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n project portfolio selection, the aim is to choose projects which are expected to offer most value and satisfy relevant
I risk and other constraints. In this study, we show that uncertainties about how much value the projects will offer, com-
bined with the fact that only a subset of the proposed projects will be selected, lead to inaccurate risk estimates about the
aggregate value provided by the selected project portfolio. In particular, when downside risks are measured in terms of
lower percentiles of the distribution of portfolio value, these risk estimates will exhibit a systematic bias. For deriving
unbiased risk estimates, we present a calibration framework in which the required calibration can be presented in closed-
form in some cases or, more generally, derived by using Monte Carlo simulation to study a large number of project selec-
tion decisions. We also show that when the decision must comply with risk constraints, the introduction of tighter (more
demanding) risk constraints can counterintuitively aggravate the underestimation of risks. Finally, we present how the
calibrated risk estimates can be employed to align the portfolio with the decision maker’s risk preferences while eliminat-
ing systematic biases in risk estimates.
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cannibalization effects among the projects, the resulting
portfolio will yield an aggregate value which is the
Project portfolio selection is a decision problem (Salo ~ sum of values provided by the selected projects. Typi-
et al. 2011) faced by many organizations which carry cally, however, these projects’ ex post values are not
out activities through projects with the aim of attaining ~ known at the time the projects are selected. Rather, the
an appropriate balance of cost, reward, and risk (see DM must select projects based on ex ante value esti-
Kavadias and Chao 2007). This problem is faced, for =~ mates which contain estimation errors and therefore
instance, by high technology companies which launch differ from the values that will be actually realized. In
R&D projects to create new products; municipalities particular, at the time of project selection, those projects
which carry out maintenance and repair projects to whose values have been overestimated are more likely

1. Introduction

ensure the quality of built infrastructures (Mild and to be selected. As a result, the estimated portfolio value,
Salo 2009); and research councils which select research obtained by summing the ex ante value estimates, tends
projects that generate new knowledge and contribute to be higher than the realized portfolio value, causing
to economic growth and societal well-being. the phenomenon of post-decision disappointment

In all these problems, the decision maker (DM) seeks known as the optimizer’s curse (see, e.g., Brown 1974,
to maximize the value that can be gained by carrying  Harrison and March 1984, Hobbs and Hepenstal 1989,
out a subset of available project proposals subject to rel- Smith and Winkler 2006, Vilkkumaa et al. 2014).
evant constraints, most notably the limited availability To date, the optimizer’s curse phenomenon has been
of resources. Once completed, each project offers some studied by examining the impacts on the expected value
value to the DM. If there are no synergies or (Smith and Winkler 2006). In this study, we show that
the use of value estimates with random estimation
errors has major impacts on the estimation and mitiga-

This is an open access article under the terms of the . £ risks i : foli lecti 0 1 th
Creative Commons Attribution License, which permits tion of ris s.m PI‘O]eC'[ Port _O 1_0 selection. Overall, the
use, distribution and reproduction in any medium, accurate estimation of risks is important for many rea-

provided the original work is properly cited. sons: for instance, the DMs may have to establish a risk
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reserve whose size depends on the estimated risk level
of the projects that are implemented (see e.g., Lenzi
2012). Here, the overestimation and underestimation of
risks are both problematic: overestimation may lead to
an oversized risk reserve so that less resources remain
for project implementation; but underestimation will
lead to an insufficient risk reserve so that the DM will
be exposed to risks that are greater than what was
anticipated when making the decision.

Having unbiased risk estimates is particularly
important when the selected project portfolio has to
comply with risk constraints. For instance, there may
be a requirement that selected lower percentiles of the
distribution of the portfolio value do not fall below
predefined bounds (e.g., a threshold level below
which the portfolio value must not be with a probabil-
ity of 5% or more; for the purposes of this study, we
call this the 5% VaR level) (Best 1999). The 5% VaR
level can be understood in two ways, namely, it pro-
vides (i) a threshold level below which the value of
the project portfolio will be with a probability of 5%
and (ii) a complementary probability 100% - 5% =
95% for obtaining a portfolio value which exceeds the
threshold. Thus, for instance if the 5% VaR threshold
level is too high and thus overestimated (i.e., there is
a higher than 5% probability that the portfolio value
is below this estimated threshold), the complemen-
tary 95% probability will be underestimated.

To our knowledge, Flyvbjerg (2006) is the only study
on the causes of and remedies to inaccuracies in risk
estimates about projects. He notes that the underesti-
mation in risk estimates can be attributed to optimism
bias and strategic misrepresentation. In our study, we
show that even if the project-specific biases associated
with optimism and strategic misrepresentation are cor-
rected so that the estimates about projects’ values are
unbiased, risk estimates about the value of the project
portfolio will still be systematically biased. We also
show that systematic biases in VaR estimates depend
on whether projects are selected in the presence of risk
constraints. In particular, we show that the introduc-
tion of risk constraints does reduce risks, as one would
expect. Yet, it can lower the estimated VaR level even
more, which can lead to a misplaced belief that risks
are under better control than what they actually are.

As a remedy, we propose alternative approaches to
the calibration of risk estimates. In situations where
there is an extensive record of earlier project portfolio
selection processes, guidance for the required calibra-
tion can be derived from careful analyses of historical
data about these processes. If not, it may be possible
to characterize the key parameters of the portfolio
selection problem and to use these parameters in
Monte Carlo simulations to determine the appropriate
calibration. In particular, we outline a portfolio selec-
tion process in which risk estimates are explicitly

calibrated to derive revised estimates which do not
exhibit systematic biases and thus help the DM select
a project portfolio whose value is aligned with the sta-
ted risk preferences.

We contribute to the theory and practice on project
portfolio selection in several ways. First, we show that
risk estimates can be biased. This should be of much
concern to the DM who may have to set aside reserves
depending on the estimated risk level and whose deci-
sion may have to comply with risk constraints. Second,
we propose approaches to the calibration of risk esti-
mates, which help the DM select a project portfolio that
is aligned with the stated risk preferences. We also
illustrate this approach with a realistic example.

The study is structured as follows. Section 2
reviews the relevant literature. Section 3 describes the
project portfolio selection problem and explains how
conventional but biased downside risk estimates can
be debiased through calibration. In section 4, we
introduce risk constraints and show how risk esti-
mates can be calibrated in the presence of constraints.
Section 5 discusses the calibration of the estimates
when the DM’s risk aversion is captured via an expo-
nential utility function. Section 6 illustrates the
approaches of sections 3 and 4 in the context of a case
study. Concluding remarks are in section 7.

