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Abstract
This paper presents a geospatial approach for quantifying street-level on-road emissions of carbon
dioxide (CO2), nitrogen oxides (NOx), and carbon monoxide (CO). By leveraging an existing
open-access database of real-time congestion information derived from floating car data, we tested
three methods to map high-resolution dynamic traffic emissions. To demonstrate the robustness
and accuracy of the methods, we showcased results for summer workdays and winter weekends in
the Helsinki Metropolitan Area (HMA). The three methods employed include (1) a physics-based
relation known as the macroscopic fundamental diagram, (2) a data-driven input-adaptive
generalized linear model (GLM), and (3) their ensemble (ENS). These methods estimated traffic
density with satisfactory accuracy (R2 = 0.60–0.88, sMAPE= 31%–68%). Utilizing
speed-dependent emission factors retrieved from a European database, the results compared
favorably against the downscaled national emission inventory, particularly for CO2 (R2 =
0.70–0.77). Among the three methods, GLM exhibited the best overall performance in the HMA,
while ENS provided a robust upscaling solution. The modeled emissions exhibited dynamic
diurnal and spatial behavior, influenced by different functional road classes, fleet compositions and
congestion patterns. Congestion-induced emissions were calculated to account for up to 10% of
the total vehicular emissions. Furthermore, to anticipate the forthcoming transportation
transformation, we calculated emission changes under scenarios with various penetration rates of
connected and autonomous vehicles (CAVs) using this geospatial approach. The introduction of
CAVs could result in emission reductions of 3%–14% owing to congestion improvements.

1. Introduction

Despite the increasing adoption of alternative fuels
and electric vehicles (EV), road transport emissions
of greenhouse gases (GHGs) and air pollutants (APs)
remain substantial due to growing transport volumes
[1]. In Europe, road transport was responsible for
24% of total carbon dioxide (CO2) emissions in 2020
[1]. Additionally, road transport is a major source
of APs, responsible for 37% of total nitrogen oxides
(NOx) emissions in Europe in 2020 [1], and 11% of
total carbon monoxide (CO) emissions in the UK in
2021 [2]. The emissions of GHGs and APs from road

transport play significant roles in climate and health
impacts [3–5].

Traditionally, quantifying traffic emissions has
relied on inventory-based, bottom-up approaches
in a static manner with top-down generalized lin-
ear model measurements as validation [6]. One
prevalent method involves deriving emissions from
aggregated inventories, such as annual average daily
traffic (AADT) measured by in-situ traffic counters
[7]. However, these inventories are often gener-
alized over long timescales (e.g. annual and sea-
sonal averages) and broad spatial contexts (e.g.
city and municipality levels). While AADT assists
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decision-makers in grasping overall traffic emissions,
it overlooks the spatial heterogeneity and temporal
dynamics of real-world street-level traffic situations,
especially in densely populated cities with complex
road networks [8, 9]. Real-world traffic emissions
do not linearly correlate with AADT but fluctu-
ate with driving speeds and idling time influenced
by traffic congestion [8]. Therefore, understand-
ing actual traffic activity patterns and variations in
local on-road emissions resulting from unexpected
traffic issues, such as congestion [10] or lockdown
measures [11–14], can enhance the reliability of emis-
sion estimates. Insights from traffic reports and real-
world measurements show traffic congestion would
exacerbate vehicular emissions of up to 34% [15] and
4%–55% [16, 17], respectively, compared to optimal
driving conditions in highly congested urban areas.
Consequently, real-time traffic information becomes
a valuable input for refining the spatio-temporal
granularity of on-road emissions, which is essential
for crafting effective local action plans to combat cli-
mate change and improve air quality in cities.

Collection of citywide dynamic traffic informa-
tion is essential for enhancing traffic management
and understanding congestion patterns [18]. In con-
trast to traditional traffic data collected by station-
ary traffic counters, floating car data (FCD), obtained
directly from moving vehicles [19], has emerged as
a crucial traffic data source due to its low cost and
extensive spatial coverage [20]. Multiple navigation
and map companies provide real-time traffic con-
gestion information (as relative driving speeds in
comparison to free-flow speeds) for route optim-
isation to alleviate congestion [18, 21]. However,
these real-time data have received limited attention
in terms of their environmental implications, partic-
ularly regarding congestion-induced emissions [21].

