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Abstract Most approaches to human attribute and action
recognition in still images are based on image representa-
tion in which multi-scale local features are pooled across
scale into a single, scale-invariant encoding. Both in bag-
of-words and the recently popular representations based
on convolutional neural networks, local features are com-
puted at multiple scales. However, these multi-scale con-
volutional features are pooled into a single scale-invariant
representation. We argue that entirely scale-invariant image
representations are sub-optimal and investigate approaches
to scale coding within a bag of deep features framework.
Our approach encodesmulti-scale information explicitly dur-
ing the image encoding stage. We propose two strategies to
encode multi-scale information explicitly in the final image
representation. We validate our two scale coding techniques
on five datasets: Willow, PASCAL VOC 2010, PASCAL
VOC 2012, Stanford-40 and Human Attributes (HAT-27).
On all datasets, the proposed scale coding approaches out-
perform both the scale-invariant method and the standard
deep features of the same network. Further, combining our
scale coding approaches with standard deep features leads to
consistent improvement over the state of the art.
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1 Introduction

Human attribute and action recognition in still images is
a challenging problem that has received much attention
in recent years [22,24,47,67]. Both tasks are challenging
since humans are often occluded, can appear in different
poses (also articulated), under varying illumination, and at
low resolution. Furthermore, significant variations in scale
both within and across different classes make these tasks
extremely challenging. Figure 1 shows example images from
different categories in the Stanford-40 and theWillow action
datasets. The bounding box (in red) of each person instance
is provided both at train and test time. These examples illus-
trate the inter- and intra-class scale variations common to
certain action categories. In this paper, we investigate image
representations which are robust to these variations in scale.

Bag-of-words (BOW) image representations have been
successfully applied to image classification and action
recognition tasks [24,31,52,56]. The first stage within the
framework, known as feature detection, involves detecting
keypoint locations in an image. The standard approach for
feature detection is to use dense multi-scale feature sampling
[23,43,52] by scanning the image at multiple scales at fixed
locations on a grid of rectangular patches. Next, each feature
is quantized against a visual vocabulary to arrive at the final
image representation. A disadvantage of the standard BOW
pipeline is that all scale information is lost. Though for image
classification such an invariance with respect to scale might
seem beneficial since instances can appear at different scales,
it trades discriminative information for scale invariance. We
distinguish two relevant sources of scale information: (i)
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Fig. 1 Example images from the interacting with computer, fishing,
running andwatching tv action categories. These examples illustrate the
scale variations present, especially with respect to the size of bound-
ing boxes within each action category. This suggests that alternative

image representations may be desirable that explicitly encode multi-
scale information. a Class interacting with computer. b Class fishing.
c Class running. d Class watching tv

dataset scale prior: due to the acquisition of the dataset some
visual words could bemore indicative of certain categories at
a particular scale than at others scales (e.g., we do not expect
persons of 15 pixels nor shoes at 200 pixels) and (ii) relative
scale: in the presence of a reference scale, such as the per-
son bounding box provided for action recognition, we have
knowledge of the actual scale at which we expect to detect
parts of the object (e.g., the hands and head of the person).
Both examples show the relevance of scale information for
discriminative image representations and are the motivation
for our investigation into scale coding methods for human
attribute and action recognition.

Traditionally, BOW methods are based on hand-crafted
local features such as SIFT [37], HOG [7] or Color Names
[64]. Recently, convolutional neural networks (CNNs) have
had tremendous success on a wide range of computer
vision applications, includinghumanattribute [68] and action
recognition [44]. Cimpoi et al. [6] showed how deep con-
volutional features (i.e., dense local features extracted at
multiple scales from the convolutional layers of CNNs) can
be exploited within a BOW pipeline for object and tex-
ture recognition. In their approach, a Fisher vector encoding
scheme is used to obtain thefinal image representation (called
FV-CNN). We will refer to this type of image representation
as a bag of deep features, and in this work we will apply
various scale coding approaches to a bag of deep features.
Contributions In this paper, we investigate strategies for
incorporating multi-scale information in image represen-
tations for human attribute and action recognition in still
images. Existing approaches encode multi-scale information
only at the feature extraction stage by extracting convolu-
tional features at multiple scales. However, the final image

representation in these approaches is scale-invariant since all
the scales are pooled into a single histogram. To prevent the
loss of scale information, we will investigate two comple-
mentary scale coding approaches. The first approach, which
we call absolute scale coding, is based on amulti-scale image
representation with scale encoded with respect to the image
size. The second approach, called relative scale coding,
instead encodes feature scale relative to the size of the bound-
ing box corresponding to the person instance. Scale coding
of bag of deep features is performed by applying the coding
strategies to the convolutional features from a pre-trained
deep network. The final image representation is obtained
by concatenating the small, medium and large scale image
representations. We perform comprehensive experiments on
five standard datasets: Willow, PASCAL VOC 2010, PAS-
CAL VOC 2012, Stanford-40 and the Database of Human
Attributes (HAT-27). Our experiments clearly demonstrate
that our scale coding strategies outperform both the scale-
invariant bag of deep features and the standard deep features
extracted from fully connected layers of the same network.
We further show that combining our scale coding strategies
with standard features from the FC layer further improves the
classification performance.Our scale coding image represen-
tations are flexible and effective, while providing consistent
improvement over the state of the art.

In the next section, we discuss work from the litera-
ture related to our proposed scale coding technique. In
Sects. 3 and 4, we describe our two proposals for coding
scale information in image representations. We report on a
comprehensive set of experiments performedonfive standard
benchmark datasets in Sect. 5, and in Sect. 6 we conclude
with a discussion of our contribution.
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2 Related work

Scale plays an important role in feature detection. Important
work includes early research on pattern spectrums [39] based
onmathematicalmorphologywhich provided insight into the
existence of features at certain scales in object shapes. In the
field of scale-space theory [28,65], the scale of features was
examined by analyzing how images evolved when smoothed
withGaussian filters of increasing scale. This theorywas also
at the basis of the SIFT detector [37] which obtained scale-
invariant features and showed these to be highly effective for
detection of objects. The detection of scale-invariant features
was much studied within the context of bag-of-words [41].
In contrast to the methods we describe in this paper, most of
these works ignore the relative size of detected features.

