterization of the

measurement operator is found. The parameterization enables classical estimation algorithms to be utilized for joint

inference of the measurement model and target audio sample estimation, as Moliner et al. [20] accomplished in the

blind bandwidth extension of historical music recordings.

DIFFUSION MODELS FOR INVERSE PROBLEMS

We have seen different strategies to condition diffusion models for audio restoration tasks. This section delves

into the external conditioning approach, specifically focusing on the application of diffusion models for solving

inverse problems in the audio domain. Several audio restoration tasks can be formulated as an inverse problem,

wherein an observed audio signal y is the result of corrupting a clean signal x0 with a degradation model A(·) and

additive noise n, which can be expressed as

y = A(x0) + n. (6)

This model covers an infinite set of possible degradations, depending on how the operator A(·) is defined. Three

cases of particular interest are showcased in Figure 5. Initially, we concentrate on scenarios in which both the

degradation model A(·) and the noise statistics n are known. The goal is to recover the original signal x0 from the

corrupted observations y. However, in many cases, the problem is ill-posed, lacking a unique solution and defying

straightforward resolution.

Often, solving an inverse problem is approached with a maximum a posteriori (MAP) objective

argmax
x0

p(x0|y) , (7)

where the posterior distribution factorizes into likelihood and prior p(x0|y) ∝ p(y|x0)p(x0). Under a zero-mean

Gaussian measurement noise assumption, denoted as n ∼ N (0, σ2
yI), the MAP estimate takes the form

argmin
x0

1

σ2
y

∥y −A(x0)∥22 +R(x0) , (8)

where the first term is a reconstruction cost function, in this case an L2-norm, designed to preserve fidelity with

the observations y. The second term, R(x0), functions as a regularizer, incorporating prior information or domain

knowledge about the signal. Its purpose is to mitigate the under-determination of the problem by constraining the
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Fig. 5: Visual representation of several inverse problems in audio: (top to bottom) inpainting, bandwidth extension,
and dereverberation. (Left) The spectrogram of the original audio signal, x0, undergoes various transformations
via different measurement operators, (middle) the resulting degraded observations, y, correspond to specific audio
distortions, and (right) the reconstructed audio signal x̃0 is obtained by solving each inverse problem. Notably, the
reconstructed example spectrograms (right) closely mirror the original (left), but minor differences appear because
of the inherent ill-posed nature of these inverse problems.

space of suitable solutions, thereby making the optimization feasible in practice. In audio processing, a frequently

employed regularizer is the sparsity-promoting L1-norm, which assumes that the true signal is sparse in a specified

transform domain, such as time-frequency representations.

A diffusion model learns the statistical characteristics of the training data, in our case of clean audio signals.

One can then expect diffusion models to have the potential to serve as strong data-driven priors for solving inverse

problems. We will now elaborate on how to leverage these diffusion-based generative priors for solving (8).

To solve an inverse problem using a diffusion model, the score ∇xτ
log p(xτ ) in the reverse SDE (3) is replaced

with the score of the posterior using Bayes’ rule

∇xτ
log p(xτ |y) = ∇xτ

log p(xτ ) +∇xτ
log p(y|xτ ) , (9)

where the prior score ∇xτ
log p(xτ ) is approximated with the unconditional score model sθ (see (5)). The term

∇xτ
log p(y|xτ ) represents the likelihood score. However, it is important to note that the likelihood p(y|xτ ) is only

analytically tractable for τ = 0, as xτ refers to a noisy version of x0 and the true likelihood is defined through an

intractable integral over all possible x0

p(y|xτ ) =

∫
x0

p(y|x0)p(x0|xτ ) dx0 . (10)

Some works alleviate this issue by simply bypassing the likelihood term, and instead project the state xτ onto the

set of the observations y at every step of the discretized inference process. [1]. The objective of such projection-based

method is to inject the reliable parts of the observations into the intermediate predictions. This ensures that at each
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step, the intermediate output of the algorithm is consistent with the algorithm input, i.e. the degraded audio, which

is often refered to as data consistency and helps avoiding degenerate solutions. Projection-based methods offer

the advantage of ensuring data consistency and simplicity in terms of algorithmic implementation. However, their

applicability is limited to a reduced set of linear inverse problems, such as audio inpainting or bandwidth extension

[9], [21], where closed-form expressions for the projection step are available.