From real-time FCD, the macroscopic funda-
mental diagram (MFD) approach has been utilized
over the whole road network to estimate traffic flow
(q) or traffic density (d), which are critical com-
ponents to quantify traffic emission [22–26], using
driving speed (v) in both congested and unconges-
ted scenarios. The physics-based MFD approach has
been criticized for their limited applicability in urban
settings and are discouraged for estimating emis-
sions for entire cities, but rather recommended for
specific well-defined major roads [27, 28] because
MFDs are independent of the traffic demand [29]. In
other words, applying MFDs to roads with low utility
would lead to high uncertainties. Despite this, some
researchers advocate for developing MFDs by calib-
rating them for the entire city adaptively based on
the traffic volumes using simple traffic flow equations
[30, 31] to deduce traffic density and the resulting
emissions.While some studies have focused onmajor
cities in China using congestion index information
from navigation apps like Gaode Map and Baidu

Navigation, these applications have been limited to
offline use and restricted to specific regions [22–
25]. In a similar vein, [26] employed crowd-sourced
Google traffic congestion maps and MFDs to calcu-
late traffic emissions in Hong Kong using their local
fleet and fuel composition database.

To address the limitations of using MFDs cov-
ering various urban road types, data-driven mod-
els have been introduced. For example, traffic emis-
sions with different congestion levels were estimated
with dynamic data and daily mean car counts in Paris
using a sigmoid regression function [32]. Similarly,
[11, 14] utilized data from Apple and TomTom as
a proxy for vehicle activity and applied linear scal-
ing of city-scale emissions with these activity data-
sets. Some incorporated land use predictors, such as
CORINE land cover classes and local climate zones
(LCZs), into a regression framework [33–35]. This
method has demonstrated promising outcomes in
estimating traffic density and emissions, particularly
in regionswith ample training data [33, 36].However,
in areas with limited training data, such estimations
fromdata-drivenmodelsmay yield high uncertainties
due to their site-specific nature and dependence of
available data [37]. It is important to note that neither
MFDs nor data-driven models with land use predict-
ors are flawless in this regard, as each approach has its
own strengths andweaknesses when estimating traffic
density and emissions.

In this study, we develop a geospatial framework
to estimate on-road emissions based on real-time
traffic congestion information and FCD obtained
from an open-access data provider TomTom. We test
the framework by assessing the influence of real-
world dynamic traffic activities on emissions (GHGs:
CO2, APs: NOx andCO) in theHelsinkiMetropolitan
Area (HMA, figures B1 and B2), Finland using three
methods: (1) a physics-based relation MFD, (2) a
data-driven mixed-effects generalized linear regres-
sionmodel (GLM) with adaptive land use inputs, and
(3) their ensemble model (ENS), on a summer work-
day and winter weekend, representing two distinctive
traffic patterns as demonstration. Using the proposed
framework, we analyze the emission patterns caused
by congestion, and examine the potential environ-
mental impacts of emerging transportation techno-
logies, such as connected and autonomous vehicles
(CAVs). This is the first study of its kind to employ
physics-based and data-driven methods to estimate
dynamic traffic emissions using various sources of
traffic information in the HMA.

2. Material andmethods

Figure 1 illustrates the workflow of the proposed
framework to quantify dynamic on-road traffic
emissions uses real-time FCD, traffic counter data,
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Figure 1.Workflow of the proposed framework. Blue blocks represent input materials, encompassing TomTom traffic floating car
data in real time, traffic counter data, national emission inventory, and supporting materials of urban structure. Methods used are
macroscopic fundamental diagram MFD, statistical method GLM, and their ensemble model ENS, which are indicated in green.
Red blocks are intermediate terms required for the quantification of the final product gridded emission.

national emission inventory, and supporting materi-
als of urban structure as inputs. Physics-based MFD,
data-driven GLM, and their ensemble ENS are used
to calculate traffic density, which is then used as an
input to quantify gridded emissions. Two study peri-
ods, summer workdays and winter weekends, were
selected. The selected periods represent their corres-
ponding distinctive traffic patterns in the city due to
factors including road conditions and social behavior.

2.1. Real-time FCD
We downloaded real-time FCD (driving speed vFCD
and congestion level −→v as relative driving speed) in
raster format [19] provided by TomTom [15] with
verified data quality [38] every hour for the two study
periods. Raw data were originally optimized for elec-
tronic devices and the retrieval resolution was 500
pixels, which is equivalent to around 4 m at the lat-
itude of the HMA. The data were resampled to 250×
250 m2 for comparison.

2.2. Traffic counter data
We collected vehicle counts (qT) and driving speed
(vT) provided by 85 traffic counters in the HMA
from Digitraffic and the City of Helsinki in sum-
mer and winter months (both workdays and week-
ends, figure B1). The traffic data, together with details
of SLs, number of lanes, and proportion of light-
duty vehicles, were aggregated into hourly format
for road characterization and training our data-
driven model (table B1). 86% of the traffic coun-
ters were situated along major roads or secondary
roads while local roads were not well represented.
We also estimated the fleet composition from the
database maintained by the Finnish Transport and
Communications Agency [39, 40] (table B2).