In this section, we briefly review the state of the art in bag-
of-words image recognition frameworks, multi-scale deep
feature learning, and human action and attribute recognition.
The bag-of-words framework In the last decade, the bag-
of-words (BOW)-based image representation dominated the
state of the art in object recognition [10] and image retrieval
[20]. The BOW image representation is obtained by per-
forming three steps in succession: feature detection, feature
extraction and feature encoding. Feature detection involves
keypoint selection either with an interest point detector [42]
or with dense sampling on a fixed grid [2,62]. Several works
[49,52] demonstrated the importance of using a combination
of interest point and grid-based dense sampling. This feature
detection phase, especially when done on a dense grid, is
usually multi-scale in the sense that feature descriptors are
extracted at multiple scales at all points.

Local descriptors, such as SIFT and HOG, are extracted
in the feature extraction phase [7,37]. Next, several encod-
ing schemes can be considered [11,46,70]. The work of [11]
investigated soft assignment of local features to visual words.
Zhou et al. [70] introduced super-vector coding that performs
a nonlinear mapping of each local feature descriptor to con-
struct a high-dimensional sparse vector. The Improved Fisher
vectors, introduced by Perronnin et al. [46], encode local
descriptors as gradients with respect to a generative model of
image formation (usually a Gaussian mixture model (GMM)
over local descriptors which serves as a visual vocabulary for
Fisher vector coding).

Regardless of the feature encoding scheme, most existing
methods achieve scale invariance by simply quantizing local
descriptors to a visual vocabulary independently of the scale
at which they were extracted. Visual words have no associ-
ated scale information, and scale is thus marginalized away
in the histogram construction process. In this work, we use a
Fisher vector encoding scheme within the BOW framework
and investigate techniques to relax scale invariance in the
final image representation. We refer to this as scale coding,
since scale information is preserved in the final encoding.

Deep featuresRecently, image representations based on con-
volutional neural networks (CNNs) [32] have demonstrated
significant improvements over the state of the art in image
classification [44], object detection [12], scene recognition
[29], action recognition [33], and attribute recognition [68].
CNNs consist of a series of convolution and pooling opera-
tions followed by one or more fully connected (FC) layers.
Deep networks are trained using raw image pixels with a
fixed input size. These networks require large amounts of
labeled training data. The introduction of large datasets (e.g.,
ImageNet [50] and the parallelism enabled by modern GPUs
have facilitated the rapid deployment of deep networks for
visual recognition.

It has been shown that intermediate, hidden activations of
fully connected layers in trained deep network are general-
purpose features applicable to visual recognition tasks [1,44].
Several recent methods [6,14,36] have shown superior per-
formance using convolutional layer activations instead of
fully connected ones. These convolutional layers are dis-
criminative, semantically meaningful and mitigate the need
to use a fixed input image size. Gong et al. [14] proposed a
multi-scale orderless pooling (MOP) approach by construct-
ing descriptors from the fully connected (FC) layer of the
network. The descriptors are extracted from densely sam-
pled square image windows. The descriptors are then pooled
using the VLAD encoding [21] scheme to obtain final image
representation.

In contrast to MOP [14], Cimpoi et al. [6] showed
how deep convolutional features (i.e., dense local features
extracted at multiple scales from the convolutional layers of
CNNs) can be exploited within a BOW pipeline. In their
approach, a Fisher Vector encoding scheme is used to obtain
the final image representation. We will refer to this type of
image representation as a bag of deep features, and in this
work we will apply various scale coding approaches to a bag
of deep features. Though FV-CNN [6] employs multi-scale
convolutional features, the descriptors are pooled into a sin-
gle Fisher vector representation. This implies that the final
image representation is scale-invariant since all the scales are
pooled into a single feature vector. We argue that such a rep-
resentation is sub-optimal for the problem of human attribute
and action recognition and propose to explicitly incorporate
multi-scale information in the final image representation.
Action recognition in still imagesRecognizing actions in still
images is a difficult problem that has gained a lot of atten-
tion recently [24,44,47,67]. In action recognition, bounding
box information of each person instance is provided both at
train and test time. The task is to associate an action category
label with each person bounding box. Several approaches
have addressed the problem of action recognition by find-
ing human–object interactions in an image [38,47,67]. A
poselet-based approach was proposed in [38] where poselet
activation vectors capture the pose of a person. Prest et al. [47]
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proposed a human-centric approach that localizes humans
and objects associated with an action. Yao et al. [67] propose
to learn a set of sparse attribute and part bases for action
recognition in still images. Recently, a comprehensive survey
was performed by Ziaeefard et al. [72] on action recognition
methods exploiting semantic information. In their survey,
it was shown that methods exploiting semantic information
yield superior performance compared to their nonsemantic
counterparts in many scenarios. Human action recognition
in still images is also discussed within the context of fuzzy
domain in a recent survey [34].

Other approaches to action recognition employ BOW-
based image representations [24,25,56]. Sharma et al. [56]
proposed the use of discriminative spatial saliency for action
recognition by employing a max margin classifier. A com-
prehensive evaluation of color descriptors and color-shape
fusion approaches was performed by Khan et al. [24]
for action recognition. Khan et al. [25] proposed pose-
normalized semantic pyramids employing pre-trained body
part detectors. A comprehensive survey was performed by
Guo and Lai [15] where existing action recognition meth-
ods are categorized based on high-level cues and low-level
features.

Recently, image representations based on deep features
have achieved superior performance for action recognition
[13,18,44]. Oquab et al. [44] proposed mid-level image rep-
resentations using pre-trained CNNs for image classification
and action recognition. The work of [13] proposed learning
deep features jointly for action classification and detection.
Hoai et al. [18] proposed regularizedmax pooling and extract
features at multiple deformable sub-windows. The afore-
mentioned approaches employ deep features extracted from
activations of the fully connected layers of the deep CNNs. In
contrast, we use dense local features from the convolutional
layers of networks for image description.

