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ABSTRACT Recent years have seen a surge in AI-driven medical image processing, leading to significant
improvements in diagnostic performance. However, medical imaging technologies tend to create staggering
volumes of medical data, necessitating high-performance computing. Cloud systems with robust GPUs
and resource capacity are optimal choices for DL-based medical image processing. However, transferring
data to the cloud for processing strains communication links, introduces high communication latency, and
raises privacy and security concerns. Consequently, despite the undisputed benefits of cloud computing,
dedicated standalone local computers are still used for image reconstruction in today’s systems. This
localized strategy uses expensive hardware inefficiently and falls short of scalability and maintainability.
Edge computing emerges as an innovative concept by bringing cloud processing capabilities closer to
data sources. A continuum of computing including local, edge, and cloud tiers would offer a promising
solution for medical image processing. According to literature survey, there are no significant works
on utilizing edge cloud continuum for CBCT imaging. To fill this gap, we introduce novel 3-TECC
architectural concept, specifically designed for CBCT data reconstruction in medical imaging. This article
explores the evolving synergy among medical imaging, distributed AI, containerized solutions, and edge-
cloud continuum technologies, highlighting their clinical implications and illuminating the potential for
transformative patient care. We uncover challenges and opportunities this convergence provides with the
CBCT image reconstruction use case, while aligning with regulatory compliance. The proposed 3-TECC
architecture advocates a decentralized data processing paradigm, reducing reliance on the centralized
approach and emphasizing the role of local-edge computing.

INDEX TERMS CBCT, distributed AI, edge computing, edge cloud continuum, GDPR, medical imaging.

I. INTRODUCTION
Enhancing themedical imagingworkflow is crucial as it plays
a significant role in modern medicine’s capacity for diagnosis
and treatment of diseases [1]. Effective medical diagnostics
requires the utilization of medical imaging techniques in
a wide range of medical scenarios that involve various
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technologies such as Computed Tomography (CT), Cone-
Beam Computed Tomography (CBCT), ultrasonography
(US), X-ray, mammography, Magnetic Resonance Imaging
(MRI), and nuclear medicine. Diagnostic imaging techniques
are critical to confirm, evaluate, and record the progression of
various diseases and improve treatment efficacy. Advanced
medical imaging techniques produce more data volumes
than ever to provide high-resolution images and better
image quality [2]. CBCT imaging plays an important role
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in medical fields, e.g. dental imaging, as it is extensively
utilized to visualize anatomical details, aiding in diagnosing
and treating various conditions [3]. Nevertheless, the vast
volume of data produced by CBCT scanners and the
complexity of reconstructing 3D images present considerable
implementation challenges. Hence, addressing key aspects
and critical perspectives is essential when considering
CBCT image reconstruction on distributed systems such as
the three-tier edge-cloud continuum (3-TECC) architecture.
The proposed computing architecture serves the medical
imaging CBCT use case in health care, emphasizing the
importance of current diagnostic radiology and DL-based
CBCT image reconstruction processing [4]. The proposed
edge-cloud computing architecture lowers the latency of
transmitting and processing medical imaging reconstruction.
Managing the large volume of CBCT-generated data poses
a significant challenge for developing efficient and effective
medical imaging-aided diagnostics. Currently, no existing
studies address the distinct challenges associated with this
specific use case in distributed computing. The other side
of the coin is that the key legislation based on the highest
European values has stringent regulation implications on
the business and innovation processes, namely the European
General Data Protection Regulation (GDPR) and Medical
Device Regulation (MDR). First, GDPR compliance is a
prerequisite for MDR compliance. Second, both regulations
drive compliance and trust across the healthcare value chain
for patient privacy and the security of medical devices.
Furthermore, the EU Artificial Intelligence Act (AIA) was
published in April 2024 to address ethical questions and
harmonize implementation challenges amongAI applications
in healthcare [5], [6].

A. OBJECTIVES OF THIS PAPER
In the following subsections, we discuss our proposed medi-
cal imaging use case, highlighting the increasing importance
of DL-based image analysis and computer-aided diagnosis
in modern diagnostic radiology. A particular focus will
be given for the application of DL for CT and CBCT as
these modalities often produce largest image matrices, and
thus are often the most computationally demanding use-
cases. We then provide an overview of cloud computing
and its benefits along with the challenges it poses for
medical imaging. In the edge computing section, we detail
the role and advantages of edge computing in addressing
the challenges of cloud computing, focusing specifically
on the medical imaging use case. We also explore the
importance of distributed computing, based on edge-cloud
integration, for digital healthcare applications. In this part
of the paper, we highlight the operational gaps in solutions
that rely solely on cloud or localized strategies. We propose
a collaborative computing architecture for CBCT medical
imaging, that primarily leverages local edge computing
resources while utilizing cloud computing solutions as
needed.

B. RADIOLOGICAL IMAGING ALGORITHMS
The Internet of Medical Things (IoMT) encompasses sen-
sors, actuators, processing capabilities, and communication
features, enabling interaction with the outside world through
various communication protocols [7]. Radiological medical
imaging techniques generate image data that need to
be processed to extract useful information for diagnostic
purposes. Based on classical Machine Learning (ML) and
Deep Learning (DL), image processing algorithms are
increasingly used in computer-aided diagnostics. These
methods help physicians analyze vast amounts of medical
imaging data by providing inferences from images [8]. Since
the last decade, DL-based convolutional neural networks
(CNNs) have obtained state-of-the-art performances for
image classification and recognition in the field of computer
vision [9], [10], [11], including disease diagnosis and
classification in radiology imaging data [12], [13], [14].
Overall, using DL algorithms for medical image processing
is computationally expensive, and, in general, requires high-
performance hardware systems when the neural network size
increases [15]. Furthermore, to obtain better performances
from the DL algorithms, utilizing images in better quality and
high resolution has a constructive impact on the overall AI
model’s performance [16].
CT imaging is one of the most widely used sensor modal-

ities for diagnostic imaging in the radiology department of
medical facilities. In a typical today’s CT (including CBCT)
imaging scenario, the raw data generated by a medical
imaging device is processed or reconstructed locally on a
standalone PC to produce diagnostic images, which are sub-
sequently sent to the Picture Archiving and Communication
System (PACS) and cloud data centers for data analysis and
diagnostics [17].

C. CLOUD COMPUTING
Cloud computing provides global access to the services and
rich resources for these services in terms of being a scalable
infrastructure for massive data, hosting computationally
heavy AI algorithms, and needed computational capabilities.
The cloud-based operation provides a pay-as-you-go strategy,
eliminating the requirement for massive initial costs on
hardware and its maintenance on site and the required
facilities. Cloud-based operation enables healthcare service
providers to control expenditures more efficiently, especially
concerning IT infrastructure [18]. In the healthcare domain,
a cloud-based operation can also help simplify different
hospital activities, such as administrative work and patient
monitoring. Since cloud data centers have high computational
capability, they are an optimal choice to host large DL
models, e.g. medical imaging [19].

However, when considering medical image reconstruction,
local processing is more optimal from the viewpoint of
network resource efficiency, since transferring raw data to
the cloud would inflict a high burden on the network links
between the data source(s) and the processing unit(s) [20].
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FIGURE 1. 3-TECC architecture for medical imaging and CBCT image reconstruction. The figure introduces tiers in the three-tier computing
architecture: (i) CBCT scanner and its interaction with a cluster of IoMT nodes; (ii) edge tier connected via Access network, where more
powerful algorithms can take place for CBCT reconstruction and DL-based approaches; (iii) cloud tier which is accessible through the Public
network, capable of hosting computationally demanding tasks.

Furthermore, relying on cloud computing service providers
can pose risks, particularly in instances of service interrup-
tions or communication, also, e.g., European facilities may
want to limit the transfer of data to the cloud located in
different continents. Downtime can cause disturbances in
access to essential medical data, possibly compromising the
treatment of patients and medical facilities [21], [22], [23].
Accessing cloud-based resources can be challenging in areas
with poor network connectivity, limiting the benefits of cloud
computing for medical professionals and patients in these
regions [24], [25], [26].

D. EDGE COMPUTING
Edge computing (EC) has been introduced to bring cloud
computing capabilities close to the end devices and data
sources [27]. EC has many advantages compared to
traditional cloud systems, particularly in terms of providing
a high Quality of Service (QoS) and low latency. It also
helps to reduce network burden in cases of data-intensive
IoMT use, such as CT imaging, as well as unnecessary
propagation of medical data outside of the local site [28].
EC can help ensure medical data’s privacy by keeping data
within hospital premises [29], [30]. Furthermore, in the case
of mobile imaging scenarios with potentially low uplink
capacity to data centers, the reliability and failure tolerance
of the EC approach is much higher. In general, the continuum
of edge and cloud computing is a promising approach to
CBCT image reconstruction, as it provides the benefits of
cloud computing while allowing local processing as needed
to improve resource efficiency, privacy and reliability [27],
[31]. Medical imaging is among the domains in healthcare
that leverage EC to meet the challenges as mentioned earlier
when processing medical data inside and outside of hospitals.
The use cases of digital healthcare using distributed 3-TECC
have been discussed in [32], where the authors focus on the
deployment of virtualized docker-based dynamic services in
distributed edge-cloud computing systems. Research articles
in [32], [33], and [34], summarize the challenges of future
digital healthcare and discuss local and edge-based service
architecture in addition to cloud-based solutions to improve

the efficiency and effectiveness of future smart hospitals by
leveraging the role of novel Internet of Things (IoT), edge-
cloud computing, virtualization, and wireless communication
technologies.