2. Literature Review

Our work is closely related to two streams of literature.
The first deals with the optimizer’'s curse, ie., the
expected post-decision disappointment on the value of
a selected project when the selection is made based on
noisy value estimates. This phenomenon was identified
by Brown (1974) and later formalized by Harrison and
March (1984). Hobbs and Hepenstal (1989) analyzed
this phenomenon in water resources optimization
problems calling it optimistically biased optimization.
They suggest that the phenomenon can be addressed
by explicitly modeling the posterior distributions of the
project values. Following this approach, Smith and
Winkler (2006) provide a closed-form solution for
removing the optimizer’s curse when the prior distri-
bution on projects’ values is multivariate normal and
the distribution of value estimates conditioned on the
actual project values is also multivariate normal. In the
context of these assumptions, Vilkkumaa et al. (2014)
develop a framework to help the DM to identify which
proposals it is optimal to re-evaluate when resources
for these additional evaluations are limited.

The second stream considers the assessment and
management of risks in the selection of a portfolio of
alternatives. Roy (1952) pioneered research in this
area, stressing that risk and uncertainty are not the
same. Instead, he notes that the risk of a portfolio
occurs when the outcome is less than expected, i.e.,
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when downside risks do occur. Subsequently, down-
side risk measures have become widely employed in
portfolio problems (Eppen et al. 1989, Hall et al.
2015, Menezes et al. 1980, Nawrocki 1999, Sortino
and van der Meer 1991). Frequently, downside risk
constraints are included in portfolio selection prob-
lems due to regulations or risk budgeting (Baule
2014, Kubo et al. 2005, Stamatelatos and Dezfuli
2011). It is also possible to assess downside risk in
order to anticipate and prepare for risky outcomes.
For example, the Washington State Department of
Transportation requires that risk estimates are
employed when allocating reserve funds to the pro-
jects that are started (Lenzi 2012). The Department
uses lower quantiles of the distribution of the project
values to assess the risks of financial underperfor-
mance. In many contexts, quantiles such as the lower
5th percentile of the portfolio value, are employed
as the downside risk measure (see e.g., Batur and
Choobineh 2010, Best 1999, LaGattuta et al. 2001).
Focusing on the worst 5% portfolio value is relevant,
because unlike the more frequent minor losses, the
less likely but more significant losses can have major
negative impacts on the organization.

Our work builds on these two streams by investi-
gating what biases the optimizer’s curse causes in (i)
estimating the downside risk of the selected project
portfolio and (ii) introducing risk constraints in pro-
ject portfolio selection. We also propose remedies
to overcome the biases that are caused by the
optimizer’s curse.

3. Downside Risk Estimation in
Resource Constrained Project
Portfolio Selection

3.1. Project Portfolio Selection Setting

There are n project proposals i = 1, ..., n from which
the DM can select a project portfolio. The selection
decisions are encoded by the binary variables
z=1[z1, ..., z,]" such that z; = 1 if and only if the i-th
project is selected. The DM can select those subsets
(portfolios) which satisfy the resource and other rele-
vant constraints. These portfolios form the set of feasi-
ble portfolios Z = {z', ..., 2/}, f € Z*. The DM selects
projects on the basis of their value estimates vf € R
which can be elicited, for instance, by consulting
experts. For each project, this estimate is a scalar mea-
sure of the total value that the project will provide ex
post if it is carried out. After the project has been com-
pleted, its value v; € R will be realized. This value is
often different from the value estimate due to the esti-
mation error ¢; € R caused by uncertainties: for exam-
ple, when selecting R&D projects, there are typically
major uncertainties about technical and commercial

success of the projects (Huchzermeier and Loch 2001).
While the value estimates and values are here treated
as scalars, they can nevertheless be composed by
aggregating multiple criteria, see e.g., Baker and
Olaleye (2013).

The real valued random variables for project
values, value estimates, and estimation errors we
represent by capital letters V=1[Vy, ..., V,], VE =
[VE .., VE], and € = [£1, ..., £,], respectively. The
relationship between the realized value estimates,
values, and estimation errors of these variables is

vE=v+e, (1)

where vf, v, and € are n-dimensional column vec-

tors. When the DM selects projects, he knows only
the realized value estimates v-. Once the projects
have been completed, then, the project values v are
realized and observed (Arnott et al. 2009), see Fig-
ure 1. The realized estimation errors, €, represent
the difference between the estimated and actual val-
ues so that e = vF —v.

We assume that the estimates are conditionally unbi-
ased so that the mean of each estimation error pf is
zero given the actual project values v;, i.e., uflv = 0.!
Covariances of the estimation errors £ are assumed
to be known, and they can be acquired, for instance,
by evaluating past portfolio selection processes or by
consulting experts. Similarly, the DM is assumed to
know the means u and the covariances X of the distri-
bution of the projects” values. Such information can
be derived by examining past portfolio selection prob-
lems or relying on experts (Bansal et al. 2016), for
instance. Figure 1 summarizes the underlying
assumptions about the distributions of estimation
errors and project values in the portfolio selection
problem.

Information about the correlation between project
values and estimation errors is contained in their
covariance matrices £ and ¢, respectively. Project
values would be correlated, for example, if the portfo-
lio consists of R&D projects targeted for the same
market, because then the value of each project would
depend on the size of this market. The estimation
errors, in turn, would be correlated if they are based

Figure 1 Project Portfolio Selection Problem

Portfolio selection

environment Decision maker’s problem

Project portfolio
selection

Selected projects

Estimation errors given
completed

actual values: E|v
mean uf = 0 } } time
covariance £€

vE observed v realized
Project values: V (for selected
mean p projects)

covariance




Kettunen and Salo: Project and Optimization

Production and Operations Management 26(10), pp. 1839-1853, © 2017 The Authors. Production and Operations Management published by
1842 Wiley Periodicals, Inc. on behalf of Production and Operations Management Society

on the same underlying uncertain assumptions about
the market size.

3.2. Conventional but Biased Portfolio Value and
Downside Risk Estimate

The conventional (but biased) decision analytic
approach to estimate the value and downside risk of
the selected project portfolio is to use the observed pro-
jects’” value estimates v" directly without revising
these estimates in view of the fact that the selected
portfolio is the one with the highest sum of value
estimates (Harrison and March 1984, Hobbs and
Hepenstal 1989, Smith and Winkler 2006, Vilkkumaa
et al. 2014). Specifically, in this approach, the DM
seeks to maximize the value of the project portfolio by
relying on estimates about how much value the pro-
jects will offer once completed. Thus, the selected
portfolio z" is the one that max1mlzes the estimated

portfolio value zf TVE = = X' zFof so that
zF = argmax z' v (2)
zeZ

The downside risk of the selected portfolio can be
obtained by computing the portfolio value that corre-
sponds to a given VaR level p,, o < 0.5. This can be
computed from the equation P[V5 < p,] = o, where
VE = zE' (vE — E), by analogy to Equation (1), is the
random variable for the value of the selected portfolio
zF based on Equation (2). To solve p,, we define the
normalized portfolio value using the random variable

_ Ve —E[V3]

= v

, which has zero mean with variance

normalized to one,

E
(Vi < ]_oc<:>[l3>(<p E[V5]
P pac P GVE
E[VE 3
—<x<:>>Gv§<pOC . [ P]> ( )
v

== p, = E[Vp] + Gyi(@oye,

where Gy (.) is the cumulative probability distribu-
tion function of the normalized value of the selected
project portfolio. Note that the derivation of Equa-
tion (3) for the downside risk estimate is correct.
However, the random variable for the estimated
value of the portfolio V5 is biased (and therefore
each term E[VE], G“,E(oc), and oye) unless it is esti-
mated by conditioning on the fact that the selected
portfolio has the highest sum of value estimates.