The incorporation of scale information has been investi-
gated in the context of action recognition in videos [53,71].
The work of [53] proposes to construct multiple dictionaries
at different resolutions in a final video representation. The
work of [71] proposes multi-scale spatio-temporal concate-
nation of local features resulting in a set of natural action
structures. Both these methods do not consider relative scale
coding. In addition, our approach is based on recent advance-
ments of deep convolutional neural networks (CNNs) and
Fisher vector encoding scheme. We revisit the problem of
incorporating scale information for the popular CNNs-based
deep features. To the best of our knowledge, we are the first to
investigate and propose scale-coded bag of deep feature rep-
resentations applicable for both human attribute and action
recognition in still images.
Human attribute recognition Recognizing human attributes
such as, age, gender and clothing style is an active research
problem with many real-world applications. State-of-the-art

approaches employ part-based representations [3,25,68] to
counter the problem of pose normalization. Bourdev et al.
[3] proposed semantic part detection using poselets and con-
structing pose-normalized representations. Their approach
employs HOGs for part descriptions. Later, Zhang et al. [68]
extended the approach of [3] by replacing the HOG features
with CNNs. Khan et al. [25] proposed pre-trained body part
detectors to automatically construct pose-normalized seman-
tic pyramid representations.

In this work, we investigate scale coding strategies for
human attribute and action recognition in still images. This
paper is an extended version of our earlier work [26]. Instead
of using the standard BOW framework with SIFT features,
we propose scale coding strategies within the emerging bag
of deep features paradigm that uses dense convolutional fea-
tures in classical BOW pipelines. We additionally extend
our experiments with results on the PASCAL VOC 2010,
PASCAL 2012, Standord-40 and Human Attribute (HAT-27)
datasets.

3 Scale coding: relaxing scale invariance

In this section, we discuss several approaches to relaxing
the scale invariance of local descriptors in the bag-of-words
model. Originally, the BOWmodel was developed for image
classification where the task is to determine the presence or
absence of objects in images. In such situations, invariance
with respect to scale is important since the object could be
in the background of the image and thus appear small, or
instead appear in the foreground and cover most of the image
space. Therefore, extracted features are converted to a canon-
ical scale—and from that point on the original feature scale
is discarded—and mapped onto a visual vocabulary. When
BOW was extended to object detection [16,62] and later to
action recognition [8,24,47] this same strategy for ensuring
scale invariance was applied.

However, this invariance comes at the expense of dis-
criminative power through the loss of information about
relative scale between features. In particular, we distinguish
two sources of scale information: (i) dataset scale prior: the
acquisition and/or collection protocol of a dataset results in a
distribution of the object-sizes as a function of the size in the
image, e.g., most cars are between 100–200 pixels, and (ii)
relative scale: in the presence of a reference scale, such as the
person bounding box, we have knowledge of the actual scale
at which we expect to detect parts or objects (e.g., the size
at which the action-defining object such as the mobile phone
or musical instrument should be detected). These sources
of information are lost in scale-invariant image representa-
tions. We propose two strategies to encode scale information
of features in the final image representation.
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3.1 Scale-invariant image representation

Wefirst introduce some notation. Features are extracted from
the person bounding boxes (available at both training and
testing time) using multi-scale sampling at all feature loca-
tions. For each bounding box B, we extract a set of features:

F(B) = {
xsi | i ∈ {1, . . . , N }, s ∈ {1, . . . M}} ,

where i ∈ {1, . . . , N } indexes the N feature sites in B, and
s ∈ {1, . . . M} indexes the M scales extracted at each site.

In the scale-invariant representation, a single representa-
tion h(B) is constructed for each bounding box B:

h(B) ∝
N∑

i=1

M∑

s=1

c
(
xsi

)
(1)

where c : �p → �q denotes a coding scheme which maps
the input feature space of dimensionality p to the image rep-
resentation space of dimensionality q.

Let usfirst consider the case of standardbag-of-wordswith
nearest neighbor assignment to the closest vocabulary word.
Assume we have a visual vocabulary W = {w1, . . . ,wP }
of P words. Every feature is quantized to its closest (in the
Euclidean sense) vocabulary word:

ws
i = argmin

k∈{1,...,P}
d(xsi ,wk),

where d(·, ·) is the Euclidean distance. Indexws
i corresponds

to the vocabulary word to which feature xsi is assigned. Let-
ting e(i) be the one-hot column vector of length q with all
zeros except for the index i where it is one, we can write the
standard hard assignment bag-of-words by plugging in:

cBOW
(
xsi

) = e(ws
i )

as the coding function in Eq. 1.
For the case of Fisher vector encoding [45], a Gaussian

Mixture Model (GMM) is fitted to the distribution of local
features x:

uλ (x) =
K∑

1

wkuk (x),

where λ = {
wk,μk,�k

}K
k=1 are the parameters defining

the GMM, respectively, the mixing weights, the means, and
covariancematrices for the K Gaussianmixture components,
and

uk (x) = 1

(2π)D/2 |Σk |1/2

× exp

{
−1

2

(
x − μk

)′
Σ−1

k

(
x − μk

)}
.

The coding function is then given by the gradientwith respect
to all of the GMM parameters:

cFisher
(
xsi

) = ∇ log uλ

(
xsi

)
.

and plugging this encoding function into Eq. 1. For more
details on the Fisher vector encoding, please refer to [51].
Since the superiority of Fisher coding has been shown in
several publications we apply Fisher coding throughout this
paper [4].