Some examples of recent work including medical imaging,
CBCT, GPU-based computing, edge computing, and DL-
based approaches, within the main focus of these studies
are presented in Table 1. The toolboxes Astra [35] and
TIGRE [36] both provide strong solutions for CBCT image
reconstruction, whereas Astra is more flexible and supports
a wider range of algorithms. At the same time, TIGRE
offers high-caliber specialized solutions that are optimized
for CBCT. The choice between these toolboxes depends
on the specific needs, including the coding environment,
flexibility, and CBCT image quality. The study described
in [37] leverages cloud computing andGPU acceleration [38],
which offers high speed and high accuracy for efficient
clinical workflows in medical imaging modalities. Rieke
et al. [29], provide the crucial role of the FL distributed
learning approach in digital healthcare. A detailed dental
imaging and CBCT review are given in [3]. The open-
source framework, PriMIA (privacy-preserving medical
image analysis) framework, described in [39], enables
encrypted inference and secure federated learning on medical
data without transferring it. The framework offers robust
privacy safeguards against data reconstruction attacks and
achieves classification performance comparable to locally
trained models. Although the DL technique has proven
effective for reconstructing CT, its application to CBCT
reconstruction is hindered by memory constraints due to
the complexity of the 3D reconstruction process from
large volumetric datasets. The authors in [40] introduce a
geometry-guided DL technique (GDL) that requires less
than previous networks, while also reconstructing CBCT
images quickly and accurately. Another application of the
DL technique, Generative Adversarial Networks (GAN) was
used in [41] to improve the image quality of the reconstructed
CBCT images. Reducing patient radiation exposure, mini-
mizing costs, and increasing accessibility is crucial in CT
and CBCT modalities. The study in [42] presents various
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solutions for obtaining 3D anatomical structures from X-ray
images.

E. CONTRIBUTIONS OF THIS PAPER
This paper presents a taxonomy for understanding the
technological needs of radiological medical image processing
when considering the use of the distributed 3-TECC architec-
ture, emphasizing the CBCT imaging modality. We discuss
the technical requirements for CBCT image reconstruction,
considering the large volumes of data from medical imaging
scanners and the need for efficient processing. This involves
exploring the diverse computing capabilities of the 3-TECC
architecture. To achieve this, we introduce state-of-the-art
technologies, such as advanced communication and com-
putational systems, containerized solutions, and distributed
ML approaches for AI-driven applications. Additionally,
we cover the structure of CBCT imaging, from raw data
to diagnostic formats, and address data regulation aspects,
including GDPR and MDR compliance.

Our taxonomy provides an organized framework for clas-
sifying the various technical aspects of distributed platforms.
The main contributions of this paper are as follows.

• Defining the technical requirements of the 3-TECC
architecture, in general for medical imaging, and
specifically for the CBCT imagingmodality.We provide
potential state-of-the-art solutions from literature to
address the requirements for architecture to achieve
efficient tomographic imaging and CBCT.

• Identifying the characteristics of each tier in the 3-TECC
architecture and emphasizing their role in the CBCT
imaging workflow, considering the management and
regulatory aspects of confidential patient data.

• Bringing together scientists and physicians from both
engineering and medical fields, integrating multidisci-
plinary efforts to tackle challenges in imaging tech-
nology, thereby aiming to achieve efficient healthcare
systems.

This paper examines the latest trends in academic literature
related to data-intensive medical imaging and CBCT image
reconstruction using distributed computing architectures.
It identifies several technical requirements that need to be
addressed to enhance the efficiency of healthcare systems.
The data collection involved searching online literature using
edge computing and distributed learning for medical imaging
as well as, on IoMT, edge computing, medical imaging
and CBCT image reconstruction, and distributed learning
approaches from Google Scholar, PUBMED, Science Direct,
and the IEEE Library.We prioritize including research papers
published in recent years.

In the following section, we discuss the computing tiers
of the 3-TECC architecture in detail, including the local,
edge, and cloud tiers. We cover the role of each tier
and its capabilities in hosting the CBCT imaging use
case. Section III outlines the main phases of the CBCT
medical imaging workflow, including data collection, com-
munication, computation, and data storage. In this section,

we explain the workflow of CBCT data from the CBCT
scanner through the steps required to obtain diagnostic
reformats and prints, encompassing both medical imaging
data and raw data. Section IV presents our defined technical
requirements to enable efficient CBCT image reconstruction
within the proposed computing architecture, providing a
detailed overview of each requirement such as efficient
medical data management, deployment of AI algorithms and
functional services, and optimized CBCT image reconstruc-
tion alongside privacy and regulatory aspects. The discussion
and future scope of the paper are covered in Section V, where
we also address identified challenges, limitations of our study,
and outline the future work. Finally, Section VI summarizes
the main points and concludes the article.

II. 3-TECC ARCHITECTURE FOR CBCT MEDICAL IMAGING
The distributed 3-TECC architecture for CBCT, as illustrated
in Fig. 1, includes (i) local edge nodes in the proximity of
the medical equipment/CBCT scanner, capable of running
lightweight computational tasks, (ii) edge servers placed
in, e.g., hospital facilities or at the nearest mobile base
stations for heavier computing tasks with real-time require-
ments, and (iii) cloud data centers available through the
Internet for heavy-duty computing tasks. Furthermore, using
radiofrequency technologies and different communication
protocols is important for efficient intra-device and inter-
tier communication in 3-TECC, particularly in managing the
massive volumes of medical imaging data. The communica-
tion section in III-B provides a more detailed overview of
communication techniques. Brief details of each of the tiers
in 3-TECC are described below.

A. LOCAL TIER
In CBCT imaging workflow, data pre-processing and
compression are the first and, at the same time, the
computationally least-demanding operations. By default,
in the 3-TECC architecture, these operations are run on a
swarm of local edge nodes for data reduction [34]. More
complex operations requiring higher computational capacity,
such as AI-based CBCT image reconstruction and image
analysis are left to be executed on higher tiers, the exact tier
depending on which gives better end-to-end execution time
considering the available capacity and load. Optionally, also
lightweight reconstruction algorithms giving rough images
for the physicist, e.g. assessing the patient’s correct position
in the scanner, could be run on the local tier.

Physically, the local edge node swarm could consist of
specialized lightweight GPU computing nodes, available
PCs, etc., but it could also include the GPU units of the
CBCT scanners or similar integrated computational units.
The benefits of this kind of swarm include resource efficiency
(one swarm can serve multiple CT scanners, bringing
economies of scale) and scalability (the swarm’s capacity
can be modified straightforwardly by adding or removing
computational nodes based on the current need).
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TABLE 1. A List of Studies on Medical Imaging, CBCT, 5G, Edge Computing, and AI.These papers provide detailed information on the mentioned
technologies, including integrating multiple fields such as AI for medical imaging or CBCT, and the role of 5G & edge computing in AI and medical imaging.

B. EDGE TIER
The Edge tier provides computational resources for more
demanding computing tasks with real-time requirements. The
edge tier contains some of the capabilities of the cloud to
host processing, analysis, and decision-making near data
sources. Due to its proximity to data sources and users, the
network latency from local nodes to edge nodes is typically
very low, just a few milliseconds, compared to hundreds
of milliseconds typical to cloud connections. Furthermore,
core network resources can be saved by eliminating the need
for sending data for processing at the cloud data center.
In the CBCT use case, this tier can provide a computationally
capable environment for image reconstruction between local
and cloud tiers. Edge servers can be deployed, e.g. at the
hospital facilities in the case of the hospital’s local area
network, or the hospital’s private Radio Access Network
(RAN), or alternatively, the nearest base station of a public
5G RAN.

Another important aspect of this tier is the introduction of
the edge AI perspective. The relatively powerful hardware at
the network edge enables the deployment of DL algorithms
capable of analyzing large volumes of data and providing
real-time medical data processing. This tier of the 3-
TECC architecture can host computationally intensive CBCT
reconstruction algorithms, as well as DL-based CBCT image
reconstruction and medical image analysis.

Edge computing also reduces the possibility of information
being compromised throughout transmission by performing
data processing locally instead of transmitting it to a
central cloud. This improves patient data confidentiality and
information security, which is critical in the medical field
[46]. One of the key benefits of edge computing is its ability
to function even when network connections are outside the
RAN. This guarantees that key healthcare services, such
as response to emergencies and surveillance of patient’s
systems, continue to function properly [47]. Healthcare
institutions that have limited internet access can benefit
from this optimization as it can result in considerable cost
reduction and more effective use of network bandwidth [48].
Although edge computing can effectively compute data

locally, heavier computing is typically more efficient to run
on cloud data centers [19].

C. CLOUD TIER
Cloud tier is the highest of the 3-TECC architecture tiers,
available at the core of the Internet to provide global access to
various services and rich resources to provide these services
in terms of massive data storage, hosting computationally
heavy AI algorithms, and the needed computational capabili-
ties. The Cloud tier is optimal for the heaviest computational
tasks, requiring vast amounts of CPU, GPU, and storage
resources, and exchanging data with third-party services over
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the Internet. In medical imaging, this tier can be considered
as the default tier for medical image analysis. It enables the
assessment of massive data sets using big data analytics and
the execution of data modeling to analyze signs of various
diseases based on large medical image databases. This
ability enables physicians to effortlessly discover significant
changes in a patient’s medical images over time and trends
in the results of treatment, hence increasing the value of
treatment for complicated disease conditions.

III. CBCT MEDICAL IMAGING WORKFLOW PHASES
Reconstruction algorithms and their components can be
optimally deployed in the proposed architecture as shown
in Fig. 1, depending on functional service, regulatory
requirements, and hardware capacity of the underlying
computational and network architecture. In the following,
we present the phases of the implementation of CBCT
image reconstruction in detail, from data collection to
data storage, including communication and computational
aspects, as shown in Fig. 2.