The conventional decision analysis approach
ignores this conditioning so that (i) the expected value
of the selected project portfolio E[VE] is assessed
directly from projects’ estimated values v" for the
selected portfolio z" and (ii) the random variable for

the value of the selected project portfolio is assessed
directly from estimation errors £. But then the
selected portfolio is treated as any feasible portfolio
without recognizing the fact that these estimates are
the ones for which estimated portfolio value is maxi-
mized so that the random error terms &£ for the
selected projects tend to have an upward bias. In this
case, the cumulative probability distribution function
of the normalized value of the selected project portfo-
lio G} (x) and the standard deviation of the selected
pro]ec’t portfolio oy: are taken to be GZET c(@) and
0,7, respectively. Consequently, the estimated
downside percentile for the selected portfolio, using
the conventional approach becomes

T _
py =28 VP +G L (0)o . (4)

Proposition 1 gives an estimate for the standard
deviation of the selected portfolio value o7, in
Equation (4) when the estimation errors for the pro-
jects in z" are not conditioned on the fact that z°
yields the highest estimated value.

ProrosiTioN 1. The estimated standard deviation of the
value of the selected portfolio z" is

Z zEzE ot = VzE E52E (5)

| sy
ij=1,i#j

n
_ E2 ¢
OpTe = Zzi o5+
i1

where %, and a are the variance and covariance of esti-
mate errors respectwely

The proof is similar to that of calculating standard
deviation for a portfolio of stocks (Luenberger 1998),
except that the decision variables for projects are
binary instead of continuous as is the case for stocks.

The inverse of the standardized cumulative proba-
bility distribution of the selected portfolio value at the
o-percentile GZ’EL ¢() in Equation (4) can be computed
numerically when the normalized portfolio value
GZ’F} g(oc) follows the normal cumulative distribution
function ' () = =5/
imation for G~} ,i7¢(0) when the probabil\itﬁlistribution

1-a

e~""/2dt. Conservative approx-

for zE' £ is not known is G e (o) = and when

zE'€ is only known to be
G (#) = —/5; (Bonami and Lejeune 2009).

A concern in the above approaches for estimating
the portfolio value and its downside risk is that value
estimates for the selected projects given in z* are biased
due to the optimizer’s curse (Smith and Winkler 2006).
Even if the expected estimation errors are zero for all
projects, the estimation error is likely to be positive for
the higher valued projects which are selected resulting
in the ex post disappointment on average.

symmetric is
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3.3. Obtaining Unbiased (Calibrated) Portfolio
Value and Downside Risk Estimate

Under some conditions, the unbiased downside risk
estimates can be established in a closed-form using
the Bayesian approach. This is the case when the prior
distributions on the project values are normally dis-
tributed, i.e., V ~ N(u, X), and the value estimates
given the actual project values are normally dis-
tributed as well, i.e., VE |[v ~ N(v, )25) (or equivalently
E|lv ~ N(0, X£¢)). Under these conditions, the uncondi-
tional distributions for project value estimates VE and
the posterior distribution on actual values given value
estimates V| v" are (Carlin and Louis 2000, p. 90-91,
Smith and Winkler 2006)

VE~N(u, X+ %) and V|vE ~N(vP, ZF), where (6)

P =pvE+ (I B, (7)
¥ = (I1- p)L,and (8)
p=x[X+xf". 9)

Therefore, the unbiased or calibrated value estimates
are the posterior means of project values given value
estimates, i.e., v in Equation (7). The portfolio selec-
tion problem using the unbiased values estimates is
otherwise same as in Equation (2), except that v*
replaced by v” and its solution is denoted as z”. The
updated unblased value estimate of the selected port-
folio is thus zP ' vB. The unbiased downside risk esti-
mate for the selected portfolio is obtained using
Equation (3) where the estimated portfolio value dis-
tribution V5 is replaced by the posterior distribution
on actual values given value estimates V |vF. There-
fore the unbiased downside risk is

T _
pf =28 VP @ 1(oc)azgrv‘v5. (10)

The standard deviation of the selected portfolio
value o,y ; in Equation (10) can be computed,
using Equation (5) where the covariance matrix of
estimation errors X is replaced by ¥, in Equation
(8), and z" is replaced by z”. Closed-form solutions
for unbiased value estimates and downside risk esti-
mate can be given when both the value and condi-
tional estimate error distributions follow normal,
log-normal, or beta distributions (Carlin and Louis
2000, Miller 2010), for example.

Because closed-form solutions are not always avail-
able for deriving unbiased value and risk estimates,
we propose a two-step simulation approach to deter-
mine the appropriate calibration for deriving unbi-
ased estimates. Calibration has been applied to
subjective probability estimates in many instances
(see e.g., Johnson and Bruce 2001, Lichtenstein et al.

1981). The first step in the simulation-based calibra-
tion approach is to obtain unbiased value estimates
for selecting projects which maximize the expected
value of the project portfolio. The unbiased value esti-
mates are the expected project values conditioned on
the realized value estimates, i.e.,, v® = E[V|vE]. We
can approximate V|v" by simulating project values
and their value estimates and retaining only those
instances in which all value estimates are within ¢ (a
small positive real number) away from the given esti-
mates v©. If the project values and estimation errors
are not correlated, the unbiased estimates can be
obtained for each project independently via

= E[Vi|[vf], where Vj|vf can be approximated via
simulations. Using the unbiased value estimates v”
and Equation (2), the optimal project portfolio z® can
be selected.

