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ABSTRACT: The ubiquitous nature of thermal fluctuations poses
a limitation on the identification of crystal structures. However, the
trajectory of an atom carries a fingerprint of its surroundings. This
rationalizes the search for a method that can determine the local
atomic configuration via the analysis of the movement of an
individual atom. Here, we report, while using molecular modeling,
how a statistical analysis of a single-atom speed trajectory,
represented by ordinal patterns, distinguishes between actual
crystal structures. Using the Shannon entropy of ordinal patterns
enabled discernment of the studied high-pressure silicon phases.
Identification of the atoms occupying the 2(c) and 6(f) Wyckoff
positions of the r8 crystal revealed an increase in the developed
method’s accuracy with trajectory length. The proposed concept of
studying the structure of crystals offers new opportunities in solid−solid phase transformation studies.

■ INTRODUCTION
Currently, numerical and experimental methods1−5 provide
valuable structural data necessary to understand the properties
of materials. The search for new algorithms for the
determination of a material structure is ongoing, leading to
exciting concepts, such as chaotic crystallography proposed by
Varn et al.6 Regardless of the method employed, the accuracy
of the crystal structure identification declines due to thermal
fluctuations and imperfections in the crystal lattice. To
overcome these obstacles, advanced machine learning
techniques are currently being examined. However, despite
many reported advancements proving the usefulness of this
approach, it is computationally complex.5,7−10

This work presents a method for classifying atoms of
different crystal structures. In the frame of molecular dynamics
simulations, we described a single atom’s speed (the length of
the velocity vector) trajectory in terms of ordinal pattern
probability distribution. Then, we used Shannon entropy
(simply entropy) to distinguish the local atomic arrangement.
The selection of the atom’s speed did not limit the general
nature of our approach, allowing the replacement of this
parameter with other atom trajectory characteristics.
To verify our idea, we chose silicon because of its enduring

presence in the scientific debate11−15 and, second, due to the
difficulty in distinguishing of certain silicon high-pressure
phases. In particular, there is a dilemma whether the
appearance of the bct5 structure precedes the formation of
the β-tin (Si−II) one during the indentation-induced trans-
formation from cubic diamond (cd, Si−I) phase or is only a
severely deformed original cubic lattice.16,17 Moreover, Gerbig
et al.17,18 reported difficulties related to the analysis of Raman

spectra of the metastable bc8 (Si−III) and r8 (Si-XII) phases,
even though they are characterized by different space groups
(Ia3̅ and R3̅, respectively) and Wyckoff positions: one 16(c)
for bc8 and two 2(c) and 6(f) for r8 structure.19 We frequently
referred to the crystallographic description of silicon structures
by Mujica et al.20

■ METHODS
Molecular Dynamics. The molecular dynamics simula-

tions were performed with the LAMMPS code.21 To
accomplish this, two interatomic potentials of silicon were
selected, namely, the one proposed by Kumagai et al.22 due to
its computational efficiency and the Spectral Neighbor Analysis
Potential (SNAP)23 parametrized for silicon by Zuo et al.,24

portrayed as computationally expensive but accurate in
modeling of silicon structures. The Kumagai potential was
used for most of the phases studied in this work: cd, bct5, β-
tin, and bc8, while we employed the Zou potential to test our
statistical method on the bc8 and r8 phases. Since the
temperature and pressure affect the local atomic arrangement,
we conducted computational experiments at phase equilibrium
points so that the atomic configuration is the only contrast
between silicon structures. The atomic trajectory has been
characterized by the entropy of ordinal pattern probability
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distribution25−27�the approach popular in various areas of
science and technology.28−30

We combined the crystalline silicon phases in pairs. Each
phase of a given pair was modeled separately at the same
temperature and pressure, consistent with the applied
interaction potential. To find the equilibrium pressure for
the cd/bct5, bct5/β-tin, and β-tin/bc8 pairs of Si phases, we
used the zero-temperature approximation of the enthalpy
pressure dependence: H(p) = E + pV. The calculations
consisted of stepwise changes of the pressure p and subsequent
minimization of the potential energy to get the system energy
E and the system volume V. For example, the solution to the
equation Hcd(p) = Hbct5(p) gave the equilibrium pressure for
the cd and bct5 phases. The results are shown in Table 1 and