3.2 Absolute scale coding

The first scale preserving scale coding method we propose
uses an absolute multi-scale image representation. Letting
S = {1, . . . , M} be the set of extracted feature scales, we
encode features in groups of scales:

ht (B) ∝
N∑

i=1

∑

s∈St
c(xsi ). (2)

Instead of being marginalized completely away as in Eq. 1,
feature scales are instead divided into several subgroups St

that partition the entire set of extracted scales (i.e.,
⋃

t S
t =

{1, . . . , M}). In thiswork,we consider a split of all scales into
three groups with t ∈ {s,m, l} for small, medium and large
scale features. For absolute scale coding, these three-scale
partitions are defined as:

Ss = {
s | s ≤ ss, s ∈ S

}

Sm =
{
s | ss < s ≤ sl, s ∈ S

}

Sl =
{
s | sl < s, s ∈ S

}
,

where the two cutoff thresholds ss and sl are parameters of
the encoding. The final representation is obtained by concate-
nating these three encodings of the box B and thus preserves
coarse scale information about the originally extracted fea-
tures, and it exploits what we refer to as the dataset scale
prior or absolute scale. However, note that this representa-
tion does not exploit the relative scale information.

3.3 Relative scale coding

In relative scale coding, features are represented relative to
the size of the bounding box of the object (in our case the
person bounding box). The representation is computed with:
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Fig. 2 Scale coding (left) input image, superimposed bounding boxes
indicate persons performing an action; (middle) in standard scale cod-
ing the scale is independent of the object size (red circles show the
extracted feature scales), and they are all assembled in a single his-
togram per image; (right) our proposal of relative scale coding adapts

to the bounding box of the object. This ensures that similar structures
(such as hands and ski poles) are captured at the same scale indepen-
dent of the absolute bounding box size. The features are represented in
several concatenated histograms which collect a range of feature scales
(color figure online)

ht (B) ∝ 1

|Ŝt |
N∑

i=1

∑

s∈Ŝt
c(xsi ) (3)

The difference between Eqs. 2 and 3 is that the scale of each
feature s is reparameterized relative to the size of the bound-
ing box B in which it was observed:

ŝ = Bw + Bh

w̄ + h
s

where Bw and Bh are the width and height of bounding box
B and w̄ and h are the mean width and hight of all bounding
boxes in the training set. Taking into account, the boundary
length ensures that elongated objects have large scales.

As for absolute scale coding, described in the previous
section, we group relative scales into three groups. The rela-
tive scale splits Ŝt are defined with respect to relative scale:

Ŝs = {
ŝ | ŝ ≤ ss, s ∈ S

}

Ŝm = {
ŝ | ss < ŝ ≤ sm, s ∈ S

}

Ŝl = {
ŝ | sm < ŝ, s ∈ S

}
.

Since the number of scales which fall into the small, medium
and large scale range image representation now varies with
the size of the bounding box, we introduce a normalization
factor |Ŝt | in Eq. 3 to counter this. Here, |Ŝt | is the cardinality
of the set Ŝt .

Relative scale coding represents visual words at a certain
relative scale with respect to the bounding box size. Again,
it consists of three image representations for small, medium

and large scale visual words, which are then concatenated
together to form the final representation for B. However,
depending on the size of the bounding box, the scales which
are considered small, medium and large change. An illustra-
tive overview of this approach is given in Fig. 2. In contrast
to the standard approach, this method preserves the relative
scale of visual wordswithout completely sacrificing the scale
invariance of the original representation.

3.4 Scale partitioning

Until now, we have considered partitioning the features into
three scale-groups: small, medium and large. Here, we eval-
uate this choice and compare it with other partitioning of the
scales.

To evaluate the partitioning of scales, we extracted fea-
tures at M = 21 different scales on Stanford-40 and
the PASCAL VOC 2010 datasets. For this evaluation, we
performed absolute scale encoding and varied the num-
ber of scale partitions from one (equivalent to standard
scale-invariant coding) to 21 in which case every scale is rep-
resented by a single image representation. In Fig. 3, we plot
the mean average precision (mAP) on Stanford-40 and PAS-
CAL2010 as a function of the number of scale partitions. The
curve clearly shows that absolute scale coding outperforms
the generally applied representation based on scale-invariant
coding (which collects all scales in a single partition). Fur-
thermore, it shows that after three-scale partitions, the gain of
increasing the number of partitions is negligible. Throughout
this paper, we use three-scale partitions for all scale coding
experiments.

123
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Fig. 3 Mean average precision as a function of number of scale parti-
tions for absolute scale coding (Sect. 3.2. Performance is shown on the
Stanford-40 and PASCAL VOC 2010 validation sets. On both, abso-
lute scale coding improves performance compared to scale-invariant
coding (which groups all scales to single representation). A consistent
improvement is achieved when using three-scale partitions for absolute
coding

4 The bag of deep features model

Inspired by the recent success of CNNs, we use deep features
in our scale coding framework.
Deep convolutional features Similar to [6], we use the VGG-
19 network proposed by Simonyan and Zisserman [60],
pre-trained on the ImageNet dataset. It was shown to provide
the best performance in a recent evaluation [5,6] for image
classification tasks. In theVGG-19 network, input images are
convolved with 3×3 filters at each pixel at a stride of 1 pixel.
The network contains several max-pooling layers which per-
form spatial pooling over 2 × 2 pixel windows at a stride of
2 pixels. The VGG-19 network contains 3 fully connected
(FC) layers at the end. The width of the VGG-19 network
starts from 64 feature maps in the first layer and increases
by a factor of 2 after each max-pooling layer to reach 512
feature maps at its widest (see [60] for more details).

Typically, the activations from the FC layer(s) are used as
input features for classification. For VGG-19 this results in
a 4096-dimensional representation. In contrast, we use the
output of the last convolutional layer of the network since
it was shown to provide superior performance compared to
other layers [6]. This layer returns dense convolutional fea-
tures at a stride of eight pixels.We use these 512-dimensional
descriptors as local features within our scale coding frame-
work. To obtain multi-scale samples, we rescale all images
over a range of scales and pass them through the network for
feature extraction. Note that the number of extracted local
convolutional patches depend on the size of the input image.
Vocabulary construction and assignment In standard BOW
all features are quantized against a scale-invariant visual
vocabulary. The local features are then pooled in a single
scale-invariant image representation. Similar to [6], we use
the Fisher vector encoding for our scale coding models. For

vocabulary construction, we use the Gaussian mixture model
(GMM). The convolutional features are then pooled via the
Fisher encoding that captures the average first- and second-
order differences. The 21 different scales are pooled into the
three-scale partitions to ensure that the scale information is
preserved in the final representation. It is worth mentioning
that our scale coding schemes can also be used with other
encoding schemes such as hard assignment, soft assignment,
and VLAD [21].