The second step in the simulation-based calibration
approach is to obtain unbiased estimate for the down-
side risk. When the projects are of same type, so that
their values follow the same probability distribution
and their estimation errors are identically distributed,
the unbiased estimate for the downside risk is
pE = @a[zBTV|vS], where Q,[.] denotes the value of a
random variable at the o-percentile and v° = zB'vB
denotes the estlmated value of the selected portfolio.
The term z8' V|0® can be approximated through the
repeated simulation of project selection instances of
which only those portfolio values are retained in
which the estimated value of the selected portfolio
differs from v° by less than ¢. These retained values
provide the distribution of the actual value of the
selected portfolio so that the a-percentile can be taken.
When the distributions for project values and estima-
tion errors are different for different projects, the
unblased estimate for the downside I‘lSk is px =
Q,[z% V|v ]. Thereby, the distribution z® "VIvF can
be simulated by conditioning on estimated project
values while otherwise applying the same approach
as in the case in which the projects are of the same
type. We define the required calibration at the o-per-
centile as follows

C,=p? - pt. (11)

This calibration technique can be used to derive an
unbiased risk estimate in any percentile. The required
calibration can be estimated, in principle, either by
examining past project portfolio selection data or by
simulating the portfolio selection process. If historical
data is used, the accuracy depends on the quality and
quantity of available data. If the simulation procedure
is used, the parameters of the selection problem (most
notably value and error distributions, the number of
proposals, and the proportion of projects being
selected) need to be specified. When selecting
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projects, the last two parameters of the selection prob-
lem are known whilst the distributions of project val-
ues and estimation errors may not be fully known but
can be evaluated from historical data or by relying on
expert judgments.

3.3.1. Calibration in Expected Terms. We first
investigate the expected calibration in portfolio value
and downside risk (measured in the worst 5th per-
centile of the distribution of the portfolio value). We
consider a setup where both the project value and
conditional estimate error distributions are normally
distributed so that the unbiased portfolio value and
risk can be computed, using the closed-form equa-
tions from section 3.3. We compute results by simulat-
ing the selection problem 500,000 times so that in each
simulated trial we compute (i) the estimated portfolio
value zF'vE, (ii) the unbiased portfolio value 2E'vE
(iii) the estimated downside risk p£, and (iv) the unbi-
ased downside risk zF' vB + (D’l(oc)azt-rv‘vg. In each
trial, the required calibration for the portfolio value
and its downside risk are computed as the difference
between their unbiased and estimated values, i.e., for
the portfolio value this is zE ' v® — zE' v and for the
downside risk this is zF' vB + (D’l(oc)azETVlVE - pk.
By averaging these calibrations across all simulated
trials, we obtain the calibrations for the expected port-
folio value and risk.

In Table 1, we compare the expected calibrations
when one large project is selected and when a portfo-
lio of two small projects is selected. In order to make
these selection problems comparable, the means of
the project values are y; = 10/(the number of project
proposals to select) so that the expected value of a
randomly selected portfolio is 10. Also, the coefficient
of variation, i.e., the ratio of standard deviation and
the mean, is the same across all problems. This is

Table 1 The Expected Calibration When 1 Large Project or 2 Small
Projects are Selected

Expected calibration

1 large project selected
Vo~ My, Z), =10,
0/1222,6,-,':0,1'76[ 6,7:12,0//:0,i7éj
E|lv ~ N, %), E|v ~ N(O, X£),
6§:22,J§:0,/7éj ot =12,66 =0,i £ §

ij i /.

2 small projects selected
Vo~ My, %), g =5,

Number of 5th percentile 5th percentile
proposals Value value Value value
3 -1.20 -0.23 —-0.60 0.08
4 —1.46 -0.49 —0.94 —0.26
5 —1.65 —0.68 -1.17 -0.49
6 -1.79 —-0.83 -1.35 —0.67
7 -1.91 -0.95 —1.49 —-0.81
8 -2.01 -1.05 —1.61 -0.93
9 -2.10 -1.14 -1.71 —1.03
10 -2.18 -1.21 -1.80 —-1.12

achieved by setting /7;;/; = 0.2 where the variance
;i is solved after substituting p; = 10/(the number of
project proposals to select). We apply the same vari-
ance for the estimation error, i.e., 05 = 0j.

We make three observations from Table 1. First, the
expected calibrations of portfolio value and downside
risk are less, in absolute terms, when two smaller pro-
jects are selected instead of one large project. This
result is intuitive, because the expected bias due to the
optimizer’s curse is largest for the project with the
highest estimated value. Thus, the expected bias in
selecting the single (highest valued) large project is
greater than the expected bias in selecting the two
(highest and the next highest valued) small projects.
Second, in expected terms, the portfolio value at the
5th percentile may need to be calibrated upward (see
the selection of two small projects out of three propos-
als) or downward, in contrast to the portfolio value
that needs to be calibrated only downward (Smith and
Winkler 2006). Third, the expected calibration behaves
so that the smaller the share of selected projects
(shown in Table 1 by increasing the number of propos-
als), the less the amount of required calibration. For
the expected calibration of the portfolio value, this
implies that the magnitude of the downward calibra-
tion increases when fewer projects are selected. For
the expected calibration of the portfolio value at the
5th percentile, this implies that the possible upward
calibration (see the selection of two small projects out
of three proposals) changes to downward calibration,
and the magnitude of this calibration increases when
the proportion of the selected projects decreases.

The results in Table 2 highlight that the expected
calibrations are different for the expected value of
the portfolio and its downside risk. For example, if
the correlation among project values increases, the
expected calibration of the portfolio value decreases
while it can cause in a non-monotonic change in the
expected calibration of the downside risk, see e.g.,
when the correlation among estimate errors is 0 or
0.25. Also, if the estimate errors are perfectly corre-
lated, then the expected calibration for the portfolio
value is zero, whereas the expected calibration for the
downside risk is significant.

3.3.2. Calibration in a Single Problem Instance.
Faced with observed value estimates, the DM needs to
decide how much to calibrate. To illustrate the simula-
tion-based calibration procedure in this case, we
assume that the DM has the value estimates in Table 3
for 40 project proposals from which he can choose 10
projects. Based on past experience or consultation
with experts, the DM knows that the project values
are normally distributed V ~ N(u, X), u; = 10, o =
22, 0;=0,i#7j,ij=1,...,40 and that estimation
errors conditional on actual values are normally
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Table 2 The Expected Calibration as a Function of Pair-Wise
Correlation in Estimation Errors and in Value When 1 Project
is Selected from 4 Proposals

Expected calibration for the value

Vi~ N, ), gy =10, 05 = &jojojo0 = 2,0, j=1,...,4
Elv ~ N(O, Zé), o = fﬁafaf, af =2,i,j=1,...,4

Equicorrelation
among values

Equicorrelation among estimate errors
(& =180 #])

Ei=1,8,1=) 0 0.25 05 0.75 1
0 —146  —117  —084  —046  0.00
0.25 -156  —126  -092  —052 0.0
05 -168  —138 103  —059 0.0
075 -184 155  —119  —073 0.0
1 —206 178 145 103  0.00

Expected calibration for the 5th percentile value

Vi~ N, 2), gy =10, 05 = &yojoj,o0 = 2,0, =1,...4
Elv ~ N(0, X°), o5 = i‘gafaf, ¢ =2,ij=1,..4
Equicorrelation
among values