Other works adopt more theoretically grounded approximations of the likelihood that allow a broader versatility

by incorporating a model-based approach. In particular, Chung et al. [27] proposed Diffusion Posterior Sampling,

and approximate the likelihood as p(y|xτ ) ≈ p(y|x̂0(xτ )). There, x̂0(xτ ) is a coarse estimate of x0 obtained

by denoising from state xτ in just one deterministic reverse diffusion step. When modeling the measurement

noise n in (6) as a Gaussian n ∼ N (0, σ2
yI), the resulting approximated likelihood is a Gaussian distribution

p (y|x̂0(xτ )) = N (A(x̂0(xτ )), σ
2
yI). It follows that the likelihood score can be computed as:

∇xτ
log p(y|xτ ) ≈ − 1

σ2
y

∇xτ
∥y −A (x̂0(xτ ))∥22 . (11)

The L2-norm in (11) can be replaced by any other objective function that better fits the statistics of the measurements

[27]. For example in [32], the measurement noise n is modelled as a Gaussian in the compressed STFT domain,

where the compression is a square-root power law on the STFT magnitude, leaving the phase unchanged. This helps

accounting for the heavy-tailedness of speech distributions [33]. It is important to note that the gradient operator ∇xτ

requires differentiating through the score model by backpropagation, which introduces a computational overhead. In

practice, the unknown measurement noise variance σ2
y is estimated empirically using e.g. the norm of the gradients

in (11) [9]. Compared to projection-based methods, this approach is not limited to linear problems and can be

applied to cases where A(·) is nonlinear, as long as the operator A(·) is differentiable. A geometrical perspective

on the sampling process is displayed in Figure 6. This diagram illustrates the intuition behind conditional sampling

with a diffusion model, in this case in the context of bandwidth extension. This strategy has been successfully

applied in audio bandwidth extension [9], audio inpainting [19], and dereverberation [28].

Blind inverse problems

Until this point, our analysis has proceeded under the assumption that the degradation operator A(·) is known.

However, in practical applications, the degradation operator is often unknown. This lack of knowledge about the

degradation operator renders the calculation of the posterior p(x0|y) a blind inverse problem, substantially raising

the difficulty of the task. The Diffusion Posterior Sampling approach [27], as previously explained, provides a

valuable foundation that can be extended to tackle blind inverse problems. In scenarios where we possess at least

some knowledge of the structure of the degradation operator, a viable strategy is to embrace a model-based approach.
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Prior score
∇x log p(xτN )

∇x log p(xτn)

Likelihood score
∇x log p(y|xτN )

∇x log p(y|xτn)

Initialization xτN

Current state xτn

Good solution
x0

Out-of-distribution solutionInconsistent solution

Observation y

Solutions in-distribution
x0 ∼ pdata

Consistent solutions
A(x0) ≈ y

Fig. 6: Geometrical interpretation of posterior sampling with diffusion models (e.g. [27]). The prior score guides the
trajectories towards solutions within the training data manifold, or in-distribution with the training data (gray space).
Simultaneously, the role of the likelihood score is to steer the sampling trajectories toward a solution space consistent
with the observed data (light green space). When properly weighted, the two components pull the sampling process
to the intersection of these two manifolds. This intersection exists and contains the solutions to the inverse problem
if the two score functions are properly estimated and if the solutions are contained in the manifold spanned by the
training data, i.e. if the training dataset is properly adapted to the problem.

This involves designing a parametric model of the degradation operator, denoted as Aϕ(·), and jointly optimizing its

parameters ϕ alongside the restored audio signal throughout the sampling process.

An example of this approach is the Blind Audio Bandwidth Extension (BABE) [20], which addresses the problem

of blind reconstruction of missing high frequencies in music from bandlimited observations without knowledge

of the lowpass degradation, such as the cutoff frequency. This challenge is typical in restoring historical audio

recordings. In BABE, the measurement model Aϕ(·) is parameterized by a piecewise approximation of a low-pass

filter in the frequency domain, where the parameters ϕ represent the cutoff frequencies and decay slopes of this filter

[20]. The optimization process, as illustrated in Figure 7, alternates between sampling updates of the audio signal xτ

and refining ϕ through stochastic gradient descent, using a maximum likelihood objective as the guiding principle.

BUDDy [32] takes a similar approach and solves joint speech dereverberation and room acoustics estimation by

combining Diffusion Posterior Sampling with a model-based subband filter approximating room impulse response.

The resulting method largely outperforms other blind unsupervised dereverberation methods. Thanks to unsupervised

learning, BUDDy seamlessly adapts to new acoustic scenarios, whereas supervised methods typically struggle when
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Fig. 7: BABE: posterior sampling algorithm for solving blind bandwidth extension using a prior score model sθ
and a parameterized degradation operator Aϕ [20]. The optimization alternates between updating the reconstructed
signal x (top) and the degradation parameters ϕ (bottom). For ease of reading, we write x̂0 := x0(xτN ).

there is a mismatch between training and testing conditions.