Figure S1 in the Supporting Information. The differences
between the equilibrium pressures modeled with the Kumagai
potential and the literature data were a consequence of
applying the different interaction models or experimental
conditions.
After determination of the phase equilibrium pressures, we

generated atomic trajectories corresponding to the temper-
ature of 300 K using supercells (containing ∼8000 atoms) of
the cd, bct5, β-tin, and bc8 phases at the pressures indicated in
Table 1. An isothermal−isobaric ensemble and Nose−Hoover
dynamics34−36 were used with a time step of 2 fs. The
simulations were preceded by energy minimization using the
conjugate gradient algorithm and subsequent equilibration for
200 ps. Then, 2 ns (106 time steps) long atomic trajectories of
a group of atoms, selected from each of the cd, bct5, β-tin, bc8,
and r8 phases, were recorded. The atoms were chosen so that
the motion of one atom does not directly affect the motion of
an adjacent atom; they are therefore not nearest neighbors.
Each atom’s trajectory (time series) contained information
regarding its coordinates (x, y, z) and velocities (vx, vy, vz).
Furthermore, the time dependence of a magnitude of the
atom’s velocity (speed) = + +v v v vx y z

2 2 2 was a subject of
further studies.
The LAMMPS input files, which explain how we modeled

the silicon crystal phases, can be found by following the link in
the Supporting Information.
Ordinal Pattern Method. The atomic speed trajectory

v(ti)|i=0N−1 was transformed into a trajectory of ordinal patterns
π(ti)|i=0N−1, where N is the speed trajectory length, m defines the
speed sequence length, d is the time lag, and N′ = N − (m − 1)
d is the ordinal patterns trajectory length. Speed sequences

[ ··· ]+ + +v t v t v t v t( ), ( ), ( ), , ( )i i d i d i m d2 ( 1) (1)

contained in the speed trajectory were sorted in ascending
order. In case of equal speed values, v(t) preceded v(t′) if t < t′.
Then, an ordinal pattern (permutation σ of the m-element set)
was assigned to each sorted speed sequence. Ordinal patterns
were arranged lexicographically {σ0, ···, σm!−1} to provide an

integer representing σ. For example, if m = 4, d = 1, and v(ti+1)
< v(ti) < v(ti+3) < v(ti+2)), then the speed sequence [v(ti),
v(ti+1), v(ti+2), v(ti+3)] is represented by the ordinal pattern σ7
= (1032) and, therefore, π(ti) = 7.
The next step in the analysis of the atomic speed trajectory is

to determine frequencies f i|i=0m!−1 of the ordinal pattern
occurrence in the time series π(ti)|i=0N−1. As it will turn out,
the frequency distribution obtained in this way allows
distinguishing the crystalline phases of the tested material.
However, from the practical point of view, it would require
storing m! numbers per atom. A simplification can be achieved
by calculating the entropy, normalized by the factor log2(m!):

=
!

=
!

S
f f

m

log

log ( )
i
m

i i0
1

2

2 (2)

Thus, the idea of our approach is to assign a single number,
S, to the atomic speed trajectory. We propose to use the name
“S-method”, for simplicity.
There are three parameters (m, d, N), which affect a value of

the entropy. To recognize this relationship, we tested all pairs
of Si phases indicated in Table 1. The finite length of the
atomic trajectory pushed the study of the mean value S̅ and
standard deviation σ of the entropy dispersed over 56 atoms
(not nearest neighbors) selected from each of the considered
phases. The selected atoms were approximately evenly
distributed throughout the crystal volume. Too many atoms
could generate extremely large trajectory files. Certainly, we
were curious how the phase separation ΔS̅ = | S̅phase1 − S̅phase2|
and mean standard deviation = +( )1