2.3. National emission inventory
In this study, annual exhaust emissions of CO2, NOx,
and CO calculated based on the Finnish Regional
Emission Scenario (FRES) model provided by the
Finnish Environment Institute (Syke) at a spatial res-
olution of 250 × 250 m2 for 2015 and 2030 were
used [41]. The future scenario was based on the offi-
cial Finnish national climate and energy strategy.
The model calculated the emissions on national level
based on fuel consumption by vehicle type (from stat-
istics), vehicle fleet (based on estimates of the ages of
vehicles in use), EURO emission standards, and cor-
responding emission factors (from the global GAINS
model). The emissions were spatially distributed first
to municipalities based on municipal fuel use data,
and from there to grid with road network and traffic
volume data. Detailed specifications of the inventory
can be found in [42]. In this study, the FRES emis-
sionswere downscaled to daily resolution using traffic
temporal profiles provided by Syke (figure B5) and
used as a reference dataset to compare with the 24 h
summed emissions using our proposed framework
(see section 2.8).

2.4. Supporting datasets of urban structure
We used the standardized functional road classes
(FRCs) given by TomTom [15]. The road classific-
ation is based on the character of the service they
are intended to provide, and the number of vehicles
detected through a network of roads. Eight classifica-
tions have been made according to their roads’ func-
tional importance in the HMA (table B3). For each
FRC, we also differentiated them by SLs, resulting in
14 distinct road types.

LCZs (figure B2, table B4), which are classi-
fied based on surface structure and cover [43], have
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been demonstrated to strongly correlate with traffic
emissions [34] and be able to explain the discrepancy
between top-down and bottom-up traffic emission
estimates [40].

2.5. Physics-basedMFDs
MFDs consist of three different relation graphs:
flow–density, speed–flow, and speed–density (q–d–
v) relationship (1), which physically describes the
traffic dynamics under all traffic conditions, includ-
ing congested-flow regimes, free-flow regimes, and
traffic breakpoints. The three graphswere derived and
calibrated by plotting field data and giving these data
a best fit curve for each road type [28]:

d=
q

v
. (1)

We calibrated MFDs hourly using the traffic
counter data collected in the HMA as ground truth
(qT and vT). We employed a quadratic traffic model
developed by Greenshields et al [31] (2), which has
been demonstrated to perform well for free-flow
conditions compared to other fundamental diagram
equations in reality [26]:

qT = k0 · vT ·
(
1− vT

k1

)
, (2)

where coefficients k0 and k1 were updated hourly for
each road type through simple statistical fittings using
least-squares method. We then estimated dynamic
traffic density (d̂) by inputting the speed obtained
through TomTom (vFCD):

d̂= k0 ·
(
1− vFCD

k1

)
. (3)

2.6. Data-driven input-adpativemixed-effects GLM
Using the data fromTomTomand the traffic counters,
we employed a GLM taking input adaptability and
mixed effects of land use predictors into account (4),
which demonstrated better robustness than tradi-
tional statistical models [36, 37]:

g(µ) =− 1

µ
= β0 +

m∑
k=1

βkxk +
n∑

j=1

bj, (4)

where g(µ) is the reciprocal link function where
gamma distribution was chosen for its suitable
domain for response variable d̂, for which we used
the traffic data from the vehicle counters dT as ground
truth. β0 denotes the fixed intercept of the equation.
The second term of the equation represents the total
contribution by the fixed-effects variables x (−→v and
vFCD) with a slope β. SL was initially considered but
excluded due to its collinearity with other traffic-
related inputs. The categorical inputs for random
effects (hour of day, FRC, and LCZ) are indicated by
b as intercepts of the corresponding hierarchical sub-
groups. The number of adaptive variables used (m

and n) are dynamic to provide adaptability to address
data scarcity issues as traffic counters do not cover all
LCZs and road types. Standard procedures including
a train-test split of 80:20 and a five-fold cross valida-
tion were followed.

2.7. Ensemble method
This ensemble ENS adaptively chose the physics-
based MFD for major roads, and the data-driven
GLM for non-major roads. It circumvents the limita-
tions the two individual methods have, as suggested
in [44]: MFD works better in describing the traffic
dynamics of major roads [27]; GLM is site-specific
due to the scarce amounts of traffic counters in the
city.

2.8. Quantification of gridded emissions
Two commonly used emissionmodels have been con-
sidered: HBEFA (the Handbook Emission Factors for
Road Transport, [45]) and COPERT (the Computer
Programme to calculate Emissions from Road
Transport, [46]), representing ‘traffic situation’ and
‘average-speed’ model types, respectively. A compar-
ison in a European city [47] has found that COPERT
was able to provide more realistic emission estimates
(lower errors despite slightly lower correlation coeffi-
cients), although the emission factors of HBEFA have
been presumably considered to be more representat-
ive of real-world traffic emissions.