A. DATA COLLECTION
Medical imaging involves a wide variety of imaging data,
and as such, we differentiate three sub-classes: raw data,
medical image data, and diagnostic reformats and prints.Raw
data encompasses the proprietarymeasurement data from the
imaging scanner. In the context of CT and CBCT, this refers
to the photon flux measured by the X-ray detector. The panel
electronics encompass either a field-programmable gate array
(FPGA) or an application-specific integrated circuit (ASIC),
which collects, localizes, and digitizes the analog signal from
the scintillation or direct conversion layer of the panel. This
raw data will be transferred, e.g., via a category 6 ethernet
cable, to a manufacturer-provided Image Reconstruction
System (IRS). IRS is a PC equipped with a powerful GPU that
will perform further corrections to the raw data such as dead
pixel correction, lag correction, dark field correction, and flat-
field correction [49], [50]. The pre-processed raw data is then

FIGURE 2. CBCT workflow phases in distributed 3-TECC architecture. This
figure depicts the steps involved in the medical imaging modality. The
process begins with collecting raw data from the medical device,
followed by using various communication techniques to transfer the data
to the appropriate component. Next, the computing nodes process the
data into a diagnostic format, which can then be stored in a medical
database accessible to physicians.

typically stored in a proprietary format, for instance as a .raw-
file. Its underlying file structure often contains a header or a
separate text file with information on the scanning parameters
(tube current, kilovoltage, imaging geometry, etc.), and the
image data itself, typically stored in 16-bit unsigned integer
arrays format.

After the raw data has been preprocessed, the IRS
will reconstruct the medical image data containing the
slices that are visualized for the operator of the imaging
device (radiographer) and the diagnostician (radiologist). The
reconstruction process is a computationally demanding task
and may involve solving hundreds of millions of unknown
pixel values. Consequently, graphics processing units are
utilized for diagnostically feasible computation times [34].
The reconstructed image slices and the metainformation
associatedwith the study are stored in theDigital Imaging and
Communications in Medicine (DICOM) format that offers
a standard for communication and management of medical
imaging information.

B. COMMUNICATION
In most of today’s IoT systems, centralized cloud servers
often handle all service functions including the processing
of data. As a result, the involved end devices’ computational
load and requirements are reduced, but network connections
are heavily utilized causing high requirements for network
performance, efficiency, and reliability. Furthermore, long
network delay makes real-time scenarios impossible with
cloud-based IoT systems. For this, the next generation of
communication systems has been designed to support delay-
sensitive applications requiring high reliability, among other
requirements. EC can occur either in local nodes with
sufficient computational capacity – called local EC – or
as a capability provided by network operator – called as
multi-access EC (MEC). MEC, defined by the European
Telecommunications Standards Institute (ETSI), is a network
architecture specifically designed for mobile networks that
brings compute, storage, and networking resources closer
to the edge of the network, enabling low-latency, high-
bandwidth applications, and services.

Medical imaging equipment, such as CBCT scanners, are
connected to the rest of the system components through
a case-specific setup consisting of access network and
backbone network elements. These can be broadly classified
into two categories: medium- and short-range communication
technologies [51]. The former can facilitate long-distance
communication, and in our 3-TECC setup, the short-range
technology is used for connecting local IoT nodes while the
latter is used for connecting the edge and cloud tiers. In order
to communicate with nearby edge nodes andmedical imaging
equipment [52], the following communication protocols exist
on different layers of the protocol stack:

• Wired connections: On physical and data-link layers,
Ethernet or USB are supported by a large number
of medical equipment. In medical imaging scenarios,
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a wired connection could be the option to link the local
edge node directly to the CBCT scanner. The edge node
and scanner can exchange imaging and other related
data through this connection. The connections between
the MEC and Cloud tiers are typically based on optical
fibers. Wired communication protocols are inherently
more secure because intercepting or tampering with data
requires physical access to the wire. Furthermore, wired
connections are less prone to interference and jamming,
while wireless signals are easier to intercept and rely
heavily on strong encryption and authentication.

• Wireless connections: Short-range wireless commu-
nication possibilities include Wi-Fi and Bluetooth on
certain modern medical equipment. Furthermore, long-
range wireless communication protocols, such as 4G/5G
mobile networks are available for medical use. Along
with 5G, private mobile networks have better support
on the system level, making private RANs, managed
in-house, as a viable option e.g. hospitals to take
care of their wireless communications. Such setups
benefit healthcare providers since the network and
data management policies can be managed in-house.
Furthermore, as discussed above, wireless signals are
easier to intercept and more prone to interference
and jamming than wired connections, making strong
encryption and authentication methods a necessity.
The appropriate wireless protocol to connect imaging
components with the rest of the system depends on
the technical, security and regulatory requirements of
specific use cases.

• Higher-layer IoT protocols: In the IoT andmachine-to-
machine (M2M) communications, lightweight messag-
ing protocols, such as CoAP (Constrained Application
Protocol) and MQTT (Message Queuing Telemetry
Transport) are often used. As a lightweight version of
HTTP, CoAP similarly uses a request-response structure
where clients send out queries and servers respond with
the necessary resources. The Quality of Service (QoS)
components of MQTT allow effective communications
between devices and control the amount of message
delivery assurance. Both protocols can be used to
transmit medical imaging data, like the CBCT scanner
machine in our case, and they both offer reliable and
efficient communication between medical equipment
and systems.

• Application programming interfaces (API): APIs
are provided by some medical devices to enable
programmatic interaction with other systems, such as
nearby edge nodes. The edge node can be the option
to communicate with the CBCT scanner by sending
instructions, requesting data, and using the given API.
The API may employ common protocols like SOAP
(Simple Object Access Protocol) or APIs.

Moreover, the communication techniquemay vary depend-
ing on the architecture, network configuration, and compati-
bility of the edge node and CBCT scanner requirements. The

TABLE 2. CBCT data sizes from raw data stage to diagnostics reformats
from Planmeca Viso G7 scanner. The volume of data is crucial as data
transfers can cause extra burden to networks (end-to-end execution time
and network overload) when moving data over different tiers of the
3-TECC architecture.

optimal communication strategy between local edge nodes
and medical equipment depends on integration requirements,
security concerns, latency and regulatory constraints [53],
[54]. With the option to place compute and storage capabil-
ities closer to the edge of the network, 3-TECC architecture
minimizes the need for data transmission over long distances
to data centers, resulting in reduced network congestion,
lower latency, and faster processing of data [55]. From the
perspective of dealing with the placement of the CBCT
computation, 3-TECC helps optimize network utilization
to achieve efficient data transfer between sensors and pro-
cessing tasks. Distributed healthcare services are important
5G application scenarios. Whereas IoT technologies have
been extensively used in the healthcare industry [56],
they cannot achieve their performance requirements without
EC technology services like MEC [57], [58]. The huge
volume of data generated by radiology, CBCT scanners,
and medical imaging requires a high-bandwidth continuous
communication network infrastructure. The integration of
5G and medical IoT can be enhanced by refining resource
management by network slicing methods and edge-cloud
computing three-tier architecture, acknowledging the more
efficient, low-latency connectivity for IoT applications of
edge devices [59]. However, embedding AI algorithms and
ML methods at the edge tier in a three-tier architecture can
improve real-time decision-making processes and predictive
analytics of the system, and improve IoT performance and
scalability

C. COMPUTATION
High-resolution clinical image analytic services, including
our use case CBCT image reconstruction, often require
GPU-based or TPU (Tensor Processing Unit) based systems.
After data acquisition from the CBCT scanner, various
pre-processing tasks such as dead pixel and flat field
correction are applied to raw data before moving to the
image reconstruction phase. The preprocessing methods are
typically computationally inexpensive operations, such as
pixel-wise subtraction, summation, division, and multiplica-
tion. However, hundreds of millions of unknown pixel values
may need to be solved during the computationally demanding
reconstruction process. In addition to the computing capa-
bilities of the scanner and reconstruction PC, a cluster of
local nodes in the local tier can be utilized in case of more
workloads/examinations for the scanners. This service can
also be applied in the edge/MEC server in the edge tier upon

VOLUME 13, 2025 14323



B. Akdemir et al.: From Technical Prerequisites to Improved Care: Distributed Edge AI

demand. Furthermore, the edge tier could assist with image
reconstruction and other image data analysis tasks such as
image enhancement and 3D visualization.

Deep learning-based image processing is computationally
demanding, therefore, the cloud tier can host such tasks.
However, to process the data closer to the data sources,
a collaboration between the computing nodes including
local and edge tiers in the computing architecture can
provide a scalable environment for decentralized image data
processing. In this regard, distributed ML frameworks like
federated and split learning could provide this environment;
refer to more details in Section IV-B. In [34], the authors
implemented a CBCT image reconstruction task using the
Astra toolbox algorithm [35] on the NVIDIA Jetson Xavier
NX device in a local configuration. However, in a context-
aware deployment framework, depending on the capacity and
capability of computational nodes, tasks also can be offloaded
to the upper tier when needed and reloaded to the previous
tier when not required. In such a framework, computation
resources could be confined to a threshold for a certain
number of incoming requests for the successful execution of
tasks on each tier. For instance, CBCT algorithms could be
deployed in GPU-enabled hardware (e.g., NVIDIA’s Clara
AGX) locally. At the same time, powerful computing nodes
in edge and cloud can be utilized to develop an efficient and
effective system. Based on the predefined threshold, a task
could be offloaded from the local computing node to the edge
and even from the edge to a cloud server.

In the context of medical imaging applications, the issue
of optimal task placement, three-tier communication, and
dealing with latency-limited and critical computing tasks is
still considered an open challenge [60]. The aim is to deploy
an incoming job to an appropriate serving node in the 3-
TECC architecture based on the task requirements that can
be, e.g. achieving sufficient end-to-end execution time while
at the same time minimizing the network and processing
resource consumption or energy consumption. For instance,
IRS pre-processing could be optimally placed on local
edge nodes while the more demanding IRS reconstruction
algorithms could be deployed on a MEC server. CBCT and
radiology use cases are highly data intensive and require
sufficient processing capacity to ensure low execution time.
EC delivers part of the cloud’s processing power to where
medical imaging panels or CBCT scanners are situated.
Therefore, the edge-cloud continuum paradigm and the
3-TECC architecture emerge as promising approaches to
manage medical imaging and the CBCT image processing
workflow [61].