2 phase1 phase2 depends
on three natural numbers (m, d, N). We choose 3 ≤ m ≤ 7, 1
≤ d ≤ 10, and 104 ≤ N ≤ 106 for tests as these intervals
allowed investigation of essential properties of ΔS̅ and σ̅. As
the results of the analysis were similar, we decided to present
the case of β-tin/bct5 (Figure 1). The results of the remaining
tests can be found in the Supporting Information. Conclusions
are as follows: (1) an increase of lag d caused an increase in
ΔS̅; however, staring from a certain d value (depending on m),
the trend is opposite (Figure 1a); (2) the value of σ̅ is at least
an order of magnitude smaller than ΔS̅; and (3) an increase of
the time series length N decreased a width (in fact the standard
deviation) of the entropy histogram (Figure 1b).
Interestingly, ΔS̅ ≈ 0 for lags d = 9,10 corresponded with

the mean entropy approaching 1 (Figure S5a in the Supporting
Information). For m = 2, there are two order patterns
occurring with the frequency f ≈ 0.5, giving S ≈ 1, and
consequently, the ordinal pattern length of m = 2 does not
allow for distinguishing the phases (Figure S5b in the
Supporting Information). We did not study the case of m >
7 due to the excessive number (m!) of order patterns.
For further investigation of silicon crystals, we chose d = 1

because it allows full utilization of the recorded trajectory. We
chose m = 4 because it provides the smallest number of ordinal
patterns and and exihibits larger ΔS_overlined, with respect to
m = 3. Finally, we chose N = 105. However, each of the tested
values of N (from 104 to 106) allowed separation of the
histograms of the studied phases (refer to the Supporting
Information).
All data necessary to replicate the results of the performed

simulations are provided in the Supporting Information.

Table 1. Equilibrium Pressures p of Selected Si Phases
Modeled by Means of the Kumagai Potential22

equilibrium p (GPa) references

cd/β-tin 12.2 6.34−16.5,31 11.720

cd/bct5 10.2 12.632

bct5/β-tin 15.8
bc8/β-tin 7.2 6.9,33 7.419
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■ RESULTS AND DISCUSSION
Demonstration of the S-Method. We chose the β-tin/

bct5 pair of Si phases to show how the S-method,
distinguishing crystal structures, works (Figure 2). The results
for other pairs of silicon phases can be found in the Supporting
Information. As mentioned earlier, we investigated N = 105

long atomic trajectories (200 ps); however, to compare the
trajectories constructed from speeds and ordinal patterns,
shorter 500 fs samples were used (Figure 2a,d).
As expected, the speed probability distributions P(v)

calculated for two atomic trajectories (one β-tin atom and
one bct5 atom) were consistent with the theoretical Maxwell−
Boltzmann distribution (Figure 2b). Minor deviations caused
by the finite length of the trajectory might give the illusion that
the silicon phases can be distinguished by using P(v) or the
corresponding entropy. To examine this presumption, we
inspected the dispersion of the entropy value over groups of 56
atoms selected from both the β-tin and bct5 phases. The
obtained histograms overlap (Figure 2c), indicating that the
statistical analysis of the single-atom speed trajectory will not
allow determination of whether an atom belongs to the β-tin or
bct5 phase.
Then, we transformed the speed trajectory into the

trajectory of the ordinal patterns (Figure 2d). The frequencies
of the ordinal pattern occurrence differ (Figure 2e), exhibiting
the ability to distinguish which phase the atom belongs.
However, it requires comparing two frequency distributions,
each composed of m! numbers. It is impractical, especially
when we apply the S-method for tracking structural changes in
a system containing hundreds of thousands or even millions of
atoms. Instead of the frequency distribution of ordinal
patterns, one can use a single number, namely, the entropy
value. Figure 2f presents a comparison of two entropy
histograms calculated for an equal number (56) of atoms of
the btin and bct5 phases. The histograms are separated and
have a small width.
Consequently, we showed that the statistical analysis of the

single-atom ordinal pattern trajectory can determine the
affiliation of an atom to a crystalline phase. Our method has
given satisfactory results since it does not deal with a set of

Figure 1. Case of β-tin/bct5 phases demonstrates the S-method’s
primary properties. (a) Dependence of ΔS̅ on the ordinal pattern
length m, and the lag d calculated for the trajectory of N = 105 time
steps length. (b) Increase in the trajectory length caused a decrease in
the entropy histogram width.