We employed Tier 3 formulas documented in
COPERT version 5.7.1 [46] to compute traffic emis-
sions by inputting dynamic traffic density. This
includes the quantification of hot emissions (EHOT)
and cold emissions (ECOLD). In general, EHOT were
calculated from hot emission factor (eHOT), which
is an integral function of mean speed distribution
curves fk(v) over the emission curves e(v) for each
emittant of interest i and vehicle class k in our
modeled fleet composition (figure B3):

EHOT;i,k = d̂k × vFCD;k ×A× eHOT;i,k, (5)

eHOT; i,k=

ˆ
[e(v)× fk (v)]dv. (6)

ECOLD of NOx and CO were calculated and added
to their total emissions using a cold/hot emission

quotient ( e
COLD

eHOT , assigned to be>1):

ECOLD;i,k = βTEMP;i,k × d̂k

× vFCD;k ×A× eHOT;i,k ×
(
eCOLD

eHOT
|i,k −1

)
,

(7)

where βTEMP parameter depends upon monthly
ambient temperature, and the pattern of vehicle use,
i.e. the average trip length (17 km per trip estim-
ated for Finland [46]). In (5) and (7), d̂ and vFCD are,
respectively, the dynamic traffic density estimated by
our three methods and the driving speed obtained
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from FCD in grid area A, an added term to the ori-
ginal Tier 3 formulas to cope with this geospatial
problem. The gridded emission products were then
aggregated to our two temporal cases for evaluation
against the downscaled emission inventory FRES as
described in section 2.3.

2.9. Scenario settings for CAV penetration
Previous studies conducted in Dublin, Ireland, with
comparable population size and road networks as
the HMA [48, 49] revealed the introduction of CAVs
would result in a change of driving behavior, includ-
ing driving speeds and the overall congestion levels,
compared to traditional human-driving vehicles. We
applied the changes in congestion levels from three
types of road network (major road category, minor
road category, and downtown region) to our frame-
work at CAVpenetration rates of 25%, 50%, 75%, and
100% (table B5). The trend of electric vehicle usage
was not taken into account.

3. Results and discussion

3.1. Evaluation of driving speed and traffic density
Although the traffic dynamics of the HMA have
strong temporal patterns in terms of theirMFDs, con-
gestion level, and traffic volumes (figures B4 and B5),
the driving speeds measured by traffic counters and
obtained through FCD have high correlation and low
errors in both summer workday and winter weekend
cases (figure B6, table B6, r = 0.74–0.77, sMAPE =
11%–12%). On the contrary, the traffic density cal-
culated using measurements by traffic counters has
a varying correlation with that calculated using the
three methods (figure B7, R2 = 0.60–0.88, sMAPE
= 31%–68%). This result goes in line with previ-
ous studies which demonstrated a direct relationship
betweenTomTomcongestion levels and the local daily
vehicle counts [14]. When combining the two mobil-
ity metrics, our data collected for the HMAhadmuch
higher accuracy in driving speeds but slightly better
performance in traffic density than [12] who found
the deviations between novel mobility data and gov-
ernmental traffic flow data larger than 60%.

The moderate correlation for the hourly calib-
rated MFD is attributed to the fact that it provides
a generalized q–d–v relationship only based on 14
road types. It assumes that traffic density has the
same relationship with driving speed for the same
road type, which might not be the case in reality
(figure B4, table B7). For the data-driven GLM, the
high correlation (table B8, R2 = 0.84–0.88) is attrib-
uted to the specialization of the training data. The
scope of the comparison has to be limited to the loc-
ations where traffic counters were under operation
in the studied periods. Besides, the input-adaptive
nature and the inclusion of mixed-effects predictors
also help boost the model adaptability and accuracy

[37]. Despite ENS results in a slightly lower R2 (0.62–
0.72) compared to GLM, it could complement the
individual methods MFD and GLM, creating synergy
of both physical meanings of traffic flow and stat-
istical evidence reflected from real-world data. For
example, ENS manages to improve the estimation
at local roads (better distributed along the 1:1 line
in figure B7) compared to single benchmark model
MFD. This agrees with [44] where ENSs comprising
fundamental diagrams and statistical algorithms have
shown significant model flexibility to tackle issues of
high prediction errors and the lack of physical inter-
pretability arising respectively in the single bench-
mark models.

3.2. Evaluation of the gridded traffic emission
product
Under our framework with speed-dependent emis-
sion factors using a projected fleet composition
(figure B3), the total CO2, NOx, and CO emissions
in the HMA are, respectively, 13 300, 36.36, and
17.28 t on a summer workday, and 7810, 15.44, and
9.40 t on a winter weekend. Diurnally, the emission
patterns roughly follow the typical traffic volume,
with bimodal peaks on workdays and a single after-
noon peak on weekends. In both periods, the emis-
sions partitioned by different FRCs roughly corres-
pond to their proportion in the road network in the
HMA [9] (figure B8). Besides, fleet composition has
a major effect, with passenger cars dominating the
GHG emissions and heavy-duty vehicles being the
primary source of the AP emissions [26] (figure B9).