D. DATA STORAGE
Once the reconstruction has been processed, the output
images are stored in the DICOM format and the data is sent
to the PACS; the radiologist can view the images from the
PACS with dedicated viewing software. If necessary, further
DICOM-compatible diagnostic reformats and prints can

be made to aid the diagnostics, e.g., by indicating critical
pathologies and their dimensions in the medical image data.
An Electronic Medical Record (EMR) is a digital version
of a patient’s medical record that is created and maintained
within a healthcare organization, such as a hospital or a
physician’s practice. The primary goal of an EMR is to ensure
that patient information is easily accessible to healthcare
providers within the organization. Ideally, EMRs should also
allow the sharing of patient information between different
healthcare providers and settings, providing a comprehensive
history of an individual’s interactions with the healthcare
system across multiple organizations [62].

The GDPR imposes restrictions on the purposes for which
healthcare organizations can use the personal information
they collect on individuals, known as the purpose limitation of
data protection. It has two key aspects: (i) Personal data must
be collected for specific, explicit, and legitimate purposes,
(ii) and it must not be processed in a way incompatible with
those purposes. However, this principle does not completely
prohibit data collected for one purpose from being used
for another one, as long as it is not incompatible with the
original purpose. The purpose limitation principle aims to
protect the reasonable expectations of individuals regarding
the processing of personal data and to enable further use of
such data within certain limits [63].

TABLE 3. A list of requirements for hardware specifications in 3-TECC.

The raw data collected by the scanner and the correspond-
ing reconstructed medical image data are stored locally in
the IRS. The types of medical image data with estimated
file sizes from a collection of 700 scans from a Planmeca
Viso G7 scanner are given in Table 2. The availability of the
original raw data is critical because the data may sometimes
need to be reconstructed. For example, the presence of metal
artifacts or the use of incorrect reconstruction parameters
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FIGURE 3. Technical requirements for distributed 3-TECC architecture for CBCT computing. This figure illustrates the steps that we cover in this
research paper for the efficient realization of data-intensive medical imaging use cases on the distributed 3-TECC architecture. Research articles
on the aspects mentioned here are presented in Table 11.

may necessitate redoing the reconstruction using a different
algorithm or kernel [64]. As this need may arise days after the
original study, the raw data has to be preserved for a sufficient
duration. The IRS runs a systematic clean-up routine that may
(i) remove sufficiently old data (e.g., two weeks), depending
on the number of scans/storage with the system. (ii) Remove
the oldest raw data to keep the available storage constant.

The Radiology Information System (RIS) shows a list
(and times) of the imaging studies for the upcoming and past
days, and their status (to-be scanned, currently being imaged,
imaging done, report finished). There are also fields for
further information (instructions for performing the scan in
non-routine imaging cases and the potential need for special
arrangements to ensure correctly answering the diagnostic
question). RIS also communicates the imaging request
to the radiology department and stores the radiologist’s
interpretation (report) of the images and activities of the
imaging technicians (radiographers). Both imaging requests
and radiologist’s reports are finally available in the EMR.
Additionally, it contains the medications of the patient,
possible daily follow-up ward reports, diagnoses, and patient
summaries.

IV. REQUIREMENTS FOR CBCT MEDICAL IMAGING IN
3-TECC ARCHITECTURE
Compared to traditional CT scanners, CBCT scanners are
more lightweight and can be easily moved to different
locations inside the hospitals, and in some scenarios,
CBCT scanners could be moved outside of the hospitals
(if neglect the need for device re-calibration), e.g. in a
mobile ambulance. However, despite the advantages of the
CBCT, it has some limitations such as generating low-
contrast and more artifact-prone images. Furthermore, owing
to the three-dimensional nature of data collection, CBCT
reconstruction should be treated as a three-dimensional
problem. This is in contrast to routine CT reconstruction,
in which the reconstruction problem can usually be treated

as a 2D reconstruction problem. Consequently, CBCT may
struggle with efficient data management due to challenges in
distributed computing, while potential mobility requires the
use of wireless communications that require high flexibility
and fault tolerance from the computational architecture.
Therefore, in the following, we will define and describe the
potential technical requirements, and propose potential solu-
tions in literature to address these requirements. Fig. 3 and
Fig. 4 illustrate the technical requirements for the distributed
3-TECC architecture for CBCT computing. In addition to
the following requirements subsections, we have included
tables alongside the list of requirements, including hardware
specifications in Table 3, software tools in Table 4, and
network infrastructure in Table 5.

A. EFFICIENT MEDICAL DATA MANAGEMENT IN 3-TECC
1) EFFICIENT USE OF NETWORK RESOURCES
Network resource optimization in 3-TECC architecture
requires improving the efficiency of application deployment
and the use of network resources throughout the architec-
ture. Reconstruction algorithms use computationally heavy
algorithms to generate medical images from huge amounts of
raw scanner data. Furthermore, images should be generated
and analyzed in an acceptable time frame to ensure high
clinical efficiency. Dealing with these requirements is highly
demanding for the networks that connect different parts of the
system. The authors in [65], propose a framework that deals
with the delay challenges of the Internet of Health Things.

Delivering raw data from the scanner to the unit dealing
with IRS pre-processing can be considered the most data-
intensive part of the process. If the IRS pre-processing
is made outside the network scanner, this requires a
robust network connection in the whole imaging system.
Transferring the pre-processed data to IRS reconstruction
algorithms could be the second most demanding connection.
Therefore, it necessitates a highly capable communication
link between pre-processing and reconstruction units. After

VOLUME 13, 2025 14325



B. Akdemir et al.: From Technical Prerequisites to Improved Care: Distributed Edge AI

TABLE 4. A list of requirements for software tools.

IRS reconstruction, the data sets delivered over the networks
are comparably smaller in volume. An effective and discrete
provisioning system, in which the allotted resources are
elastically scalable, allows for the flexibility of network
resources. As a result, elasticity ensures that different system
parts receive the Service Level Agreements (SLA) needed for
efficient operation, regardless of their physical location [69].

TABLE 5. A list of requirements for network infrastructure.

To deploy the task and applications to the network of
physical resources at the edge, authors in [70] proposed
the Autonomous- Particle Swarm Optimization (A-PSO)
algorithm and hybrid swarm intelligence in [18]. The A-
PSO algorithm is a practical method for load balancing and
task scheduling in the constrained resources at the edge that
also lowers deployment costs of the network. However, the
automated orchestrator assigns IoT applications a priority,
based on their requirements (latency, storage, and CPU) and
deploys them to the edge node with the highest resource
capacity.

Radiological image reconstruction in edge computing
inflicts a significant demand on network bandwidth. The
overall effectiveness of the reconstruction process may
be affected by network congestion, increased latency, and
limited scalability caused by transferring image data from
edge devices to the remote server. The suggested framework
in [71] reduces the network resource usage like transmission
bandwidth and computational load, on the remote server by
utilizing EC infrastructure for pre-processing and analysis.

Another approach is presented in [72] to accelerate the
Parallel Multithreaded Gridrec algorithm (developed in
Matlab) for CT image reconstruction using GPUs in EC envi-
ronments. Authors in [72], provide a resourceful solution for
accelerating the CT image reconstruction process, addressing
the computational requirements of edge computing. The
proposed approach enables significant reductions in image
reconstruction time by applying GPUs’ parallel processing
capabilities, which is crucial for real-time applications in
resource-constrained networks.

By establishing a remote medical network using EC,
hospitals may provide patients with online and real-time
physician assistance regardless of location. EC is essential
to minimize data transfer, such as CT images, and to
increase efficiency as the amount of patient diagnosis data
in the medical sector increases. Physicians may access
data instantly by utilizing the EC architecture rather than
depending on distant centralized servers. Physicians may
access a more streamlined and quicker network environment
through EC infrastructure, enabling quick response to their
patient data and adaptable healthcare services [73]. Another
example of a medical imaging scenario for edge computing is
a case of telepathology use case presented in [74]. This work
proposes LiveMicro to enable real-time pathology and remote
collaboration that enables data-driven image processing and
enables pathologists to perform remote consultations.

2) EFFICIENT USE OF COMPUTATIONAL RESOURCES
In CBCT, a massive amount of raw data is projected by
the scanner within seconds. Transferring all data to data
centers for analysis could be an expensive process in terms
of efficient data management. As previously mentioned, the
concept of EC [27] aims to provide computing power to the
edge of the network, facilitating resource-efficient and low-
latency data processing.

Although edge computing is powered by parallel com-
puting and GPU-enabled computed hardware, there are still
some capacity limitations in edge nodes when compared to
cloud data centers. Thus, the distributed 3-TECC architecture
can host the different portions of data collaboratively,
which results in an efficient and effective resource-managed
computing architecture. An intelligent resource orchestration
system is required to optimize the use of all computational
nodes in the computing architecture. For instance, local com-
puting nodes have lower capacity in terms of computation
and storage compared to edge and cloud servers, thus, the
manager node should be able to know about the device
capabilities in the architecture and deploy tasks based on the
nodes’ capacity and storage.

An example of such an optimization problem is visible
in [71], where a multi-stage feature extraction generative
adversarial network (MF-GAN) denoising algorithm and
trilinear interpolation (RGT-MC) algorithms are proposed for
the 3D reconstruction process at the remote edge servers by
sending all the high-resolution images from the scanner to
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FIGURE 4. Requirements for CBCT Medical Imaging in 3-TECC architecture. This figure visualizes the main components of the requirements in
Section IV, which is the skeleton of this study.

the remote edge server. This approach essentially increased
the network load/traffic in the whole communication process.
Another experiment conducted in [72] shows how the
parallel multi-threaded algorithm outperforms traditional
CPU-based implementations for CT image reconstruction in
EC environments. To optimize the usage of computational
and communication resources, in some cases, low-capacity
GPU-enabled local computational nodes could host the nec-
essary algorithm in the hospital premises (by enabling local
computing) and contribute to the reconstruction process that
would reduce image transmission to edge/cloud servers [34],
[75]. To ensure the optimal usage of the resources, the task
can be offloaded to the edge nodes and cloud when more
computation resources are needed.