PRACTICAL REQUIREMENTS OF DIFFUSION-BASED SAMPLING FOR AUDIO TASKS

While diffusion models provide powerful priors that can be employed for various audio restoration tasks, they

require some improvements to be suitable for real-time acoustic communications. We divide these requirements

into two categories: (i) inference speed and causal processing, which can be prohibitive for low-latency real-time

applications, and (ii) robustness to adverse conditions, which must be assured for integration into reliable systems.

Inference speed and causal processing

One major drawback of diffusion models is their slow inference. As the score model is called at each step of the

reverse process, the computational complexity is directly proportional to the number of steps used and the order of

the solver, i.e., the number of score estimations used per time step. Using more diffusion steps naturally provides

better sample reconstruction since the truncation error of the numerical solver is reduced when the step size is

decreased. Similarly, increasing the solver order reduces the per-step truncation error. However, both these options

lead to an increased computational cost. Furthermore, accumulating truncation errors over the diffusion trajectory

can make the samples diverge from the distribution learned during training, and therefore make the score model

produce unreliable estimates, which is referred to as the drifting bias. These two sources of error compound over

the diffusion trajectory, therefore, without further optimization, high-quality reconstruction can only be obtained

at a high computational cost. This section presents several methods to reduce the computational complexity of

diffusion-based methods in audio applications.

Reducing per-step inference time: A natural way to accelerate inference is to reduce the cost of each call to the

score model. This can be obtained by minimizing the size of the neural network used for score inference through e.g.
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Fig. 8: Visualization of the inference process for the predictive, generative and StoRM [18] models for a complex
posterior distribution. With the proposed two-stage inference, StoRM uses the predictive mapping to the posterior
mean E[x0|y] as an intermediate step for generation of a sample which is more likely to lie in high-density regions
of the posterior p(x0|y).

knowledge distillation, or by reducing the size of the space itself where diffusion is performed, resulting in latent

diffusion models. The latent space should be designed such that its reduced dimensionality has a limited impact

on the reconstruction quality, and its structure allows for score estimation with a reasonably-sized neural network.

Latent diffusion is popular in text-to-audio generation and has been recently applied to audio editing (including

restoration) in AUDIT [34], which uses latents provided by a VAE.

Improving initialization: Another possibility to accelerate sampling is to find a better initial prediction to reduce

the distance between the initial condition xT and the target sample x0. This can be provided by a separate plug-in

predictive network providing an estimate of the posterior mean E[x0|y] as proposed by Lemercier et al. in their

Stochastic Regeneration Model (StoRM) [18] for speech enhancement (see Figure 8). The diffusion-based generative

model can restore target cues potentially destroyed by the predictive stage while additionally removing residual

corruption. The resulting approach requires significantly fewer function evaluations than the original diffusion-only

model in [12], for a better-sounding result. Figure 9 shows the clean, degraded, and restored speech spectrograms

produced with StoRM. As a simpler alternative, the corrupted utterance y can be directly used as the mean of the

initial state xT . This latter strategy is sometimes referred to as warm initialization and has already been used in

audio-related tasks such as speech enhancement [11] and bandwidth extension [20]. A good initial prediction can

also be obtained by designing a more suitable diffusion trajectory to reduce the mismatch between training and

inference, as suggested by Lay et al. [25] for speech enhancement. As shown in Figure 4, the BBED diffusion

process proposed in [25] has a linear, constant speed mean interpolating between the clean and noisy speech, which

effectively terminates at the clean speech in finite time, unlike the original OUVE diffusion process proposed in

[17].



17

Time [s]

Fr
eq

ue
nc

y
[H

z]
Anechoic

Time [s]

Reverberant

Time [s]

Initial Prediction

Time [s]

StoRM Restoration

Fig. 9: Dereverberation results with StoRM [18]. Input T60 is 1.06 s. Three seconds of audio are shown, and the
bandwidth is 8 kHz. Severe speech distortions are observed in the initial prediction because of the harsh reverberant
conditions. StoRM corrects the distortions and restores the formant structure without residual reverberation.

Reducing the number of steps: The remaining approaches investigate how to reduce the number of diffusion

steps of the reverse process. As in most ODE/SDE integration problems, using off-the-shelf higher-order samplers

can improve the per-step precision but here it comes at the cost of more calls to the neural network for each step,

which leads to a non-trivial tradeoff between computational complexity and sample quality. In denoising diffusion

implicit models (DDIM) [35] instead, the Markovian property of the transition kernel is deliberately removed by

conditioning the next reverse diffusion estimate xτn−1
on both the previous state xτn and x̂0, a coarse estimate

of the clean signal obtained via one-step denoising (see the section above on inverse problems). This allows an

arbitrary number of steps to be skipped during reverse diffusion, which can significantly accelerate inference.