The two CO2 emission products (national emis-
sion inventory FRES and our framework using the
three proposed methods) show moderate correla-
tion and discrepancies with low variability across the
HMA in both studied periods (figure B10, table B6,
R2 = 0.70–0.77, sMAPE = 35%–36%) regardless
of the method used. Besides, large discrepancies of
up to 50% are found when NOx emission fluxes
exceed 4 × 10−6 g m−2 s−1, resulting in low over-
all R2 values (figure B11, R2 = 0.08–0.18). Although
all three methods demonstrate moderate R2 values
(0.53–0.66) for CO, they exhibit very high sMAPE
values (70%–79%), indicating the largest discrepan-
cies among the three emittants (figure B12). These
discrepancies are also observed spatially, for example
in CO2 emission maps (figures 2 and B13). While
both national emission inventory FRES (a reference
dataset) and calculated CO2 emissionmap using ENS
show emission hotspots mostly located along high-
ways in the HMA, their discrepancies are scattered
in the studied region regardless of FRCs including
minor roads [9, 35] for both workday and weekend
cases (figure B14). Besides, at a street canyon with
close proximity of traffic in the HMA, we found that
our emission products match some of the rush-hour
peaks observed in the concentrations profiles meas-
ured with reference instruments (figure B15).
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Figure 2. Color-coded emission map (in kg per grid) of daily exhaust CO2 on a summer workday. (a) Illustrates the spatial
distribution of daily emissions using the national emission inventory FRES model (after adjustment from annual to daily
emission). (b) Illustrates the one using our proposed ensemble ENS model based on real-time hourly data (summation of hourly
profile to one day). N = 3769.

The observed discrepancies are common for dif-
ferent emission products [50, 51]. In our case, the
discrepancies between FRES and this framework are
likely due to the adoption of different emission cal-
culation methods and inputs, including the use of
COPERT’s Tier 3 emission formulas [47], and the
projection of fleet composition [52], respectively.
Our framework calculates dynamic emissions for
the current year while the national inventory FRES
model represents annual emissions in retrospect-
ive years, which might not have accounted for the
advancements in vehicle emission control techno-
logy. Although comparing these datasets may not be
perfect due to the difference in the target years and
temporal resolutions, FRES remains the best avail-
able inventory for spatial evaluation purposes in the
HMA. Similar issues can also be found in other parts
of Europe, where updated, detailed national emis-
sion inventories are not available, let alone in less
developed regions worldwide. Despite these chal-
lenges, the physics-based methodMFD demonstrates
promising robustness in estimating traffic emissions.
It is worth noting that although GLM excels in
estimating traffic density mentioned in the previous
section, it gives high discrepancies in traffic emis-
sion, in general, compared to FRES. The ensemble
method ENS, however, shows performance consist-
ency in both traffic density and gridded emission
product with all evaluation metrics combined across
both study periods.

3.3. Impact of congestion
To investigate the additional emission induced by
congestion, we found that traffic congestion occur-
rence was distributed mostly in the downtown region
in the HMA (figure B16), dominated by residential
and commercial low-rise buildings with local roads,

where the frequency of inhabitants’ movement is the
most intensive [53]. Local and other minor roads are
designed for relatively small traffic flow with more
curves and narrower lanes, which might not be able
to copewith unforeseen incidents, for example, traffic
accidents and traffic lightmalfunctioning. Occasional
congestion instances with smaller intensity are also
recorded along highways with more and wider
lanes because of their high traffic flow in terms of
volume [39].

The daily emissions of CO2, NOx, and CO
induced by congestion (emission difference between
real-world driving schedule and ideal free-flow driv-
ing scenario) were, respectively, 35 900, 203, and
43.6 kg on a summer workday and 18 700, 40.4,
and 24.5 kg on a winter weekend, which consti-
tute up to 5%–10% of the total on-road emis-
sions in the HMA (figures 3(a), (b) and B17). The
largest emission enhancements were noticed during
workday peak hours (7–8 a.m. and 3–4 p.m.). The
congestion-induced emissions on the winter week-
end were smoothly distributed along the day with
a plateau peak between 12–5 p.m.. The similarity
of the diurnal cycles of congestion instances (lines)
and congestion-induced emissions (bars) agrees with
[10] who suggested that congestion plays a role in
traffic emission enhancement. This reinforces the
need for real-time congestion information to capture
the traffic dynamics in an urban road network.