Figure 2. Method for distinguishing crystal structures based on speed dynamics. Left and middle columns present the speed trajectories of
randomly selected one β-tin atom and one bct5 atom. Right column refers to the 56 atoms (not nearest neighbors) selected from each of the β-tin
and bct5 crystals. (a) Time dependence of single-atom speed. Short time frame Δt = 500 fs was chosen to present the trajectory details. (b)
Probability distributions of speeds, P(v), calculated for the 200 ps trajectories and the theoretical Maxwell distribution. (c) Entropy of the
probability distribution of speeds does not allow a clear distinction between β-tin and bct5 structures. (d) Symbolic representation of the single-
atom speed trajectories in terms of the ordinal patterns. (e) Probability distribution of ordinal patterns, P. (f) Permutation entropy computed for
the ordinal pattern probability distributions of β-tin and bct5 phase differ.
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speeds but with a set of time-ordered short sequences of
successive speeds. In the first case, every speed is treated
individually and the deterministic relation connecting speed
values is broken, while in the second case, this relation is
partially preserved and affects the entropy value.
Application to Other Silicon Phases. The relationship

between atomic speed dynamics and crystal structure was
established for the remaining silicon pairs: cd/bct5, cd/β-tin,
and beta-tin/bc8 (Figure 3). As before, the entropy was
calculated for 200 ps trajectories of 56 atoms selected from
each of the examined phases. As before, the S-method allowed
for the distinction of silicon structures. Notably, an increase in
pressure shifts the entropy histograms toward higher values
(compare the data presented in Figures 2f and 3). The
qualitative explanation of this observation is based on the
common perception of the entropy as a measure of
information complexity. The increase in pressure reduces the
interatomic distances, thus enhancing the influence of the
atom’s surroundings on its movements. As a result, the atom’s
speed trajectory becomes more complex, and the permutation
entropy is shifted toward higher values.
Comparison with Other Methods. The classical

approach to studying the phase composition of the modeled
system and the crystal lattice perturbations consists of
analyzing data carrying information about the position of
atoms at different stages of the simulation. The methods used
for this purpose are often geometric, i.e., based on knowledge
of interatomic distances and bond angles (the angle between
the atom and its two closest neighbors).1 An important feature
of these methods (e.g., centrosymmetry parameter (CS),37

coordination number analysis (CNA),38 and Voronoi
tessellation) is assigning a particular property’s value to each
atom by analysis of its local environment. Some methods
examine the geometric relationships that exist within a group
of atoms. For example, the radial distribution function (RDF)
and the bond-angle distribution function (BADF) can be used
to investigate the phase composition of a system since unique
interatomic distances and bond angles characterize each crystal
structure. However, due to thermal fluctuations in the
positions of atoms, these unique values often blur, making
phase identification challenging.
We will demonstrate this effect on the example of

distinguishing bc8/r8 phases using RDF and BADF methods.
Both crystals (each consisting of about 8000 atoms) were
modeled at T = 300 K and p = 2 GPa using SNAP interatomic
potential.23,24 We recorded 2 ns long trajectories of 64 r8
atoms and 48 bc8 atoms (not nearest neighbors). To calculate

averaged interatomic distances and bond angles, we used the
last 100 time steps of the crystals evolution. Figure 4a,b shows

that the thermal motion of atoms causes the RDF and BADF
peaks to broaden and consequently overlap. Thus, when
studying (hypothetically) a mixture of two phases, one should
expect RDF and BADF distributions with a shape similar to the
sum of individual ones, which makes difficult determining
whether the local maximum belongs to the bc8 or r8 phase.
The ambiguity in the interpretation of the obtained results

Figure 3. Distinguishing the silicon crystals modeled by Kumagai potential at T = 300 K and different equilibrium pressures (see Table 1).
Histograms were computed for 56 atoms randomly selected from each of the cd (green), β-tin (red), bct5 (blue), and bc8 (magenta) crystals.
Figures depict the relationship between the permutation entropy distributions and the high-pressure silicon phases: β-tin/cd (a), bct5/cd (b), and
β-tin/bc8 (c). Separation of the entropy histograms confirmed the effectiveness of the S-method in investigation of the local atomic environment.