In 3-TECC, task offloading is a key focus of future
work. The article in [19] offers valuable information on
intensive medical data computing, addressing challenges
related to large-scale medical data while integrating edge
computing, cloud solutions, and AI technologies. The topics
covered are closely related to what we discuss in our article.
The research introduces algorithms aimed at minimizing
system-wide costs and highlights the critical role of edge
computing in healthcare. A similar approach could be
applied in 3-TECC to enhance resource utilization effectively.
A list of more recent research articles for efficient medical
data management, including advanced communication (5G
networks) and computing (edge, cloud) technologies for
IoMT, is presented in Table 6.

B. DEPLOYMENT OF AI ALGORITHMS IN 3-TECC
The idea of mimicking mammalian features in machines
and objects that we interact daily has led to labeling
these technologies as ‘‘smart’’ or ‘‘intelligent’’. For future
smart hospital appliances, building such edge-intelligent
architectures that can deal with the high volumes of medical
data and other complexities, in terms of heterogeneity of
medical IoT, has a significant role in achieving better
efficiency and systems. From the point of view of radiological
medical image data processing, particularly CBCT image

reconstruction, distributed GPU-enabled local-edge nodes
can provide a computational platform for the deployment
of the Local AI and Edge AI models in the local and edge
tier [34], where devices can share intensive data loads for
the reconstruction task. Cloud AI models can be applied
for dental CBCT image analysis [82], [83]. In order to
improve performance in smart healthcare, [84] suggests
an intelligent end-edge-cloud architecture for visual IoT-
assisted healthcare systems (V-HIoT). It involves defining
end intelligence, assessing human-machine interactions, and
developing an efficiency evaluation model for dynamic
edge node management. Experiments show that V-HIoT
maximizes intelligence in various devices and emergency
scenarios by improving data processing and node deployment
efficiency over traditional methods.

1) EDGE AI IN HEALTHCARE
Recent developments in AI, the growing adoption of medical
IoT devices, and the power of edge computing have combined
to accelerate the potential of edge AI, and considering the
vast amount of data flowing from the healthcare sector, it is
important to gather and acquire AI-based solutions in real-
time to support the much faster clinical decision-making
process. The survey study in [85] focuses on recent scientific
papers in the field, discussing smart healthcare applications
using cutting-edge technologies including modern edge-
cloud computing, IoMT, next-generation wireless networks,
and AI. The authors in [34] discuss the role of state-of-the-art
technologies in the transformation of modern smart hospitals
and presents experimental results of AI-driven diagnostics for
medical imaging including breast cancer detection, as well
as CBCT image reconstruction using GPU-enabled local
computational nodes.

As presented in Fig. 1, the distributed 3-TECC architecture
comprises the local, edge, and cloud tiers. Cloud servers can
generally host heavy AI algorithms for data analytics, since
they are equipped with state-of-the-art hardware resources.
In contrast to cloud and edge servers, resource-constraint
local IoT devices have lower computational capacities.
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TABLE 6. Recent Research Articles on Efficient Usage of Communication
and Computing Resources for Medical Data Management: Section IV-A.

However, using deep networks in medical imaging, for exam-
ple, CBCT image reconstruction, requires high-performance
hardware [40]. At this point, local nodes are facing chal-
lenges in deploying the DL algorithms due to resource
constraints native. However, GPU-enabled local devices can
host local AI models by collaborating with other nodes in
the computing platform to achieve performance close to

centralized computing systems [86]. Moving the scenario
from the local cluster to the edge servers in the edge tier will
expand the capacity of computation resources, leading to the
deployment of edge AI algorithms for data analytics. These
edge servers include both 5G-integrated cloud-run servers
and MEC servers [87] supported by GPU-enabled hardware
systems.

2) SUPERVISED AND UNSUPERVISED DL FOR MEDICAL
IMAGING
In literature, both approaches of DL including supervised [88]
and unsupervised learning [89] have been developed for
reconstruction tasks [41]. When considering clinically avail-
able products, despite extensive research on DL reconstruc-
tion [90], [91], andmultiple released commercial products for
CT reconstruction using DL (TrueFidelity, GE Healthcare;
AiCE, Canon Medical Systems; Precise, Philips Healthcare),
no commercial DL reconstruction product has been yet
released for diagnostic CBCT. The currently available DL
products are most commonly trained in a supervised manner,
and are often based on the U-Net or unrolled variational
network structures [92]. Some products, such as synthetic CT
from MRI data [93], have also utilized generative adversarial
network architecture.

Supervised DL algorithms are data-hungry and require
large amounts of data to generalize the model well on
unseen data [94]. Data are collected in data centers from
multiple sources. DL models are subsequently trained using
these centralized data, which contain a substantial volume
of information, enabling the DL models to achieve state-
of-the-art model performances. However, edge technology
struggles with the challenge that the data generated at the
network edge might not be sufficient to obtain reliable model
performances, and training data from a single institution are
often not generalizable on data from other institutions [95],
[96]. To address this problem, the authors in [97] argued
the concept of distributed learning in which decentralized
data is used in an ML pipeline. The capacity of distributed
learning to divide heavy computational tasks into smaller
portions, allowing parallel computing and result aggregation
to produce more accurate and efficient models, has attracted
a lot of attention for resource constraint IoT in the field of
AI [98]. Therefore, this plays an important role in the medical
domain for intensive radiological image data, which requires
more communication resources to transfer the data. It can
increase collaboration between computing nodes, improve
resource utilization, and preserve data privacy, which is
crucial in digital healthcare. In the following paragraph,
popular distributed learning methods will be presented.

3) DISTRIBUTED LEARNING IN 3-TECC
The federated learning paradigm is a promising distributed
AI algorithm for collaborative learning on decentralized
data [99], [100]. Although FL applications vary in many
fields, digital health and medical imaging are among the

14328 VOLUME 13, 2025



B. Akdemir et al.: From Technical Prerequisites to Improved Care: Distributed Edge AI

main fields in which FL attracts more, due to challenges
as mentioned above [29], [101], [102], [103]. In the 3-
TECC architecture for CBCT, FL helps in eliminating the
necessity of transferring large medical data across networks
to centralized data centers, instead of only sharing the trained
AI model’s parameters. Data processing near data sources
also ensures privacy concerns for sensitive medical data.
In [104], a benchmark is provided for naturally partitioned
cross-silo FL, targeted at healthcare applications, called
FLamby, to bridge FL theory and practice with actual
healthcare data. It is designed to work with different FL
frameworks and comprises multiple data modalities.

The article in [105], studies the background of FL and
examines the set-up of experiments of the centralized and
FL approach with different client configurations for the use
case of chest X-ray image classification. In [106], the article
emphasizes the role of FL in medical applications. It covers
topics such as digital health, dataset characterization, learning
algorithms, communication efficiency, security concerns and
attacks, and corresponding defenses. These aspects could
be important for the implementation of FL in a medical
context. The important aspects of FL covered in [102], such
as addressing system and statistical challenges and privacy
concerns in an FL setup. It highlights the significant role of
FL in health.

Split Learning (SL) is another distributed AI/ML approach
in which the neural network model is partitioned into
submodels [107], [108]. Healthcare is among the fields that
leverage the SL paradigm for collaborative learning and data
privacy [101], [108], [109]. The combination of FL and SL,
the Federated Split Learning (FSL) approach could perform
better from both perspectives, including the efficiency of the
DL model training and the improvement of the privacy of
the data sets [101], [110]. The article [109] discusses key
topics in distributed ML for medical use cases. It provides
context on various distributed ML approaches and different
medical imaging scenarios. Authors in [101] present popular
distributed ML approaches such as FL, SL and FSL for
healthcare context, discuss the distributed learning challenges
such as system heterogeneity, and other important aspects of
these approaches. A comprehensive list of similar research
articles on distributed ML approaches in digital healthcare is
presented in detail in Table 7.

C. DEPLOYMENT OF FUNCTIONAL SERVICES IN 3-TECC
1) CONVENTIONAL SERVICE DEPLOYMENT
Traditionally, functional components of highly demanding
computing medical services, e.g. CBCT analytical services,
are being deployed at remote centralized cloud data centers
in the form of Software as a Service (SaaS), Platform
as a Service (PaaS) or Infrastructure as a Service (IaaS)
[112], depending on the scale and granularity of the service
deployment. Medical SaaS providers offer comprehensive,
ready-to-use software solutions to analyze CBCT images.

TABLE 7. A list of Recent Research Articles of Distributed AI. These
approaches mainly include FL, SL and distributed learning frameworks for
medical imaging and CBCT use case: Section IV-B.

In contrast, PaaS providers offer a pre-built platform for
deploying CBCT applications needed bymedical institutions.
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FIGURE 5. Example CBCT data processing workflows. Different scenarios for medical imaging and CBCT data processing in the 3-TECC architecture
are discussed in Section II, which includes distributed tiers of the architecture. These scenarios can vary based on the computing capabilities of
each tier. The main goal is to achieve data analysis relative to the data source. In scenario (A), a cluster of local computing nodes can
collaboratively host pre-processing and lightweight reconstruction algorithms in the local tier and perform image analysis in the edge tier.
In scenario (B), 5G-enabled MEC servers can host three data/image processing steps in the edge tier. In scenario (C), different phases of CBCT are
distributed across the tiers: data preprocessing occurs in the local tier, while reconstruction and data analysis occurs in the edge and cloud tiers,
respectively. Additional scenarios (D, E, and F) are also provided. These scenarios can be selected based on specific requirements and the
computing capabilities of the local and edge tiers. For example, if data cannot be taken outside the hospital premises, scenarios excluding the
cloud tier would be prioritized.