3.4. Scenario analysis on CAV penetration
During peak hours on summer workdays, when con-
gestion is the most severe, the introduction of 25%
CAVs would reduce the emission of NOx by 3.2%
(figure 4). On the contrary, it could increase the emis-
sions of CO2 and CO by 3.4% and 0.3%, respectively.
This finding aligns with previous literature that low
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Figure 3. Hourly congestion-induced emissions as bars partitioned color-coded by functional road classes in the Helsinki
Metropolitan Area (HMA). (a) Illustrates the situation on a summer workday while (b) displays the winter weekend case. The
solid lines indicate the contribution of congestion to total on-road emissions.

Figure 4. Emission reduction (in %, negative values represents emission increase as compared to no introduction of CAVs) under
scenarios of different penetration rates (25%, 50%, 75%, and 100%) of CAVs to the road network during peak hours in the
Helsinki Metropolitan Area (HMA). Three emittant species (blue: CO2, green: NOx, brown: CO) were illustrated with error
ribbons representing their interquatile ranges (20th–80th percentile).
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penetration levels of CAVs could increase emissions
due to inefficient behavior of non-connected human-
driving vehicles [54] and/or escalation of driving
acceleration of CAVs [55]. The emission reduction
increases with penetration rates of CAVs, as suppor-
ted by a review paper of the environmental impacts,
including exhaust emissions, on CAVs [56], owing
to congestion improvements [55]. Through interpol-
ation between the set penetration rates, the traffic
emissions of CO and CO2 are expected to be off-
set only when more than 28% and 70% of CAVs are
introduced to the city road network. In the case of
full substitution of human-driving vehicles, emission
reductions would rise to 3% for CO2, 14% for NOx,
and 9% for CO on average.

3.5. Limitations and applications
A main limitation of our framework is the lack of
ground truth data of high spatio-temporal resolu-
tion to evaluate the three models. While the driving
speed from TomTom and the traffic density calcu-
lated using the three methods are compared with in-
situ traffic counter data, the uneven distribution of
these counters undermines the representativeness of
the evaluation across various road types in the city.
The emissions obtained from our proposed method
are additionally assessed using the national emission
inventory FRES, which is not designed for evaluat-
ing dynamic traffic emissions of high temporal res-
olution with the emerging transportation transform-
ation. Nevertheless, it remains the most reliable ref-
erence dataset available for this purpose within the
region of concern.

Another limitation is the heavy reliance of the
processed FCD provided by the navigation company.
Despite the open-access data collected are somewhat
documented, the algorithms essentially operate as
black boxes, leaving uncertainties about how conges-
tion information is precisely deduced. Consequently,
if any discrepancies arise with reality, researchers are
left with no option but to trust the data provider.
Moreover, the availability of openly accessible data
is contingent upon the company’s policies, which
are not guaranteed to remain consistent. Currently,
alternatives of similar traffic products include, but not
limited to, Google Maps and MapBox [57].

Furthermore, there are limitations in estimating
fleet composition and the corresponding emission
factors. Detailed information on fleet distribution at
high temporal resolution has been lacking. In this
study, we considered the proportion of light-duty and
heavy-duty vehicles along roads with traffic counter
installations. However, projecting the exact fleet com-
position requires making bold assumptions. Neither
did we account for upstream emissions, which occur
during the production, processing, anddelivery stages
and depend on the types of fuel or energy consumed.

Despite the limitations, the framework for traffic
density and emission estimation has demonstrated
strong performance. As long as local traffic meas-
urements are available, the framework can be calib-
rated for the computation of dynamic traffic emis-
sions by inputting real-time traffic raster data from
TomTom and urban structure datasets (standard-
ized FRCs and LCZs), which are readily available
across a wide spatial coverage. Besides, this frame-
work also unlocks possibilities for conducting scen-
ario analyses on social anomalies, such as strikes or
travel restrictions, which cannot be predicted using
typical aggregated bottom-up approaches, assuming
consistent traffic patterns for workdays and week-
ends. Moreover, this framework enables simple scen-
ario analysis for varying congestion levels as a func-
tion of the penetration of emerging transportation
transformations with different driving behavior as in
this study.

4. Conclusion

This study presents a geospatial framework for
estimating dynamic on-road traffic emissions by
leveraging open-access real-time FCD. By employ-
ing an ensemble of physics-based and data-driven
algorithms ENS, the method demonstrates robust-
ness and accuracy in mapping high-resolution traffic
density and on-road emissions (particularly for CO2,
R2 = 0.70–0.77), even in locations lacking in-situ
measurements. Through comparisons with national
emission inventories of exhaust emittants, the study
sheds light on the performance variations among dif-
ferent emission models due to the difference in road
types and the adoption of different emission calcula-
tion methods and inputs. The calibrated framework
provides finer spatio-temporal resolution data to sup-
port existing urban climate and air quality models
for tackling the planetary goals of carbon neutral-
ity and pollution control. It also facilitates scenario
analyses for varying congestion levels, essential for
understanding the impacts of emerging transporta-
tion transformations, which can be used to inform
urban planning strategies aimed at mitigating traffic
emissions. Future research could incorporate more
case cities of traffic patterns with varying similarity
to investigate the framework scalability by evaluating
the resulting traffic density and emissions with vari-
ous bottom-up and top-down data sources.
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Appendix A. Supplementary text