5 Experimental results

In this section, we present the results of our scale coding
strategies for the problem of human attribute and action
recognition. First we detail our experimental setup and
datasets used in our evaluation, and then present a compre-
hensive comparison of our approach with baseline methods.
Finally, we compare our approach with the state of the art in
human attribute and action recognition.

5.1 Experimental setup

As mentioned earlier, bounding boxes of person instances
are provided at both train and test time in human attribute
and action recognition. Thus, the task is to predict the human
attribute or action category for each person bounding box.
To incorporate context information, we extend each person
bounding box by 50% of its width and height.

In our experiments, we use the pre-trained VGG-19 net-
work [60]. Similar to Cimpoi et al. [6], we extract the
convolutional features from the output of the last convo-
lutional layer of the VGG-19 network. The convolutional
features are not de-correlated by using PCA before employ-
ing Fisher Vector encoding, since it has been shown [6]
to deteriorate the results. The convolutional features are
extracted after rescaling the image at 21 different scales
s ∈ {0.5 + 0.1n | n = 0, 1, . . . , 20}. This results in 512-
dimensional dense local features for each scaled image.Onan
image of size 300×300, the feature extraction on multi-core
CPU takes about 5 seconds. For our scale coding approaches,
we keep a single, constant threshold for all datasets.

For each problem instance, we construct a visual vocab-
ulary using a Gaussian mixture model (GMM) with 16
components. In Fig. 4, we plot the mean average precision
(mAP) on Willow and PASCAL 2010 datasets as a function
of the number of Gaussian components. We observed no sig-
nificant gain in classification performance by increasing the
number of Gaussian components beyond 16. The parameters
of this model are fit using a set of dense descriptors sam-
pled from descriptors over all scales on the training set. We
randomly sample 100 descriptor points from each training
image. The resulting sampled feature descriptors from the
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Fig. 4 Mean average precision as a function of number of Gaussian
components for relative scale coding. Performance is shown on theWil-
low and PASCAL VOC 2010 sets. On both, our scale coding provides
best results when using a Gaussian mixture model (GMM) with 16
components

whole training set are then used to construct a GMM-based
dictionary.We also perform experiments by varying the num-
ber of feature samples per image. However, no improvement
in performance was observed with increased feature samples
per image. We employ a GMM with diagonal covariances.
Finally, the Fisher vector representations discussed in Sect. 3
are constructed for each image. The Fisher vector encoding
is performed with respect to the Gaussian mixture model
(GMM) with means, diagonal covariances, and prior proba-
bilities. The dense image features have dimensionality 512,
and so our final scale-coded Fisher vector representation
has dimensionality 3 × (2 × 16 × 512 + 16) = 49200
(i.e., it is a concatenation of the Fisher vector encoding
the three-scale categories). In our experiments, we use the
standard VLFeat library [61] commonly used to construct
GMM-based vocabulary and the improved Fisher vector-
based image representations. For classification, we employ
SVMs with linear kernels on the concatenated Fisher vectors
of each scale coding groups described above.

5.2 Datasets

We perform experiments on five datasets to validate our
approach:

– The Willow Action Dataset consisting of seven action
categories interacting with computer, photographing,
playing music, riding bike, riding horse, running and
walking.1

– The Stanford-40 Action Dataset consisting of 9532
images of 40 different action categories such as garden-

1 Willow is available at: http://www.di.ens.fr/willow/research/
stillactions/.

ing, fishing, applauding, cooking, brushing teeth, cutting
vegetables, and drinking.2

– The PASCAL VOC 2010 Action Dataset consisting of 9
action categories phoning, playing instrument, reading,
riding bike, riding horse, running, taking photo, using
computer and walking.3

– The PASCAL VOC 2012 Action Dataset consisting of
10 different action classes phoning, playing instrument,
reading, riding bike, riding horse, running, taking photo,
using computer, walking and jumping.4

– The 27 Human Attributes Dataset (HAT-27) consisting
of 9344 images of 27 different human attributes such
as crouching, casual jacket, wedding dress, young and
female.5

The test sets for both the PASCAL VOC 2010 and 2012
datasets are withheld by the organizers and results must be
submitted to an evaluation server.We report the results on the
test sets in Sect. 5.2.2 and provide a comparison with state-
of-the-art methods. For theWillow [8], Stanford-40 [67] and
HAT-27 [55] datasets we use the train and test splits provided
by the respective authors.
Evaluation criteria We follow the same evaluation protocol
as used for each dataset. Performance is measured in aver-
age precision as area under the precision-recall curve. The
final performance is calculated by taking the mean average
precision (mAP) over all categories in each dataset.

5.2.1 Baseline scale coding performance analysis

Wefirst give a comparison of our scale coding strategies with
the baseline scale-invariant coding. Our baseline is the FV-
CNN approach [6] where multi-scale convolutional features
are pooled in a single scale-invariant image representation.
The FV-CNN approach is further extended with spatial infor-
mation by employing spatial pyramid pooling scheme [31].
The spatial pyramid scheme is usedwith two levels (1×1 and
2×2), yielding a total of 5 cells. We also compare our results
with standard deep features obtained from the activations
of the first fully connected layer of the CNN. Additionally,
we compare our approach with multi-scale orderless pooling
(MOP) [14] by extractingFCactivations at three levels: 4096-
dimensional CNN activation from the entire image patch (the
person bounding box), 128 × 128 patches of 4096 dimen-
sions pooled using VLAD encoding with 100 visual words,
and the same VLAD encoding but with 64×64 patches. The

2 Stanford-40 is at http://vision.stanford.edu/Datasets/40actions.html.
3 PASCAL 2010 is at: http://www.pascal-network.org/challenges/
VOC/voc2010/.
4 PASCAL 2012 is at: http://www.pascal-network.org/challenges/
VOC/voc2012/.
5 HAT-27 is available at: https://sharma.users.greyc.fr/hatdb/.
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Table 1 Comparison (in mAP)
of the standard deep features
(FC, for “fully connected”), the
MOP approach, the baseline
scale-invariant approach
(FV-CNN), the scale-invariant
spatial pyramid approach
(FV-CNN-SP), and our
proposed relative and absolute
scale coding schemes