Furthermore, IaaS providers offer the infrastructure with
essential computation resources such as CPU, GPU, memory,
storage, and networking resources. The advantages of these
models include scalability, flexibility, reduced downtime,
and minimized hardware maintenance. However, network
performance can affect the overall CBCT analysis during data
transmission, such as when sending reconstructed images to
GPU-enabled remote SaaS, PaaS, or IaaS servers, particularly
when real-time CBCT analysis is required. Alternatively,
several standalone local applications on hospital premises can
also improve the performance of CBCT analysis, particularly
in situations where network capacity is, for some reason, low.
However, standalone CBCT applications will increase the
overall installation cost. As a result, neither option is optimal
from the scalability, resource efficiency, and reliability
viewpoints, particularly in mobile imaging scenarios.

2) VIRTUALIZED SERVICE DEPLOYMENT
Virtualized services essentially reduce overall operational
costs, especially by avoiding the purchase of new hardware
resources. Virtualized CBCT analytical services can be
deployed in two major forms, through either virtual machines

(VMs) or containers. Generally, a VM requires a full-fledged
OS to deploy a service whereas a container requires only run-
time libraries required by that service. A VM acts like a guest
OS on top of the host OSwhereas a container acts like a single
granular process. Therefore, provisioning of services through
a container performs better than in a virtual machine [114] in
terms of resource utilization. VMs, however, could run with a
hypervisor such as VMware, Oracle VirtualBox, etc. on top of
a physical host machine. A system administrator (SysAdmin)
must explicitly write a routing logic to distribute incoming
requests among VMs according to their capacity to ensure
the overall system load.

On the other hand, orchestration engines like Kubernetes,
Docker Swarm, and ApacheMesos distribute requests among
lightweight containers, reducing errors that can occur with
explicit routing logic written by system administrators.
To ensure a resource-efficient system, an orchestrator should
also consider the efficient use of the available resources in
a cluster and deploy the required IRS among the capable
nodes [116]. To ensure optimal utilization of resources,
the authors in [118], [119] proposed a two-tier deployment
approach in their studies. According to their proof of concept
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TABLE 8. A list of Recent Research Articles on Deployment of Functional Services on Edge-Cloud Continuum: Section IV-C.The articles in this table cover
topics including distributed computing, edge-cloud computing, and functional service deployment.

(PoC), the three-tier virtualized nanoservices deployment
model [113] on-premises could be a potential solution to
existing native cloud (SaaS, PaaS and IaaS) and local
standalone applications especially when resource-efficient
and real-time data processing is taken into account. A list of
recent research articles on deploying functional services is
presented in Table 8.

D. OPTIMIZED CBCT IMAGE RECONSTRUCTION IN 3-TECC
1) SCALABILITY
Each tier in the 3-TECC architecture has various char-
acteristics regarding software and hardware specifications.
A scalable distributed 3-TECC architecture should accom-
modate the increasing amount of medical imaging with
increasing computational needs without sacrificing overall
performance. Scalability becomes a balancing act when
dealing with medical data processing, given the continuous
growth in volume and complexity of medical imaging
data, which requires substantial processing capacity and
storage [26]. The authors in [120] address the challenge

of processing large amounts of sensor data by proposing
a scalable three-tier architecture for efficient storage and
processing. Stakeholders in healthcare require a distributed
computing platform that can scale smoothly to meet growing
requests for healthcare applications and data analysis of
radiological medical imaging.

The 3-TECC architecture can host various phases of
CBCT data processing. The concept involves deploying
a cluster of local nodes near the scanners, supported by
slightly more powerful MEC servers at the edge, along
with 5G connectivity, and accessible cloud resources via
the internet. As illustrated in Fig. 5, different CBCT data
processing scenarios can be accommodated according to
specific requirements and use cases. The setup can be tailored
according to the workload intensity. For example, if data from
multiple scanners needs to be processed, a sufficient number
of local computing nodes, aided by nearby MEC servers, can
handle the task. This flexibility allows the architecture to be
implemented in small healthcare facilities and scaled up for
larger hospitals. In larger hospitals, there may be a need for a
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greater number of processing units to handle, e.g., the higher
number of concurrent CBCT scans and possible other tasks.

2) PERFORMANCE
Minimizing the end-to-end execution time of a CBCT-
related computing task is crucial in enhancing the diagnostics
performance [36], [38]. The two major factors contributing
to the end-to-end execution time are the processing time at
the computing node [37] and the throughput and latency of
the networks in between. As a rule of thumb, processing
times tend to grow when tasks are deployed closer to the
data due to constrained CPU/GPU resources, while network
latency tends to reduce due to shorter data paths. The network
throughput depends on the lowest performance link on the
data path, which can be reduced by e.g. poor radio network
conditions if wireless connections are used, or congestion in
core networks. The edge computing environment and new-
generation mobile communication (5G and beyond) enable
latency-sensitive medical imaging use cases in wireless
settings [31]. The performance of centralized learning
exceeds the distributed performance in terms of distributed
learning algorithms depending on the various conditions.

The performance of an AI model is critical for ensur-
ing its reliability and robustness. Due to the challenges
inherent in distributed systems, centralized AI models
outperform their distributed counterparts. In [86], Chang
et al. examine two distributed learning frameworks: cluster
computing and federated learning. For the FL experiments,
PySyft distributed learning framework [67] was utilized.
The experiments’ findings demonstrate a decrease in AI
model performance with multiple distributed nodes under
IID data distribution compared to centralized results. This
performance degradation is even more pronounced with
non-IID data distribution, which is more representative of
real-world scenarios. Consequently, achieving performance
close to centralized solutions in distributed settings requires
extensive fine-tuning and robust network designs. Therefore,
data heterogeneity and network overloads are among impor-
tant practical challenges in deploying distributed learning
paradigms. A comparative analysis of the performance
of distributed learning frameworks including NVFlare and
PySyft is given in [121].

3) EFFICIENCY
Recently, energy efficiency has been emphasized as a future
goal in practically every aspect in our societies, as it is crucial
for sustainable development to avoid climate change with
a reduced carbon footprint, in addition to more traditional
motivators, such as cost efficiency. Awareness of energy
consumption also applies to the healthcare sector, medical
imaging, and radiology [122]. When considering billions of
medical IoT devices worldwide, having smart orchestration
and efficient optimization algorithms that led to utilizing the
computational nodes based on the task specification has a
greater impact on effective resource utilization. Furthermore,

in order to cope with the deterioration of dependency ratios,
the cost efficiency of healthcare systems will be emphasized
in the future. In Radiology, medical imaging techniques
consume high energy that adds to the climate footprint,
and based on this, Woolen et al. in [123] studied to reduce
the carbon footprint of different MRI scanners for energy
savings and found that radiology departments are more
energy-efficient when powering down MRI scanners. Energy
and resource efficiency are important contributors to cost
efficiency, which tends to emphasize these factors even more.

In 3-TECC architecture, different tiers can host different
portions of medical data processing, which can optimally
leverage the strengths of different types and locations of
computing nodes in the computing architecture, which has
a high potential to increase energy, resources and cost
efficiency. The allocation of tasks according to energy
availability is a crucial component of resource-aware task
orchestration [124]. To do this, a source of power-based
measuring framework must be put in place to carry out activ-
ities, including task classifications. Time-critical healthcare
applications and tasks can dynamically assign power supplies
and balance loads of networked computing nodes in a three-
tier edge cloud architecture [125], to reduce energy costs
and increase efficiency by utilizing real-time data on power
market pricing [126].

Split learning can be crucial for constrained computing
nodes within the 3-TECC architecture. DL models contain
layers that require high-performance computing. Thus, with
the help of SL, the first couple of DL model’s layers reside
in the constraint device, and the remaining part of the model
resides in the slightly powerful computing nodes. With this,
we can improve the efficiency of the resources by leveraging
various computing hardware in the architecture.

4) RELIABILITY
Utilizing local and edge tiers to process data near the data
source mitigates the reliance on accessing cloud centers
via the Internet. This approach offers a more reliable
computing architecture to address network bottlenecks and
failures effectively [45], [127]. However, it is worth noting
that local-edge nodes may encounter occasional failures or
performance hindrances, particularly for service deployment
and other node-related issues like their mobility and potential
concurrent utilization for different purposes, since they
may be shared resources with other tasks. Nevertheless,
the entire edge-cloud continuum system provides a flexible
environment for distributed data processing andmanagement.

In the event of network bottlenecks or technical difficulties
at certain levels in 3-TECC and computational nodes, the
remaining nodes within the collaborative framework can
collaboratively host tasks, thus contributing to the system’s
overall performance. Consequently, decentralized CBCT data
harnesses distributed computing, while centralized cloud cen-
ters are more susceptible to the abovementioned challenges.
In [128], the authors proposed a system architecture that
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TABLE 9. A list of Recent Research Articles on Optimized CBCT Image Reconstruction: Section IV-D. These research articles are mostly related to
reliability, performance, efficiency, and scalability, which are important parameters in this setup.

deals with faults at some level of the distributed computing
architecture and emphasizes improving fault tolerance and
reliability. Heterogeneity is one of the notable challenges of
novel technologies including 5G/6G, AI, and IoMT which
adds more complexity to the existing systems. Authors
in [129] discuss AI-based methods to provide more reliable
resource management and address heterogeneity issues in
distributed 3-TECC architecture.

In 3-TECC architecture, seamless intra-tier and inter-
tier connectivity is essential for efficient data processing.
The authors in [128] provide insights into potential failures
and propose their solutions. The role of AI-driven edge
computing in enabling real-time medical data processing is
discussed in [130]. In addition, the article proposes an ML-
based model for detecting security threats to improve the
system efficiency. Table 9 lists more recent research articles
focused on optimized CBCT image reconstruction, covering
aspects such as reliability, performance, efficiency, and
scalability.

E. PRIVACY AND REGULATORY ASPECTS OF MEDICAL
DATA IN 3-TECC
In addition to the functional and technical requirements
described in the sections above, medical systems must con-
form to national and international regulations and legislation
to fulfill strict requirements for the privacy, security, and
confidentiality of medical data.