This supporting information document includes the
description of the study area, together with the dis-
tribution of LCZs, and road network characteriz-
ation using measurements by traffic counters and
national emission inventory using FRES model. We
provide an in-depth discussion of traditional MFDs
for road characterization. We describe the evalu-
ation metrics used for comparing various mod-
els. Additionally, extended results, including eval-
uation of driving speed and traffic density with
traffic counter data, evaluation of gridded emission
with national emission inventory of greenhouse gases
(GHGs: CO2) and air pollutants (APs: NOx and
CO), and description of congestion variation, are also
elaborated.

A.1. Study area
Helsinki, together with the neighboring municipalit-
ies Espoo, Vantaa, and Kauniainen, forms the HMA.
TheHMA is located at the coast of the Gulf of Finland
with a humid continental climate with cool sum-
mers and cold winters. The HMA covers an area of
213.8 km2 with a population of over 1.5 million.
In this study, we used a bounding box within the

latitudes of 60◦8 ′2′′ N and 60◦18 ′ N and the longit-
udes of 24◦48 ′ E and 25◦12 ′ E in WGS 84 reference
ellipsoid system. This bounding box covers part of the
HMA (figures B1 and B2).

A.2. LCZs
In LCZ classification, urban areas are divided into
10 built classes (LCZ 1–10) and seven land cover
classes (LCZ A–G) based on the surface properties
(e.g. building and tree height & density, pervious vs.
impervious). The classification (table B4), is subjec-
ted to variable or ephemeral land cover properties
that change significantly with synoptic weather pat-
terns, agricultural practices, and/or seasonal cycles.
Each zone is local in scale, meaning it represents hori-
zontal distances of hundreds of meters to several kilo-
meters. The classification was generated worldwide
by [43] using random forest techniques. We extrac-
ted the data with the bounding box of the HMA at
a resolution of 250 × 250 m2. Inside the bounding
box, 14 LCZs are found (figure B2). Built LCZs cover
60% of the bounding box. The most commonly built
LCZ is LCZ 5 (openmidrise, 24%), followed by LCZ 6
(open lowrise, 15%) and LCZ 8 (large lowrise, 14%).
The most commonly found land cover LCZ is LCZ
A (dense trees), which covers 24% of the total land
area, followed by LCZ D (low plants, 7%) and LCZ B
(scattered trees, 6%). The spatial distribution of LCZ
is shown in figure B2.

A.3. Road networks
The HMA has a well-developed and well-maintained
road network covering a spectrum of road types from
four-lane highways to narrow alleys with one-lane
traffic. The roadnetwork is dominated by seven access
roads leading to the city center of Helsinki and these
access roads are connected by Ring I (Kehä I). The
fleet composition the HMA has been estimated as
some of the most found car types operated: passenger
cars using petrol (63.0%), passenger cars using diesel
fuels (23.5%), light-duty vans using diesel (9.8%),
heavy-duty trucks using diesel (2.7%), and light-duty
vans and heavy-duty trucks using petrol, both less
than 1%, from the database given by [39]. The share
of other vehicle types including fully EV, plug-in
hybrid electric vehicles, and natural gas vehicles have
been on the rise since the last decade; however, these
new energy vehicles still account for a minor share in
the fleet composition in the HMA. More details on
the selected car types in this study can be found in
table B2.

The road network in the HMA was classi-
fied using the Functional Road Class (FRC) frame-
work developed by TomTom [15]. Eight classes can
be found inside our bounding box in the HMA
(figure B1): major roads (10%), other major roads
(7%), secondary roads (6%), local connecting roads
(10%), local roads with high importance (13%), local
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roads (16%), local roads with low importance (10%)
and other roads (28%). The proportion of light-
duty vehicles on the specific FRC is also calculated,
which ranges from 0.89 to 0.97. This information is
important to estimate the local fleet composition for
later stage in the framework. Roads are grouped into
classes according to the character of the service they
are intended to provide. FRC defines the nature of
this channeling process by defining the role that any
particular road or street should play in serving the
flow of trips through a road network. The heavy travel
movements are directly served bymajor channels, and
the lesser trips are channeled into somewhat indirect
paths. FRC is designed to categorize segments based
on their functional importancewithin the transporta-
tion network. More details of the classes can be found
in table B3. The use of FRC instead of local road clas-
sification is that TomTom has classified roads using
this standardized framework in their operating coun-
tries. The worldwide operation covers most parts of
Europe, America, and Oceania, and extends to some
Asian and African countries. This extensive coverage
of the road class standardization could help improve
the scalability of the proposed model.