Willow PASCAL 2010 PASCAL 2012 Stanford-40 HAT-27

VGG-19 FC [60] 87.1 72.0 74.0 70.3 61.2

MOP [14] 87.6 74.8 75.3 74.2 64.1

FV-CNN [6] 87.9 75.4 75.6 74.6 64.5

FV-CNN-SP 88.4 78.1 77.3 76.9 66.6

Absolute scale coding 89.3 79.7 78.1 77.5 67.3

Relative scale coding 89.7 79.9 78.4 77.8 67.4

Absolute+ relative+FC 92.1 82.7 80.3 80.0 70.6

Scale coding yields consistent improvements on all 5 datasets

Table 2 Comparison of our approach with the state of the art on the willow dataset

Int. computer Photographing Playingmusic Ridingbike Ridinghorse Running Walking mAP

BOW-DPM [8] 58.2 35.4 73.2 82.4 69.6 44.5 54.2 59.6

POI [9] 56.6 37.5 72.0 90.4 75.0 59.7 57.6 64.1

DS [56] 59.7 42.6 74.6 87.8 84.2 56.1 56.5 65.9

CF [24] 61.9 48.2 76.5 90.3 84.3 64.7 64.6 70.1

EPM [57] 64.5 40.9 75.0 91.0 87.6 55.0 59.2 67.6

SC [26] 67.2 43.9 76.1 87.2 77.2 63.7 60.6 68.0

SM-SP [25] 66.8 48.0 77.5 93.8 87.9 67.2 63.3 72.1

EDM [33] 86.6 90.5 89.9 98.2 92.7 46.2 58.9 80.4

NSP [40] 88.6 61.8 93.4 98.8 98.4 69.4 62.3 81.7

DPM-VR [59] 84.9 72.0 91.2 96.9 93.6 73.4 61.0 81.9

This paper 96.6 89.2 98.2 99.8 99.3 83.0 78.7 92.1

Our proposed approach achieves best results on 6 out of 7 action categories
The bold numbers in the tables indicate best results (highest classification scores)

three representations are concatenated into a single feature
vector for classification. Note that we use the same VGG-19
network for all of these image encodings.

Table 1 gives the baseline comparison on all five datasets.
Since the PASCALVOC2010 and 2012 test sets arewithheld
by the organizers, performance is measured on the validation
sets for the baseline comparison. The standard multi-scale-
invariant approach (FV-CNN) improves the classification
performance compared to the standard FC deep features. The
spatial pyramid-based FV-CNN further improves over the
standard FV-CNN method. Our absolute and relative scale
coding approaches provide a consistent gain in performance
on all datasets, compared to baselines using features from the
same deep network. Note that the standard scale-invariant
(FV-CNN) and our scale coding schemes are constructed
using the same visual vocabulary (GMM) and set of local
features from the convolutional layer. Finally, a further gain
in accuracy is obtained by combining the classification scores
of our two scale coding approacheswith the standard FCdeep
features. This combination is done by simply adding the three
classifier outputs. On the Stanford-40 and HAT-27 datasets,
this approach yields a considerable gain of 6.5 and 4.8% in
mAP, respectively, compared to the MOP approach employ-
ing FC features from the same network (VGG-19). These

results suggest that the FC, absolute scale, and relative scale
encodings have complementary information that when com-
bined yield results superior to each individual representation.

5.2.2 Comparison with the state of the art

We now compare our approach with the state of the art on
the five benchmark datasets. In this section, we report results
for the combination of our relative and absolute scale coding
strategieswith the FCdeep features. The combination is done
by simply adding the three classifier outputs.
Willow Table 2 gives a comparison of our combined scale
coding approach with the state of the art on the Willow
dataset.Our approach achieves the best performance reported
on this dataset, with an mAP of 92.1%. The shared part
detectors approach of Mettes et al. [40] achieves an mAP of
81.7%, while the part-based deep representation approach
[59] obtains an mAP of 81.9%. Our approach, without
exploiting any part information, yields the best results on
6 out of 7 action categories, with an overall gain of 10.2% in
mAP compared to [59].
PASCAL VOC 2010 Table 3 compares our combined scale
coding approach with the state of the art on the PASCAL
VOC 2010 Action Recognition test set. The color fusion
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Table 3 Comparison with the state-of-the-art results on the PASCAL VOC 2010 test set

Phoning Playingmusic Reading Ridingbike Ridinghorse Running Takingphoto Usingcomputer Walking mAP

Poselets [38] 49.6 43.2 27.7 83.7 89.4 85.6 31.0 59.1 67.9 59.7

IaC [54] 45.5 54.5 31.7 75.2 88.1 76.9 32.9 64.1 62.0 59.0

POI [9] 48.6 53.1 28.6 80.1 90.7 85.8 33.5 56.1 69.6 60.7

LAP [67] 42.8 60.8 41.5 80.2 90.6 87.8 41.4 66.1 74.4 65.1

WPOI [47] 55.0 81.0 69.0 71.0 90.0 59.0 36.0 50.0 44.0 62.0

CF [24] 52.1 52.0 34.1 81.5 90.3 88.1 37.3 59.9 66.5 62.4

SM-SP [25] 52.2 55.3 35.4 81.4 91.2 89.3 38.6 59.6 68.7 63.5

This paper 64.3 94.5 65.1 96.9 96.8 93.4 77.1 87.7 78.9 83.7

Our scale coding-based approach provides consistent improvements compared to existing methods