Equicorrelation among estimate errors
(& =1,8&,1#))

Ei=1,81=) 0 0.25 0.5 0.75 1
0 —0.49 —0.16 0.29 0.91 1.81
0.25 —0.55 -0.30 0.09 0.63 1.48
05 —0.54 -0.38 —0.07 0.42 1.25
0.75 —0.47 —0.40 ~0.18 0.24 1.09
1 —0.24 —0.31 —0.21 0.06 0.96

distributed £|v ~ N(0, £), o = 2%, 6% = 0,i #], i,
j=1,...,40. When the DM relies directfy on the value
estimates in selecting projects to maximizes the esti-
mated portfolio value, the projects numbered from
one to ten are chosen. The estimated value of this
selected portfolio is v° = zE'vF = 125. The conven-
tional 5th percentile downside risk estimate for the
portfolio value using Equation (4) when the standard
deviation of the portfolio value is computed using
Proposition 1is pf s = 125 — 1.645 x V10 x 4 ~115.

In the simulation-based calibration approach, the
first step is to obtain unbiased value estimates for the

Table 3 Sample Projects

projects v# = E[V;|0f], shown in Table 3. We ran
1,000,000 simulations with ¢ = 0.005 for each esti-
mated project value; each simulation run took about
one second. These and other simulation procedures
we programmed in Python and used a 64-bit com-
puter with Intel® Core™ i7-4650U CPU 1.7GHz and
2.3 GHz with 8GB of memory. In maximizing the
value of the project portfolio using the unbiased value
estimates, the projects numbered from one to
ten remain optimal. The value of the optimally
selected z” project portfolio using the estimates v* is
v° = 2B vE = 125. Conditional on v° = 125, the unbi-
ased risk estimate p? = Q,[z? TV|vs] can be simulated
as explained in Section 3.3. We ran 1,000,000 simula-
tions with ¢ = 0.005 in about one second. These simu-
lations included about 50,000 instances in which the
portfolio value distribution was conditional on v°, i.e.,
S| ~ 50,000. This distribution is shown in Figure 2.
From this distribution, we obtain the unbiased 5th
percentile value, i.e., pf = @0A05[ZBTV|‘US = 125] 105
as shown by the vertical dashed line. The required
calibration is therefore Cy o5 = 105 — 115 = —10.

The calibration is different for different realizations
of estimated portfolio value. In any selection problem,
only one set of projects’ value estimates (and therefore
estimated portfolio value) is realized, but when the
similar portfolio selection problem is faced repeat-
edly, then different estimates will be realized. Figure 3
illustrates the conventional but biased downside risk
estimates and the unbiased downside risk estimates
as a function of possible realizations for the estimated
portfolio values on the y-axis. In general, the higher
the realized estimated portfolio value, the more the
estimated 5th percentile portfolio value needs to be
reduced. Figure 3 also shows that the required cali-
bration needs to be determined separately for differ-
ent correlation structures. For example, when the
pairwise value correlation is 0.5, as shown in Fig-
ure 3b, the required calibration for the 5th percentile
value given ©° =125, is Cpps = 112 — 101 = —18

Unbiased
Value Unbiased value Value Unbiased value Value Unbiased value Value value
i Estimate (8  Estimate (v®) i Estimate (v®)  Estimate () i  Estimate (&)  Estimate (v®) i  Estimate (V) Estimate (v®)
1 13.9 12.0 1 11.6 10.8 21 10.5 10.0 31 7.8 8.9
2 134 1.7 12 115 10.8 22 101 10.0 32 7.6 8.8
3 12.8 1.4 13 1.5 10.7 23 9.4 9.8 33 7.6 8.8
4 12.6 11.3 14 11.3 10.7 24 9.3 9.8 34 7.5 8.8
5 12.6 1.3 15 11.3 10.6 25 91 9.7 35 7.3 8.6
6 12.3 11.2 16 11.3 10.6 26 8.8 9.5 36 7.0 8.5
7 12.2 141 17 11.2 10.6 27 8.6 95 37 6.9 8.5
8 11.9 11.0 18 10.8 10.4 28 8.2 9.3 38 6.7 8.3
9 1.7 10.9 19 10.6 10.3 29 8.0 9.3 39 6.1 8.1
10 11.6 10.8 20 10.5 10.3 30 8.0 9.2 40 55 7.7
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Figure 2 Example of Calibration
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instead of —10 for the case in which the project values
are independent.

Figure 4 complements the results in Figure 3 by
illustrating that the required calibration depends on
how many proposals there are and how many of these
are selected. The portfolio values in these results are
made comparable following the approach described
in section 3.3.1 so that in all problems the expected
value of a randomly selected portfolio is 100 and the
coefficient of variation is 0.2.

4. Downside Risk Constrained Project
Portfolio Selection

We next consider the calibration of risk estimates
when the project selection has to fulfil constraints on
downside risk. In practice, such constraints may be
required due to regulations on allowed risk levels or

agreed risk budgets (Baule 2014, Kubo et al. 2005).
The DM may also impose a risk constraint when
the realization of a risky outcome of the portfolio
selection problem would cause severe harm to the
organization.

The conventional downside risk and resource con-
strained project portfolio optimization problem (that
is subject to the optimizer’s curse) takes the form of a
chance constrained optimization problem as follows

ZE = argmax ZTV

zeZ (12)
2V + Gyre(@)a,re 2 1

E

4.1. Value and Estimation Error Distributions Are
Identical

When the marginal distributions for the project values
and estimation errors are identical, the calibration of
the risk estimate can be included in the resource and
risk constrained project portfolio selection process as
follows:

1. Obtain unbiased value estimates for projects
v" using the closed-form Equation (10) or
simulation described in section 3.3. Solve the
optimal portfolio zP using Equation (2) when
v" are replaced by v”.

2. Compute the unbiased downside risk estimate
pE for the selected portfolio z° using the
closed-form Equation (10) or simulation proce-
dure described in section 3.3.

3. If p8 >r,, then z” is the optimal portfolio. If
pB <, then remove from the selected pro-
jects z® the project with the lowest estimated
value by setting its binary indicator to 0. If
the project portfolio is empty, i.e., z° = 0, then
a feasible project portfolio cannot be formed.
Otherwise go to step 2.

Figure 3 The Estimated 5th Percentile Portfolio Value (Dashed Line) and the 5th Percentile Portfolio Value (Solid Line), Pair-Wise Correlation

among Values is (a) 0, (b) 0.5, (c) 1
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Figure 4 The Estimated 5th Percentile Portfolio Value (Dashed Line) and the 5th Percentile Portfolio Value (Solid Line) When the Ratio between
the Number of Project Proposals to Select from and the Number of Project Proposals is (a) 10/40, (b) 30/40, (c) 1/4, (d) 3/4
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We consider the example in section 3.3.2 shown in
Table 3. The calibrated risk estimate is p§ s = 105. If
the DM’s risk constraint r( g5 is less than 105, the opti-
mal portfolio is to select the first 10 projects. If the risk
constraint is more than 105, a feasible project portfolio
cannot be formed. This is because removing projects
from the portfolio will decrease the lower 5th per-
centile value of the portfolio.