The EU’s GDPR is the key legislation governing the
processing of personal data, applying to companies and
businesses operating in EU markets. This law stipulates
important prerequisites for all manufacturers of medical
devices regulated under the EU’s MDR. In this section,
we survey the main privacy implications, still, it should
be noted that the detailed requirements specification for
eurozone healthcare market approval of CBCT tied to the
above 3-TECC architecture is essential. The successful
market entry requires a sound regulatory strategy initially
and following the project development phase, data-driven
clinical evaluation takes place to meet safety, security, and
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performance criteria to obtain EU-market approval. This is
followed by post-market audit throughout the product life
cycle [134].

However, national data protection and special sector
provisions may also be applicable depending on the context.
For example, a unique law in Finland has been established on
the secondary use of health and social data complementary to
the GDPR legislation. A special tooling for publicly operated
data space in the health and social sectors is a Finnish Act
of ‘‘Secondary use of health and social data (552/2019)’’,
where the secondary uses include scientific research, statis-
tics, development and innovation activities, steering and
supervision of authorities, planning and reporting duties by
authorities, teaching, knowledge management [135]. GDPR
Article 4 defines ‘‘personal data’’ as any information related
to an identified or identifiable natural person (‘‘patient
as data subject’’), identifiability refers to e.g., a name,
identification number, location data, online identifier, or other
specific factors related to their identity particularly tied to
medical imaging e.g., patient data on anatomical, physical,
physiological, and genetic factors [63].
As a default to protecting and complying with patient

privacy, effective data anonymization consists of the irre-
versibility and impracticability of identifying the data subject.
However, it should be noted that pseudonymized data qualify
as personal data under the GDPR. Hence, the distinction
between these two concepts should be firmly fixed and
embedded in new edge-cloud continuum healthcare system
designs. Furthermore, GDPR Article 83 should be addressed
on business ramifications since it lays down implications for
non-compliance of implementation, recovery, and damage
related to patient privacy protection exposing potential
financial risks. The legal penalties are ruled from less
severe violations up to fines capped at 20 million euros of
annual global business revenues [136]. Following Article 5,
an important organizational capability is to demonstrate full-
fledged compliance at all times and ensure that privacy
protection is professionally managed, building valuable trust
and providing competitive advantage across the healthcare
value chain, while neglecting data protection may become
very expensive.

Hence, a driving value from regulation-compliant and
dependable end-to-end communication path for connected
future healthcare should encompass also the main important
provisions of GDPR tied to regulation of the technical
requirements. These are stipulated in Articles 24, 25, 30,
and 32. The responsibility and liability of the healthcare
organization as a data controller specify the measures
that must be taken to ensure compliance when processing
personal data, as described in Article 24. The provision
imposes an obligation to do due diligence and to demonstrate
the steps taken to ensure compliance with the law, for
example, in the case of an audit. Article 25 emphasizes
the importance of data security to protect patient privacy,
and sensitive EMRs, the need to incorporate it by default

and by design into all stages of the 3-TECC architecture,
from the initial planning phase to the end of the data
lifecycle. The requirement for the preservation of a record of
personal data processing activities, which must be available
to supervisory authorities upon request is presented in Article
30. Finally, Article 32 provides specific provisions on data
security for the obligatory implementation of fit-for-purpose
technical measures and organizational capabilities to ensure
appropriate cybersecurity performance to risks [63].

The main challenge anticipated in the future is navigating
the current regulations and the stipulations of the new EU’s
Artificial Intelligence Act (AIA) [6]. Currently, healthcare
operates as a closed system, but the novel concept proposed
by the authors aims to break this silo. Therefore, future
implications for MDR and ISO 13485:2016 manufacturing
best practices must be carefully monitored. However, as high-
lighted in a recent article, we must be cautious of excessive
regulatory measures. Big data techniques need to balance
social advantages with patient privacy to create value in
healthcare. According to Paul et al. [137], big data requires
significant changes to database usage, access, sharing,
privacy, and sustainability procedures and regulations.

The EU’s AIA will significantly impact distributed
3-TECC architectures through its transparency and documen-
tation requirements, particularly in healthcare applications
where it puts patients in a stronger position compared to US
and Asian frameworks.

While these regulations enhance patient rights and data
protection, they create two significant challenges: first, EU-
based companies may face competitive disadvantages due
to increased compliance costs and slower innovation cycles
compared to non-EU competitors; and second, hospitals’ day-
to-day operations may experience new bottlenecks due to
additional documentation requirements, mandatory human
oversight procedures, and compliance checks that could slow
down clinical workflows and decision-making processes.
These practical implications will require careful consider-
ation in both system architecture design and operational
planning. The focal point is the system-level integration
of digital healthcare powered by a distributed 3-TECC
architecture.

A list of recent research articles on medical data’s privacy
and regulatory aspects is presented in Table 10.

V. DISCUSSION AND FUTURE SCOPE
As we have covered in this article, medical imaging
technologies, including CBCT, produce vast amounts of
data, which is neither optimal to be solely processed in
centralized cloud locations nor optimal to be processed in
local dedicated computers. The traditional centralized cloud
approach is sub-optimal due to the high dependency on the
correct functionality of the communication links between
the scanner and the cloud-based processing units and the
high burden inflicted on these links by high data volumes.
Long communication routes can also introduce performance
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TABLE 10. A list of Recent Research Articles on Privacy & Regulatory Aspects of Medical Data: Section IV-E.

bottlenecks for latency-critical medical imaging scenarios.
Furthermore, confidentiality requirements of medical data
cause restrictions for centralized processing scenarios. On the
other extreme, the traditional dedicated local reconstruction
computer approach is suboptimal due to the inherently
high hardware costs and poor scalability. Furthermore, the
traditional medical image processing workflow is being
challenged by novel mobile imaging scenarios that require
using wireless networks for data communication.

Based on this rationale, this article focused on a three-
tier computational continuum architecture, in short 3-TECC,
which provides a dynamic and flexible placement of medical
data processing in an optimal computational tier of the
computing continuum spanning from local virtual compu-
tational units through edge servers co-located with access
networks to remote cloud servers. While the concept of a
three-tier architecture is well-established, its application to
medical imaging, especially CBCT imaging, is an unexplored
idea. CBCT imaging generates a large volume of data, and
there is currently no existing work that addresses the unique
challenges of this specific use case on distributed edge cloud

computing. Our proposed solutions, grounded in state-of-
the-art literature, are not only applicable to CBCT but can
also be extended to other data-intensive medical imaging
modalities. To deal with data-intensive medical imaging
applications, particularly CBCT image reconstruction, the
distributed 3-TECC architecture, through its different levels,
provides a flexible platform to prevent network bottlenecks
and the propagation of medical data outside the hospital
premises for better protection against privacy and security
threats.

First, we detail the phases of CBCT imaging data, their
properties, and the data flow from the imaging device to
the diagnostic format. When implementing a distributed
computing platform, it is essential to understand the types of
data and the requirements for processing and communication
in order to build a system that meets its specifications.
Moreover, we identified the characteristics of the various
tiers and emphasized their role in computing architecture
by including data management across these tiers, and also
draw attention to the importance of medical data processing
in terms of privacy and security concerns, with a focus on
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data regulations. Furthermore, to achieve privacy-preserving,
secure, reliable, resource-efficient, and high-performance
computing architecture, we discussed the most related
technical, functional, performance, and regulation-related
requirements and challenges, as well as provided a glance at
potential solutions for optimal utilization of each tier of the
computing architecture.

Primarily, this research aimed to outline the technical
requirements for executing medical imaging use cases
in 3-TECC, with a specific focus on the CBCT image
reconstruction use case. The workflow phases for CBCT
reconstruction span from collecting data on medical imaging
devices to transferring the data to be processed in appropriate
nodes at appropriate tiers in the computing architec-
ture. Potential privacy-preserving distributed AI techniques
for implementation, functional service deployment among
nodes, computational hardware, and communication tools
were discussed alongside related work from the literature to
achieve efficient future digital healthcare systems. The results
of this study show the wider implications for medical imaging
and healthcare technologies in addition to providing technical
details and a workflow for the CBCT imaging modality. This
work offers a comprehensive framework that can improve the
efficiency of CBCT by outlining the steps involved in data
gathering and processing.

We also elucidate the technical specifications of tiers in
the distributed 3-TECC, highlighting the importance of their
characteristics during the image reconstruction process. Our
proposal leverages local scalable swarms of GPU-enabled
computational nodes in the local tier, MEC servers co-
located, e.g., with the nearest cellular base stations in the
edge tier, and GPU clusters from data centers in cloud
tier. The results highlight how important each tier is to
the distributed 3-TECC system. The architecture ensures
efficient data processing close to the data source by utilizing
local GPU-enabled nodes. For example, distributed AI
methods, such as FL, aim to leverage data at its source.
By keeping the large volumes of CBCT data localized,
the demand on network resources can be significantly
reduced, offering a cost-effective solution while maintaining
efficiency. This approach is crucial for enhancing real-
time processing capabilities. In addition, it helps address
privacy and security concerns associatedwithmedical data by
keeping the data local. The cloud tier’s strong GPU clusters
perform the computationally demanding operations for image
data analysis, while the edge tier’s MEC servers provide
effective intermediate processing and data transport, further
streamlining the workflow.

Data regulatory aspects, including GDPR and MDR, were
also discussed in the survey, in addition to the technical
requirements. The study contributes to creating a legal
framework for medical imaging by considering factors when
implementing the distributed computing architecture. This
architecture can accelerate and enhance the accuracy of
diagnostic operations, which would benefit patients and lead
to significant improvements in clinical practice. This article

serves as a paradigm for further developments because it
combines cutting-edge computational and communication
methods with regulatory compliance into a unified distributed
architecture.