Figure 4. Discrimination of atoms that occupy different Wyckoff
positions. Pertinent r8 and bc8 phases are modeled at a temperature
of T = 300 K and a pressure of 2 GPa. (a) Distribution of bond
lengths and (b) bond angles among nearest neighbors of the
investigated r8 and bc8 atoms. (c) Application of the S-method to the
trajectories of 2 ns length resulted in the separation of the
permutation entropy distributions. This allows us to distinguish the
atoms at the 2(c)-r8 (red) and 6(f)-r8 (red) Wyckoff positions.
Separation of the histograms obtained for 6(f)-r8 and 16(c)-bc8
atoms (blue) allowed discernment r8 and bc8 crystals.
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reflects the problem in experimental discerning between the r8
and bc8 phases.17,18 For example, the r8 phase participates in
the pressure release-induced transformation from β-tin to bc8
phase in its final r8 → bc8 stage at p ≈ 2 GPa.20 In contrast,
applying our S-method would allow the atoms to be divided
into groups according to their entropy value. The atoms
occupying the 2(c)-r8 and 16(c)-bc8 Wyckoff positions
formed overlapped histograms. However, the entropy calcu-
lated for the r8 atoms occupying the 6(f) Wyckoff position was
shifted toward higher values which made the differentiation of
the r8 and bc8 structures successful. On this occasion, we
showed that the S-method, focused on the statistical analysis of
the atomic speed trajectory, distinguishes Wyckoff positions.
Thermal motion, which blurs the RDF and BADF peaks and
thus makes the identification of the r8 and bc8 phases difficult,
is exploited by the S-method.
The next example of the S-method application concerns the

Si self-interstitial defect.39 We considered a cubic diamond
lattice and a silicon atom (Figure 5a) located at the (1/2,1/
2,1/2) lattice site, i.e., in the center of the cube. In such a way,
the tetrahedral defect was formed. Supercell containing the
point defect was modeled in T = 300 K, p = 10.2 GPa, using
the Kumagai potential.22 We recorded long trajectories (N =
106 time steps) of the point defect and atoms that belong to its
environment within a sphere of radius 10 Å. We were
interested in the answer to the question whether the classical
CNA method can distinguish point defect from the rest of
atoms. We employed capabilities of the OVITO software.40

The CNA method assigns to each atom a coordination number
cn equal to the number of neighbors located inside a sphere of
a given radius R. Applying R = 3 Å, the CNA method localized
the point defect (cn = 10, red atom in Figure 5b) and its 10
neighbors (cn = 5, green atoms); the coordination number of
the rest silicon (blue) atoms was equal to 4. The S-method
application allowed for more. Additionally, to indicating the
location of point defect, it distinguished between the atoms of
the closest surroundings of the point defect. Figure 5c shows
the entropy values calculated for the atoms located within a
sphere of radius 10 Å. The point defect has the lowest value S
= 0.458 which distinguishes it from the four first nearest
neighbors (nn) S̅ = 0.486, six the 2st nn S̅ = 0.491, and other
atoms S̅ > 0.5 (Figure 5d). The obtained result was not
accidental, we tested the entropy values at temperatures from
200 to 600 K, and in each case, the hierarchy of the entropy
values corresponded to the division of the system into a point
defect, first nn, 2th nn, and the rest of the atoms, as shown in

Figure 5c. Thus, by using the S-method, we localized the point
defect and, moreover, distinguished the atoms in its vicinity.

■ CONCLUSIONS
In summary, we showed that the speed trajectory of a single
atom can be used to distinguish crystalline phases, including
the discernible atoms occupying different Wyckoff positions.
The proposed S-method is straightforward and can be applied
to atoms without considering its surroundings. This feature
contrasts geometrical analysis based on positional indicators of
the atomic arrangement in the crystal lattice. Thermal
fluctuations make it difficult to distinguish crystalline phases
using geometrical methods but are, on the other hand, essential
for the S-method. Based on the statistical analysis of ordinal
patterns, our approach allows us to distinguish atoms
belonging to different crystalline phases of silicon. This
promising result indicates the possibility of using the S-
method to study the structure and physicochemical properties
of other materials modeled by molecular dynamics.
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