However, if this selection problem occurs repeat-
edly in the same context (i.e., in each selection prob-
lem with realized estimates and values, projects have
the same value and estimation error distributions),
we can investigate how the expected calibration of the

200 - .
Estimated

Value

150 4
/ ]
Ve
/4
100 H Y

50 A

5th Percentile
Value

0 T T T 1
0 50 100 150 200

(b)

200 - .
Estimated

Value

150 -

100 -

Sth Percentile
Value

0 50 100 150 200
(d)

downside risk behaves when the risk constraint is
tightened and the portfolio is selected using the value
estimates. This is illustrated in Figure 5 which
shows that a tighter risk constraint increases the prob-
ability that the risk constraint is violated and that
the portfolio will be empty. In expected terms, a
tighter risk constraint reduces both the estimated
risk glven the selected pro]ect portfoho is not empty ie,
Eyelof os|ZE # 0] where of o5 = ZE' VE + G21, (0.05)
ZET Py (dashed line) and the actual cahbrated risk
glven the selected project portfoho is not empty, 1 e.,
Eve[ofs|ZE # 0] where of s = ZF VP + G,

(0.05)0 OrTyss (solid line). These impacts Correspond ¥o
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Figure 5 The Expected 5th Percentile Portfolio Value (Solid Line) and
its Estimate (Dashed Line) Given the Portfolio is not Empty
and Probability of not Investing as a Function of Risk
Constraint ry g5

Expected
5th percentile
Risk constraint active value

100

r 50 Risk constraint
80

Y110 140
: Pr(portfolio empty)
i 1
! I T 0 Risk constraint
80 ! 110 140

the increase in the expected actual and estimated 5th
percentile values of the selected portfolio in Figure 5.
We formalize the impact of tightening a risk con-
straint on the expected calibration for the risk estimate
at the a-percentile Ey:[of — of|ZF # 0] as follows.
ProrosITION 2. In a resource constraint project portfolio
selection problem, X! 1z = b, be 1, ..., n — 1, where
the project values and estimation errors are identically
distributed, tightening the risk constraint requirement r,
decreases the expected calibration for the risk estimate

Evelof — of|ZF # o).

Proof is in Appendix.

Proposition 2 implies that a tighter risk constraint
(a greater value of r,) increases the expected portfolio
value at the a-percentile less than its conventional but
biased estimate. This is shown in Figure 5, in which
the dashed line increases more than the solid line as a
result of tightening the risk constraint. This means
that a DM who relies on the conventional risk esti-
mate is lead to believe that risks are managed better
than what they actually are.

4.2. Different Value and Estimation Error
Distributions

When the distributions for the project values and esti-
mation errors are not the same, the chance con-
strained optimization problem in (12) needs to be
solved explicitly. To make Equation (12) computation-
ally tractable, we reformulate it as a second-order
cone programming problem

zF = argmaxz'vF, (13)
zeZ,x, T
z'vE+ Gl (x>, (14)

=D (15)

t=L"z, (16)

where x € R* and € R are auxiliary decision
variables and L€ R™" is the lower triangular
matrix obtained from the Cholesky factorization
LL" = Xf. For a similar kind of reformulation of the
chance constraints, see Weintraub and Abramovich
(1995), Novoa et al. (2017). This notwithstanding the
proposed formulation uses the value estimates v"
and random estimation errors £ directly for the
selected portfolio z" and is subject to the optimizer’s
curse and therefore does not curtail risks accurately.

To overcome the optimizer's curse, we propose
that either the unbiased estimates are used (if they
are available in a closed form) and then the opti-
mization problem in Equations (13)—(16) can be
directly solved or that the risk estimates are cali-
brated using the simulation approach and the risk
constrained portfolio selection problem is solved iter-
atively. Recall that when the project values are nor-
mally distributed, ie., V ~ N(g, X), and also the
value estimates given their actual values are nor-
mally distributed, i.e., VE|v ~ N(u, %), the unbiased
estimates are available in a closed-form. Then, the
optimization problem in (13)—(16) can be solved
using (i) v given in Equation (7), instead of vE, (ii)
® o) instead of G;Tlg(oc), and (iii) X5, given in
Equation (8), instead of X°.

When closed-form solutions are not available for
unbiased estimates, we propose the following itera-
tive approach to the calibration of risk estimates and
the solution of the risk constrained portfolio selection
problem:

1. Obtain unbiased value estimates for projects
v® using the simulation approach in section
3.3.

2. Solve the resource constrained optimization
problem (2) when v* are replaced by v’ to
find optimal portfolio z”.

3. Compute the unbiased downside risk estimate
p? for the selected portfolio z” using the simu-
lation procedure described in section 3.3.

4. If the DM’s desired risk level r, < pg, then
the optimal project portfolio is z°. If r, > p&,
then remove z” from the set of feasible
project portfolios, i.e., Z = Z\z". If the set of
feasible project portfolios Z =0, a feasible
project portfolio cannot be formed. Otherwise
go to step 2.

We illustrate the impacts of the optimizer’s curse
on the risk constrained portfolio selection problem
with the example in section 3.3.2. The value
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Figure 6 The Expected 5th Percentile Portfolio Value (Solid Line) and
its Estimate (Dashed Line) as a Function of Risk Constraint
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estimates are in Table 3, except that for projects 1-20
\/:i = 10 (instead of 2) and /g;; = 4 (instead of 2).
Thus, there are both high and low risk projects . In
this setting, a tighter risk constraint results in substi-
tuting an increasing number of high risk projects
with low risk projects, which reduces the risk by
increasing the 5th percentile value of the portfolio, as
shown in Figure 6. Analogously to Proposition 2, a
tighter risk constraint increases the estimated 5th
percentile portfolio value (dashed line) more than
the actual 5th percentile portfolio value (solid line).
Therefore, the tightening of the risk constraint
decreases the required calibration (initially a positive
value), decreasing the absolute value of required
calibration.