A progressive distillation method for reverse diffusion is used for text-to-speech generation in [36]. Leveraging

DDIM sampling, a new student diffusion sampler learns at each iteration of the distillation process how to perform

reverse diffusion using half as many steps as the current teacher. The resulting distilled sampler generates speech

with similar quality as the original sampler using 64x more steps.

The noise variance schedule and time discretization used for reversed diffusion can also be optimized to reduce the

number of steps, instead of being pre-defined. In [37], the schedule is learned by training an auxiliary hyper-network

on top of existing denoising diffusion models. The resulting approach enables impressive speech generation results

in as few as three reverse diffusion steps.

Finally, some auxiliary losses and training schemes are designed to ensure that the diffusion states remain as

close as possible to the domain seen by the score network during training, thereby mitigating the so-called drifting

bias. Lay et al. [38] propose a two-stage training method for diffusion-based speech enhancement following such a

concept. The score network is first trained with denoising score matching and then fine-tuned to overfit a particular

reverse diffusion sampler, by matching the final estimate of the solver to the clean speech target. High-quality speech

enhancement is obtained with as few as one reverse diffusion step, reaching real-time computational complexity.

Causal processing: In real-time acoustic communications (e.g. hearing aids), future information can not be
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used to process the current signal which means processing must be causal. Diffusion models can be adapted for

causal processing, as in Richter et al. [39], where the convolutional score network architecture and the audio level

normalization procedure are modified to meet causality requirements.

Robustness to adverse conditions

Artifacts produced by diffusion models can differ in nature from those produced by statistical signal processing

methods or predictive deep learning models. It was observed in [12] that speech enhancement diffusion models tend

to hallucinate for negative input signal-to-noise ratios, i.e. when noise dominates clean speech. This can lead to

speech inpainting in noise-only regions, breathing and gasping artifacts, or the introduction of phonetic confusion,

which may have a negative impact in real-world applications. This behavior can be mitigated by introducing external

modalities such as video in Richter et al. [40], where lip movements are analyzed to determine the phoneme used

as conditioning for score estimation guidance. Alternatively, as presented in StoRM [18] the input signal-to-noise

ratio can be first increased by using a predictive deep learning model to remove parts of the noise, at the potential

cost of speech distortions. A generative diffusion model is then used to reconstruct the noisy and distorted speech,

which was shown to help avoid hallucination effects and thus increase the robustness to challenging conditions.

Generative pre-training is another approach to increase robustness to outliers. It involves using a pretext task such

as masked modeling to train the diffusion model in a self-supervised fashion. Masked modeling involves randomly

masking some regions of audio and instructing the model to fill in those masked sections using the available context

information, i.e. the non-masked regions. This pre-trained model can then be fine-tuned for a particular downstream

task (e.g. speech enhancement, music restoration, etc.) using a supervised setting. Liu et al. [23] show that their

diffusion model SpeechFlow benefits from generative pre-training, as it increases its robustness to adverse scenarios

such as noise-dominated utterances in speech enhancement. They also notice that generative pre-training consistently

increases performance for most speech restoration tasks.

Finally, running several realizations of the reverse diffusion process and measuring the empirical standard deviation

of the obtained estimates can provide the user with a natural measure of uncertainty, which can help detect outliers

and estimate the robustness of the approach on the given task.

CONCLUSION

This article discussed diffusion models as deep conditional generative models for audio restoration. We suggested

that diffusion models can be considered as serious candidates for model-based audio processing, as we recalled

that domain knowledge can be injected into various aspects of their design such as parameterization of diffusion

trajectories, or modeling of a measurement likelihood for posterior sampling with diffusion priors. By categorizing

the various forms of conditioning proposed in diffusion approaches—namely input conditioning, task-adapted
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processes, and external conditioning—we highlight the structural flexibility of diffusion models and their resulting

appreciable degree of interpretation. In particular, looking at audio restoration under the scope of solving inverse

problems, we showed that we can combine diffusion models with Bayesian tools and stochastic optimization, thereby

leveraging various parameterizations of degradation operators for informed and blind inverse problems. The quality

of diffusion-based audio generation is remarkable, and although this can be originally outbalanced by disadvantages

regarding practical requirements, e.g., robustness to adverse conditions or inference speed, we exposed several

approaches and studies solving these drawbacks. We believe these solutions can be combined to yield robust, fast

diffusion models for real-time acoustic communications.
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