1 2 3 4 5 6 7 8 9

phoning

playing music

reading

riding bike

riding horse

running

taking photo

using computer

walking
0

0.2

0.4

0.6

0.8

1

−7% +9%

+13%

+4%

+11%

+10%

+7%

Fig. 5 Confusion matrix for our approach, combining both absolute
and relative scale coding, on PASCALVOC2010.We superimposed the
differences with the confusion matrix for the scale-invariant FV-CNN
approach for confusions where the absolute change is at least 4%. Our
approach provides consistent improvements, in general, but improves
significantly the performance for playing music (10%), reading (11%)
and using computer (13%) categories

approach of Khan et al. [24] achieves an mAP of 62.4%,
the semantic pyramid approach by Khan et al. [25] obtains
a mAP of 63.5%, and the method of Yao et al. [67] based
on learning a sparse basis of attributes and parts achieves an
mAP of 65.1%. Our approach yields consistent improvement
over the state of the art with anmAP of 83.7% on this dataset.
Figure 5 shows the confusion matrix for our scale coding-
based approach. The differences with the confusion matrix
based on the standard scale-invariant FV-CNN approach are
superimposed for confusions where the absolute change is at
least 4%. Overall, our approach improves the classification
results with notable improvements for playing music (10%),
reading (11%) and using computer (13%) action categories.
Further, our approach reduces confusion all categories except
for walking.
PASCAL VOC 2012 In Table 4, we compare our approach
with state of the art on the PASCAL VOC 2012 Action
Recognition test set. Among existing approaches, Regular-
izedMax Pooling (RMP) [18] obtains amAP score of 76.4%.

Table 4 Comparison of our proposed approach with the state of the art on the PASCAL VOC 2012 test set

Phoning Playingmusic Reading Ridingbike Ridinghorse Running Takingphoto Usingcomputer Walking Jumping mAP

Stanford 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6 75.7 69.1

Oxford 50.0 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5 77.0 69.5

Action poselets [38] 32.4 45.4 27.5 84.5 88.3 77.2 31.2 47.4 58.2 59.3 55.1

MDF [44] 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 78.4 70.2

WAB [19] 49.5 67.5 39.1 94.3 96.0 89.2 44.5 69.0 75.9 79.6 70.5

Action R-CNN [13] 47.4 77.5 42.2 94.9 94.3 87.0 52.9 66.5 66.5 76.2 70.5

RMP [18] 52.9 84.3 53.6 95.6 96.1 89.7 60.4 76.0 72.9 82.3 76.4

TL [27] 62.4 91.3 61.1 93.3 95.1 84.1 59.8 84.5 53.0 84.9 77.0

VGG-19+VGG-
16+Full image [60]

71.3 94.7 71.3 97.1 98.2 90.2 73.3 88.5 66.4 89.3 84.0

This paper 69.7 92.4 70.8 97.2 98.0 89.8 73.8 88.4 69.4 89.5 83.9

The best existing results are obtained by combining FC features from two CNNs (VGG-16 and VGG-19). The features are extracted both from
the full image and bounding box of a person. Our approach, based only on VGG-19 network and without using full image information, obtains
comparable performance with best results on 3 out of 10 action categories
The bold numbers in the tables indicate best results (highest classification scores)
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The best results on this dataset are obtained by combining
the FC features of theVGG-16 andVGG-19 networks. These
FC features are extracted both from the full image and the

Table 5 Comparison of the proposed approach with the state-of-the-art
methods on Stanford-40 dataset

SB CF SM-SP Place D-EPM TL Ours

mAP 45.7 51.9 53.0 55.3 72.3 75.4 80.0

Our approach yields a significant gain over the best reported results in
the literature

provided bounding box of the person. Our combined scale
coding-based approach provides the best results on 3 out of
10 action categories, and achieves an mAP of 83.9% on the
PASCAL 2012 test set. It is worth mentioning that our scale
coding-based approach employs a single network (VGG-19)
and does not exploit the full image information. Combin-
ing our scale coding-based approaches using multiple deep
networks is expected to further improve performance.
Stanford-40 dataset In Table 5, we compare scale coding
with state-of-the-art approaches: SB [67], CF [24], SM-SP
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Fig. 6 Per-category performance comparison (in AP) of our approach with the D-EPM method [58] and the scale-invariant FV-CNN approach
[6]. Our approach improves the results on 37 out 40 action classes compared to these two methods

Table 6 Images from pouring liquid, gardening, using computer and fishing action categories from the Stanford-40 dataset

Ranking of different action categories

Method

VGG-19 FC [60] 186 (98) 51 (5) 104 (24) 56 (5)

FV-CNN [6] 144 (62) 57 (4) 98 (22) 52 (5)

Our approach 32 (5) 17 (1) 30 (1) 38 (2)

The number indicates the absolute rank of corresponding image in the list of all test images sorted by the probability for the corresponding class.
The number in parentheses after each rank is the number of false positives appearing before the example test image in the ranked list. Lower absolute
rank reflects higher confidence in the class label. The action category list contains 5532 test instances. Our approach outperforms both VGG-19 FC
and FV-CNN methods on these images demonstrating the importance of coding multiple scales in the final image representation
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[25], Place [69], D-EPM [58] and TL [27]. Stanford-40 is
the most challenging action dataset and contains 40 cate-
gories. The semantic pyramids of Khan et al. [25] achieve an
mAP of 53.0%. Their approach combines spatial pyramid
representations of full-body, upper-body and face regions
using multiple visual cues. The work of [69] uses deep fea-
tures trained on ImageNet and a recently introduced large
scale dataset of place scenes. Their hybrid deep feature-
based approach achieves a mAP of 55.3%. The D-EPM
approach [58] based on expanded part models and deep
features achieves a mAP score of 72.3%. The transfer learn-
ing (TL)-based approach [27] with deep features obtains a
mAP score of 75.4%. Our combined scale coding approach
achieves state-of-the-art results with a gain of 4.6% in mAP
compared to the TL-based approach [27].