4.3. Risk-Return Trade-off

Often, the DM is interested in knowing how much
value he can expect to forgo by imposing a risk
constraint or how much more risk he would have
to accept to achieve a higher expected value. A
common way to investigate trade-offs between risk
and return is to establish the mean-risk efficient
frontier (Markowitz 1952). This frontier contains
the Pareto optimal outcomes of an expected utility
model where the objective function is a weighted
sum of the project portfolio’s mean and risk. One
approach in deriving the mean-risk efficient fron-
tier is to solve a series of optimization problems
with the chance constrained formulation (13)-(16)
starting from a non-binding risk constraint and to
employ in each consecutive optimization problem

Figure 7 The Mean-5th Percentile Efficient Frontiers
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Notes. Actual calibrated frontier (solid line) and its estimate (dashed line),
X: value maximizing strategy and o: risk minimizing strategy.

a tighter risk constraint until the problem becomes
infeasible.

We applied this process to obtain the estimated
(dashed line) and unbiased (solid line) mean-risk
efficient frontiers for the example in section 4.2 with
high and low risk projects, see Figure 7. Besides
illustrating trade-offs between risk and return, Fig-
ure 7 shows the required calibration for the mean
and the 5th percentile values of the project portfolio
as a function of the DM’s risk aversion. If the DM
focuses on maximizing the value of the project port-
folio, marked with crosses, (minimizing the risk of
the portfolio, marked with circles), the required cali-
bration for the expected value and the 5th percentile
value of the portfolio are —22 and 11, respectively
(as compared to 4 and 7 when minimizing the risk).
Therefore, due to the optimizer’s curse, a risk neutral
DM who maximizes the portfolio value overesti-
mates the expected portfolio value and underesti-
mates the 5th percentile value of the portfolio.
However, in this example, a risk averse DM who
minimizes the risk of the portfolio will underesti-
mate both the expected and the 5th percentile value
of the portfolio.

5. Risk-Averse Portfolio Selection
Using Exponential Utility Function
As an alternative to constraining the downside risk,

the DM’s risk attitude can be captured via an expo-
nential utility function u(Vp) = —e " (Kirkwood
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2004), where a > 0 is the degree of risk aversion and
Vp is the value of the selected portfolio. When the
value of the portfolio is normally distributed, i.e.,
Ve ~ N(up, p), the expected utility is

2 ;2

a“ap

E[u(Vp)] = E[—e 7] = —e 2, (17)

We assume that the distributions of project values
and error distributions are both normally dis-
tributed, ie, V ~ N(g, X) and ¢&|v ~ N(0, Eg).
Then, the optimal project portfolio z* which maxi-
mizes the expected utility E[u(Vp)] based on the con-
ventional but biased approach (in which the
estimate of the expected portfolio value pp is z'v"
and the estimate of variance of the portfolio value
0% is z' £¢2) is (Markowitz 1991)

zF = argmax z'vF — Ty, (18)
zeZ 2

Similarly, the optimal project portfolio z° which
maximizes the expected utility E[u(Vp)] based on the
unbiased estimates given in Equations (7) and (8),
ie., z'v? is used for up and 7Pz is used for 0'123, is

2’ = argmaxz'v® — 2Ty, (19)
zeZ 2

For the example in section 4.3, the results in Figure 8
show that the calibration for the expected utility first
decreases (in region 1) and then increases (in region 2)
as the risk aversion term a increases. When the risk
aversion term a approaches zero (a2 — 0°), then the
calibration approaches zero due to both expected

Figure 8 The Calibration of the Expected Utility as a Function of the
Risk Aversion
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negative one. This is because of —e ***2" tends to
—1" whena - 0". In region 1, the DM is nearly risk
neutral and the optimal portfolio is to select the high
value and high-risk projects, 1, ..., 10 in Table 3.
Because the expected values for these projects are
overestimated due to the optimizer’s curse, the cali-
bration for the utility function is negative and further
decreases when the risk aversion term a increases. In
region 2, when the risk aversion term a increases, the
optimal portfolio includes an ever greater proportion
of the lower value and less risky projects, 21, ..., 40
from Table 3. Because in this example the estimated
values of projects 2140 are lower than or equal to
their prior mean 10, the conventional value estimates
for these projects can be expected to be underesti-

mated, so that E[u(zE'vE)] becomes smaller than

E[u(z8 ' vP)]). Coupled with that the variance of the

.. . . T T
portfolio is overestimated, i.e., zF EfzF > zP XPz5,

this makes the expected utility E[u(zF ' vF)] smaller rel-

ative to E[u(zP ' vB)]). As a result, the negative calibra-
tion at the beginning of region 2 increases and
changes to positive calibration as the risk aversion
term a increases. Therefore, in keeping with the
results in section 4.3, this illustrates that the DM with
low risk aversion overestimates the utility (coming
mainly from the portfolio value) and DMs with high
risk aversion underestimate the utility (coming
mainly from the portfolio risk.

6. A Case Study

We next illustrate with a realistic case study how the
proposed calibration technique for assessing the
downside risk of portfolio value can be employed in
risk constrained project portfolio selection. This pro-
cess is structured into three steps.

The first step in the process is to characterize the
portfolio selection setup, including the assessment of
the project value and estimation error distributions.
In the case study, we consider the selection of a phar-
maceutical project portfolio based on the data from
Kloeber (2011). In this selection problem, there are 3
projects which are to be selected out of 12 proposals
based on estimated expected net present values
(EINPV]). Table 4 shows the project proposals with
their estimated E[NPV]s and standard deviations for
estimation errors. The estimation errors are indepen-
dent from each other. The project proposals come
from the same pool of projects, and their E[NPV]s are
normally distributed with 4 = 72 and ¢ = 65. The val-
ues of the project proposals are independent from
each other. The estimates are assumed to be condi-
tionally unbiased and normally distributed given
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Table 4 Sample Projects

Estimated Standard deviation
Project Disease E[NPV] of estimation error
1 Antibiotic 222 432
2 Osteoarthritis 190 397
3 Depression 110 221
4 Chronic pain 101 215
5 Dry eye 89 197
6 HIV/AIDS 79 130
7 High cholesterol 45 35
8 Lung cancer 40 44
9 Asthma 31 6
10 Schizophrenia 22 2
1 Anxiety 12 1
12 Antibiotic 10 6

actual values. Obtaining the described data about the
distributions for projects’ values and estimation
errors can be derived from experts’ estimates, for
example, Bansal et al. (2016) explain how to do this
using experts’ quantile judgments.