A. IDENTIFIED CHALLENGES
• Heterogeneity: There is heterogeneity in (i) hard-
ware capacity, both computational and communication;
(ii) software: various APIs, data formats, etc.; (iii)
virtualization systems, orchestration mechanisms; (iv)
service providers’ security policies; (v) application/use
case requirements; (vi) regulations across countries and
continents. Centralized cloud centers provide a uniform
platform for data processing. In contrast, in distributed
systems, heterogeneity is a fundamental challenge [145].
Within the framework of the 3-TECC architecture,
device providers in terms of computing architecture and
manufacturers’ equipment in the context of medical
imaging techniques [146] play an important role in
ensuring heterogeneity paradigm through computing
hardware, network connectivity, and medical imaging
techniques. Due to the distributed nature of the system,
the technologies mentioned above can vary among
the different tiers. Thus, the implementation of the
3-TECC architecture requires dealing with computing
nodes with different technical specifications in hardware
and software, different medical imaging vendors, and
the dissimilarity of the networking technologies [19].
Deploying tasks uniformly across distributed computing
nodes would streamline task processing compared to
using devices from different vendors. For instance,
in containerized solutions, Docker containers built for
AMD hardware architecture may fail on aarch64-based
hardware processors.

• Medical data volume: In general, transferring and
processing raw data from medical imaging devices
and CBCT scanners to remote processing units is
challenging. These challenges are emphasized due to the
considerably fast growth of medical imaging data due to
higher-quality imaging devices producing e.g. higher-
resolution and/or 3D image data from CT and MRI
scanners, which also requires more storage in addition
to the growing burden on networks [147]. This requires
more efficient algorithms to performwell on large, noisy
and complex datasets, powerful computing hardware,
robust/seamless network services, data integration, and
adequate storage infrastructure.

• Computational capacity: The deployment of data
processing among the computing nodes is a crucial
step of the 3-TECC architecture. The capability of the
computing node can be seen from a use case viewpoint,
such as a device that is capable of processing classic
IoT data might have challenges when facing the data-
intensive medical imaging processing task, whereas the
volume of images can grow at gigantic scales.
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• Network capacity: To process medical data from
scanners, data must be transferred to the processing
unit. This requires a well-managed fiber/ethernet-based
transfer or advanced cellular networks like 5G and
beyond. High data volumes necessitate a fast network
connection to ensure efficient data transfer, significantly
impacting diagnostics. In addition to delays [65], a 5G-
enabled MEC server in the hospital may be needed to
handle slightly heavier tasks.
Physical barriers within the unit can hinder communi-
cation between the medical imaging unit and the base
station, affecting the propagation of high frequencies
during examinations. Hence, a well-covered connection
is essential for efficient healthcare systems. Further-
more, in mobile imaging scenarios, mobility-related
challenges may significantly affect the performance and
capacity of local computing. Due to potentially poor
access network connections, it may not be feasible to
use cloud or even MEC servers for data processing.
Therefore, it is essential to implement mechanisms to
handle reconstruction and analysis tasks with limited
data connections. For example, maximizing local com-
putation and utilizing only the most critical external
resources can help conserve the limited capacity of
the Internet connection. A rough CBCT image could
be reconstructed locally for quick analysis. When the
imaging vehicle, such as a truck or ambulance, reaches a
location with better connectivity, higher-capacity cloud
servers can be used to reconstruct higher-quality images.
These servers offer superior computational capacity and
access to external databases necessary for tasks like
artifact reduction.

• Medical data/device regulation: Medical data pro-
cessing whether inside or outside of health centers
requires adherence to strict regulations. MDR and
GDPR emphasize the importance of proper medical
data handling [63], [134], [139], [144]. The use of
public cellular networks in medical centers is partic-
ularly affected by the need for a secure environment,
especially for patient data confidentiality and device
integrity. Third-party vendors operate these networks
with their security regulations that may not completely
comply with the strict guidelines required by healthcare
providers. Furthermore, sensitive patient data may be
accessible through public networks due to various risks,
such as non-authorization access and data breaches.

• Data privacy: A big part of the regulation comes from
data privacy, private 5G networks owned and managed
by hospitals can be provided to avoid these risks.
These private networks give healthcare providers a com-
plete understanding of security guidelines, guaranteeing
strong defense against potential attacks. Health centers
can customize their defenses to fit certain regulatory
standards and clinical needs by managing the network
architecture and security procedures. This makes the
environment more safe for the functioning of medical

devices and data. By removing the need for third-party
suppliers and reducing the possibility of incompatible
security protocols, this autonomy improves overall data
integrity and patient safety in healthcare facilities.

B. LIMITATIONS
The limitations of our work include a focus on the CBCT
imaging modality. We selected CBCT image reconstruction
as a use case because it typically generates significantly
more image slices per examination compared to other
radiological imaging techniques. Thus, we selected the
imaging modality with the most stringent requirements for
the 3-TECC architecture including computational and com-
munications aspects. However, the computational workflow
varies between different medical imaging technologies, and
therefore further focused studies are needed for various
imaging modalities, such as mammography, MRI and US.

Furthermore, although this article covered the privacy and
regulatory aspects of medical data in 3-TECC architecture,
including aspects of privacy, GDPR, and MDR in Europe in
Section IV-E. The data regulatory aspect for other geographic
areas was not covered within this article. Therefore, we can
see a clear need for a dedicated article to cover these topics
in more detail. Security represents another limitation of this
article. Further work is needed to cover and mitigate potential
security threats at different tiers of the 3-TECC architecture.

Finally, we have approached this research paper from an
edge AI perspective, where different computing nodes in
the platform can host various phases of medical imaging
and CBCT reconstruction. However, efficient optimization
of the AI algorithm among the 3-TECC computing nodes
is necessary to improve the utilization and efficiency of the
system resources. Conventional and AI-based optimization
techniques can be employed to optimize the resources of the
computing nodes in the dynamic environment of 3-TECC
architecture.

C. FUTURE WORK
The future work focuses on the implementation of a real-
world platform based on the proposed distributed 3-TECC
architecture for CBCT image reconstruction. The following
research questions (RQ) would be important to be assessed
as the future work. RQ-1: What are the potential challenges
for the real-world implementation of 3-TECC architecture,
considering the distributed systems, huge volume of medical
imaging data, data privacy and security, the role and
performance of distributed AI methods in realizing the
architecture? As computing resources, we plan to use GPU-
enabled hardware in the local tier, MEC servers with GPUs at
the edge tier, and cloud platforms as cloud tier in realizing the
3-TECC architecture. RQ-2: How can centralized AI model
performance be achieved in a decentralized manner? RQ-
3: How can robust communication among computing nodes
on distributed tiers be ensured? RQ-4 How to effectively
utilize resource-constrained computing nodes in 3-TECC
architecture?
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TABLE 11. Related research papers for the requirements in Section IV including the objective and required/expected outcome from the requirement.

In addition to the CBCT use case, it would be relevant to
extend the computing architecture to accommodate various
imaging modalities and medical use cases, as well as to
conduct more detailed testing, as mentioned in Section V-B,
including, e.g., digital mammography and MRI. RQ-5:
How to scale 3-TECC to adopt various imaging modalities
efficiently? RQ-6: What parts in 3-TECC architecture must
be modified to host different medical imaging use cases?
Our implementation approach will emphasize distributed AI,
particularly federated and split learning techniques.

In addition, our research will further investigate AI
optimization techniques to improve the performance and
efficiency of medical imaging processes. RQ-7: How can
computing and networking resources be efficiently utilized to
meet the dynamic needs of devices in the 3-TECC platform,
enhancing system performance and efficiency? Moreover,
we recognize the importance ofmobile imaging-relatedwork,
particularly in addressing network-related issues under the
Section V-A. Future studies will include these aspects to
ensure comprehensive solutions for mobile medical imaging
applications. In addition, we will explore adaptive security
measures to ensure robust protection for our computing
architecture.

VI. CONCLUSION
This article investigated the technical prerequisites for
improved care using a three-tier edge-cloud continuum (3-
TECC) architecture, a conceptual framework designed to
host radiological medical imaging data, focusing on the
CBCT image reconstruction use case. We presented the
key aspects of collecting and processing CBCT data within
this architecture, detailing the technical requirements for the
implementation of the computing architecture by utilizing the
latest technologies. These technologies serve as a foundation
or one of the modalities for data-intensive medical imaging
use cases on distributed edge cloud computing. The findings
suggest that the 3-TECC architecture can significantly
improve the processing and management of CBCT data,
potentially improving the overall quality and efficiency of

radiological imaging. This could lead to better diagnostic
capabilities and patient outcomes in medical imaging.

In addition, the review includes an overview of the
technical specifications of computing devices of different
tiers and emphasizes both existing and novel wired/wireless
communication technologies for communication. Specifi-
cally, we examined the technical requirements for CBCT
image reconstruction from various perspectives.We proposed
solutions for achieving efficient CBCT data management,
using and deploying distributed AI algorithms, deploying
functional services, and the necessary optimal performance
metrics. We also highlighted GDPR-compliant approaches
to ensure the privacy and confidentiality of medical data.
These contributions provide a comprehensive understanding
of the technological landscape necessary for effective CBCT
image reconstruction and management. The proposed solu-
tions and highlighted approaches can significantly enhance
the efficiency, security, and privacy of medical imaging
data management, potentially leading to advancements in
improved patient outcomes in medical imaging.

Finally, the proposed distributed AI-based 3-TECC
approach can reduce the need to transmit large volumes
of medical imaging data to centralized centers. This
approach alleviates network bottlenecks, privacy concerns
and integrates novel technologies such as distributed
ML that preserves privacy, advanced communication and
computational tools, virtual deployment services, and data
regulatory standards. The IoMT leverages interconnected
distributed nodes and tiers in the 3-TECC architecture,
combined with distributed ML, to transform the industry.
These advancements can play an important role in future
digital healthcare. The 3-TECC approach can significantly
improve diagnostic capabilities and patient outcomes in
medical imaging by reducing transmission needs and
integrating state-of-the-art technologies.
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