In Figure 6, we compare the per-category performance of
our approach with two state-of-the-art approaches: D-EPM
[58] and FV-CNN [6]. Our scale coding-based approach
achieves the best performance on 37 out of 40 action
categories on this dataset. A significant gain in perfor-
mance is achieved especially for drinking (+14%), washing
dishes (+9%), taking photos (+9%), smoking (+8%), and
waving hands (+8%) action categories, all compared to
the two state-of-the-art methods. Table 6 shows exam-
ple images from pouring liquid, gardening, using com-
puter and fishing categories. The corresponding ranks are
shown for the standard VGG-19 FC, FV-CNN and our
scale coding-based approach. The number indicates the
absolute rank of corresponding image in the list of all
test images sorted by the probability for the correspond-
ing class. A lower number implies higher confidence in
the action class label. We also show rank with respect to
the number of false positives appearing before the exam-
ple test image in the ranked list. Our approach obtains
improved rank on these images compared to the two stan-
dard approaches.
Human Attributes (HAT-27) dataset Finally, Table 7 shows
a comparison of our scale coding-based approach with
state-of-the-art methods on the Human Attributes (HAT-27)
dataset. The dataset contains 27 different human attributes.
The expanded part-based approach by Sharma et al. [57]
yields an mAP of 58.7%, and semantic pyramids [25],
combining body part information in a spatial pyramid repre-
sentation, anmAPof 57.6%.The approach of [22] is based on
learning a rich appearance part-based dictionary and achieves
an mAP of 59.3%. Deep FC features from the VGG-19 net-
work obtains a mAP score of 62.1%. The D-EPM method
[58] based on deep features and expanded part-based models
achieves the best results among the existing methods with
a mAP of 69.6%. On this dataset, our scale coding-based
approach outperforms the D-EPMmethod with a mAP score
of 70.6%. Scale coding yields the best classification perfor-
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Fig. 7 Attribute classification performance of our approach on the
HAT-27 dataset. We show top correct predictions of six attribute cate-
gories: ‘crouching,’ ‘wedding dress,’ ‘tank top,’ ‘elderly,’ ‘young’ and

‘baby.’ a Class crouching. b Class wedding dress. c Class tank top. d
Class elderly. e Class young f Attribute category baby

mance on 15 out of 27 attribute categories compared to the
state of the art.

Figure 7 illustrates the top four predictions of six attribute
categories from the HAT-27 dataset. These examples show
inter- and intra-class variations among different categories.
The variations in scale and pose of personsmake the problem
of attribute classification challenging. Our scale coding-
based approach consistently improves the performance on
this dataset.

5.2.3 Generality of our approach

We have validated our approach on two challenging prob-
lems: human attribute and action classification. However,
our scale coding approach is generic and is more broadly
applicable to other recognition tasks. To validate the gen-
erality of our approach, we perform additional experiments
on the popular MIT indoor scene 67 dataset [48] for scene
recognition task. The dataset contains 15620 images of 67
indoor scene classes. The training and test configurations
are provided by the original authors, where each category
has around 80 images for training and 20 for testing. The
performance is measured in terms of mean classification
accuracy computed over all the categories in the dataset.Most
existing methods [17,30,35,63] report results using VGG16
model, pre-trained on either ImageNet or Places dataset. For
fair comparison, we also validate our absolute scale coding
approach using the VGG16 model and only compare with
approaches pre-trained on ImageNet dataset.

Table 8 shows a comparison of our absolute scale coding-
based approach with state-of-the-art methods on the MIT
indoor scene 67 dataset. Among existing approaches, the
work of [17] also investigated multi-scale CNN architecture
by training scale-specific networks on the ImageNet dataset,
focusingon theCNNmodels. Several scale-specificnetworks
are combined by concatenating the FC7 features of all net-
works, yielding a mean accuracy score of 79.0%. Instead,

Table 8 Comparison of our approach with the state of the art on the
MIT indoor scene 67 dataset

Method Accuracy

DAG-CNN [66] 77.5

Deep spatial pyramid [35] 78.3

B-CNN [35] 79.0

FV-CNN [6] 79.2

SPLeap [30] 73.5

Standard VGG16 [60] 69.6

Standard VGG16 FT [17] 76.4

Multi-scale network [17] 79.0

Our approach 81.9

Our approach+ standard VGG16 83.1

Our method achieves superior performance compared to existing
approaches based on the same VGG16 model
The bold numbers in the tables indicate best results (highest classifica-
tion scores)

our approach proposes multi-scale image representations by
using a single pre-trained deep network and preserving scale
information in the pooling method, obtaining a mean clas-
sification score of 81.9%. The results are further improved
when combining the standard FC features with our scale cod-
ing approach. It is worth to mention that a higher recognition
score of 86.0% is obtained by [17], when combining scale-
specific networks trained on both ImageNet and Places scene
dataset. However, when using the same deep model archi-
tecture (VGG16) and only ImageNet dataset for network
training, our results of 83.1%are superior compared to 79.0%
obtained by the multi-scale scale-specific networks [17].

6 Conclusions

In this paper, we investigated the problem of encoding
multi-scale information for still images in the context of
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human attribute and action recognition. Most state-of-the-
art approaches based on the BOW framework compute local
descriptors at multiple scales. However, multi-scale informa-
tion is not explicitly encoded as all the features from different
scales are pooled into a single scale-invariant histogram. In
the context of human attribute and action recognition, we
demonstrate that both absolute and relative scale informa-
tion can be encoded in final image representations and that
relaxing the traditional scale invariance commonly employed
in image classification can lead to significant gains in recog-
nition performance.

We proposed two alternative scale coding approaches that
explicitly encode scale information in the final image repre-
sentation. The absolute scale of local features is encoded by
constructing separate representations for small, medium and
large features, while the relative scale of the local features is
encoded with respect to the size of the bounding box corre-
sponding to the person instance in human action or attribute
recognition problems. In both cases, the final image repre-
sentation is obtained by concatenating the small,mediumand
large scale representations.

Comprehensive experiments on five datasets demonstrate
the effectiveness of our proposed approach. The results
clearly demonstrate that our scale coding strategies outper-
form both the scale-invariant bag of deep features and the
standard deep features extracted from the same network. An
interesting future direction is the investigation of scale coding
strategies for object detection and fine-grained object local-
ization. We believe that our scale coding schemes could be
very effective for representing candidate regions in object
detection techniques based on bottom-up proposal of likely
object regions.
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