The second step is to evaluate the trade-offs
between the expected return of the portfolio and risk.
We have derived the actual calibrated mean-5th per-
centile efficient frontier (using unbiased value esti-
mates obtained from Equations (7)-(9)) and its
estimate (using the value estimates directly) for the
portfolio selection problem in Figure 9. This figure
illustrates that if value estimates are used directly
both risk and the expected value of the portfolio are
significantly overestimated. In fact, a risk neutral

Figure 9 The Mean-5th Percentile Efficient Frontiers
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Table 5 The Composition and Value of the Portfolio as a Function of

Risk
Unbiased values for portfolio’s Projects in
5th percentile Mean portfolio
442 225.4 1,2, 3
46.4 223.8 1,2,6
48.0 223.5 2,3,6
49.2 222.9 3,4,6
50.4 199.5 3,6,7
50.8 174.5 6,7,8
534 132.5 7,89
54.9 65.4 9,10, 11

portfolio of projects 1-3 require the 5th percentile
portfolio value estimate to be calibrated upward by
(—509.3 — (+44.2))/ —509.3 ~ 110%. The overall range
for the required calibration is from 110% (risk neutral)
to 0% (risk averse) depending on the level of risk
aversion. Thus, if the biased estimates were to be
employed and the portfolio is required to yield an E
[NPV] of at least 50 at the 5th percentile of the portfo-
lio value (i.e., 7905 = 50), only the portfolio with the
least risky projects of 9, 10, and 11 can be selected.
However, when the unbiased risk estimates are used,
it is possible to select the projects 3, 6, and 7 with
higher risk, which can be expected to yield about
199.5/65.4 ~ 3.1 times higher portfolio value, as is
shown in Table 5.

The final step is to select a portfolio whose risk level
is acceptable. If the DM has a strict constraint for risk
70.05 = 50, the optimal portfolio is to select projects 3,
6, and 7. However, if the DM can take slightly more
risk to gain a higher return, the portfolio with projects
3, 4, and 6 should be selected as it has only
(50.4 — 49.2)/50.4 =~ 2% higher risk whilst its esti-
mated E[NPV]is (222.9 — 199.5)/199.5 ~ 12% higher.

The key takeaways from this case study are that
using biased value estimates can result in (i) the sig-
nificant overestimation of risk, (ii) selecting a too con-
servative portfolio of projects with only low risk and
low value projects, and (iii) missing out on opportuni-
ties to achieve a greater expected return. These prob-
lems can be avoided by calibrating the portfolio value
and risk estimates.

7. Conclusions

We have shown that estimation errors about the
future value of projects, combined with the fact that
only some of the projects can be selected, has major
implications for estimating the risk of the selected
project portfolio. By addressing this topic, we have
made both theoretical and practical contributions to
the literature on project portfolio selection.

First, we have shown that the direct use of uncer-
tain value estimates about projects can lead to
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systematic biases in estimates about the risk of the
resulting project portfolio. These biases are problem-
atic because underestimation and overestimation of
risks are both undesirable. In the case of underestima-
tion, the DM will be exposed to greater risks than
what was expected. In the case of overestimation, the
DM may unnecessarily abstain from starting risky
projects in the expectation that possible risk con-
straints would be violated, although this would not
be the case.

Second, in order to reduce the estimation error in
the risk, we have proposed a general framework for
the calibration of estimated risks. Under some condi-
tions, the appropriate amount of calibration can be
derived in closed-form and, more generally, by quan-
tifying the key parameters of the project selection
problem and by using these parameters to simulate a
large number of problem instances. The parameters
for this simulation approach can be elicited by per-
forming statistical analyses of past project selection
processes or by consulting experts.

Third, the introduction of risk constraints may lead
to larger errors in risk estimates. In particular, we
have shown that, in keeping with expectations, the
introduction of a risk constraint does curtail expected
downside risks. However, it can reduce the expected
estimated downside risk even more, and conse-
quently the introduction of a tighter risk constraint
may erroneously suggest that risks are better man-
aged than what they actually are. In practice, this is a
concern of utmost importance when the selection is
constrained by resources and risks alike. As a solution
to the problem, we propose a procedure for calibrat-
ing risk estimates in project portfolio selection. This
procedure helps the DM select a project portfolio that
is better aligned with his stated risk preferences while
eliminating systematic biases in the risk estimate.

This research can be applied empirically to investi-
gating completed processes of project portfolio selec-
tion. Such empirical studies should ideally build on
sufficiently extensive data sets which contain infor-
mation about estimated and realized project values
(even if information about realized values can be pro-
vided for selected projects only). As a complement,
therefore, controlled empirical experiments could be
carried out to gain further insights into the presence
of risks in the project portfolio selection problem.

Finally, the problem we have identified, examined,
and proposed a solution for is present in any resource
constrained project portfolio selection problem in
which risks matter and only a subset of a large number
of alternatives are selected based on value estimates
that contain random estimation errors. Such problems
are encountered frequently by public and private orga-
nizations when they select R&D projects, sites for pro-
duction facilities, business development initiatives, or

supply chain subcontractors. Consequently, there are
fertile opportunities for carrying out empirical case
studies based on the results of this study.
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Appendix A. Proofs

ProoF oF ProrosITION 2. The expected calibration for
the risk estimate is
Eye[of — o7 |ZF #

Yo —

# 0] = Byt [G s (0) 0 g
G (W)aye |ZE £ 0 (A1)
+ Eye[ZE T (VB — VE)|ZE £ 0].

The equivalence in Equation (A1) follows from sub-
stituting the definitions for ¢f,; and ¢f,; for nor-
mally distributed value and estimation errors and
after reorganizing the terms.

We first prove that the term [Ey: [GZETVB( )0 4ETyn —
G L (2)o Ot €|ZE 0] in Equation =~ (Al) remains
cons%ant when the risk constraint is tightened. We
begin by noting that in any instance of the select10n
problem, where zF # 0, the estimated risk z' vE +

%), cannot be reduced by exchanging the
seﬁected projects to the non-selected ones. This fol-
lows directly from the assumption that projects’ esti-
mation errors are identically distributed. Therefore,
for a portfolio of b selected projects given projects’
values and estimation errors are identically dis-
tributed, the terms G_} B(oc) and G (oc) and the
portfolio standard (%ematlons ZETVB and OgeTe
remain constant regardless of the risk constraint.
This implies that Ey:[G} ,(®)0ryn — GzElT (o)

Oyiie |ZE #0] in Equation (Al) remains constant
when the risk constraint is tightened.

We next show that the term Ey: [ZE (VB — VE)|
ZF # 0] in Equation (A1) decreases when the risk
constraint is tightened. We first substitute from
Equation (7)VB = BVE + (I — B)u to obtain

Eve[ZE' (B—T)VE|ZE # 0]+ Eye 25 (1 B)p|ZE #0].
(A2)
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Since a tighter risk constraint limits the portfolio
selection in expected terms to projects whose
estimated values VF are higher than without the
constraint given Z" #0, it follows that (i)
Eye [ZET(ﬁ — I)VE|ZE £ 0] decreases because
B = o/(c + oF) €(0,1) and Gi) Eye[ZE (I — Bl
ZF # 0] remains constant. This completes the
proof. O

Note

!This definition of conditionally unbiased estimates is anal-
ogous to Smith and Winkler (2006) because E[VE|V = v] =
ve=Eo+E|V =1 =0v <= E[f|v] = 0 <= pf|v = 0, where
the first equivalence follows from Equation (1).
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