FRCs were further categorized by their SLs. They
form a total of 14 road types in total. All road types
have their corresponding parameterization of free-
flow speed vm, critical speed vc, and capacity volume
qc, which are derived by traditional MFDs (see more
in the following section) using the corresponding
traffic counter data.

A.4. Road characterization usingMFDs
We adopted [28]’s method to calibrate traditional
MFDs based on traffic flow data. Inspired by the spe-
cial properties of flow–speed (q–v) diagram as well as
the insights from previous studies, we fit pre-defined
distributions to traffic flow q and driving speed v.
Speed and volume distributions of a road encode
important information about the shape of q–v dia-
gram, which makes it possible to infer MFD-related
parameters, for example, the critical volume (qc), the
critical speed (vc) and the free-flow speed (vm). While
the free-flow speed of a road r can be easily estim-
ated as vm =max

{
v ∈ Vrfitted in best dist.,SLr

}
, the

estimation of critical speed vc is less straightfor-
ward. We also used K-means to cluster the speed
data into classes of free-flow regime Cfree and con-
gested flow regime Ccongest . Finally, the critical speed
vc is estimated as vc = 0.5× (max

{
v ∈ Ccongest

}
+

min
{
v ∈ Cfree

}
). The critical volume qc was estim-

ated as the 98th percentile of the fitted distribution
Qr for each road.

The exact traffic volume q and its correspond-
ing traffic density d are estimated using the q–v dia-
gram by introducing a road utilization function λ,

which approximates on what level the road is utiliz-
ing its total volume capacity, and explicitly encodes
the shape of the q–v diagram thereby providing extra
information for volume estimation (A.1)

q≈ qc ·λ(v) =

{
qc ·

√
v
vc

, 0< v⩽ vc

qc ·max
{ vm−v

vm−vc
,0
}

, vc < v⩽ vm.

(A.1)

However, due to the incapability to capture
the hourly dynamics of traffic volume and dens-
ity, this traditional MFD has not been implemented
into our proposed geospatial framework. Compared
to the dynamic MFDs applied in this study and
Hong Kong [26] where they investigated the rela-
tionships between hourly-averaged single-lane traffic
volume and speed across different road types using
Greenshield’s equation [31], traditional MFDs (black
line)might fail to capture the temporal variability (for
example 8 a.m. and 4 p.m. in figure B4) of the traffic
activity on certain roads. The two MFDs only share
some similar patterns for other major roads with SL
of 60 kph. The results using traditional MFDs, on the
other hand, are very important to characterize the dif-
ferent road types with various FRCs and SLs in the
HMA. The deduced traffic variables (vm, vc, and qc)
are presented in table B1. Together with the traffic
profiles based on congestion index inferred by FCD
and in-situ traffic counter data figure B5, an over-
view of traffic conditions can be portrayed. The FCD
we collected from TomTom is based on four sources:
data from global system for mobile communications
networks, real-time GPS data from users of TomTom
navigation devices, third-party data such as govern-
ment traffic control centers, and historic information
collected from navigation devices [15].

According to the measurements by traffic coun-
ters operated in the HMA, we analyzed the road
characteristics of different FRCs and SLs based on
their vehicle counts and driving speed in the sum-
merworkdays andwinter weekends. The overall char-
acteristics behave in such a way that vm, vc, and
qc in all measured roads are higher in the summer
than winter. This is in alignment with previous stud-
ies which suggested that road condition is a critical
determinant governing the shape of MFD (e.g. [27,
28]). Driving conditions can become difficult under
adverse weather conditions, such as heavy rain, fog,
ice, snow, or slush [59], especially in the wintertime
in high-latitude cities. This could lead to consequent
anticipatory driving, reduced speed, increased follow-
ing distance and extra vigilance, which in turn alter
the inter-relationship among driving speed, traffic
flow, and traffic density.

However, traffic counters in the HMA have been
restricted mostly along major roads, other major
roads, secondary roads, and local connecting roads
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where elevated vehicle volumes have been observed.
In addition to the limited data, MFD has been argued
to be valid only in major roads as a broad category
because any travel timewould be possible for any level
of demand [27]. Therefore, this traditional method
might not be applicable to smaller roads that consti-
tute more than half of the total road network in the
HMA. This reinforces the idea of developing a frame-
work to mitigate the high spatial and temporal vari-
ation in traffic patterns by selecting dynamic MFDs
(using traffic flow equations as the physics-based
model) for major roads and another data-driven
model, such asGLMwith land use predictors for non-
major roads.

A.5. Urban air quality and greenhouse gas
measurements
In addition to the FRES model, we collected hourly
concentration measurements of our target emit-
tants (CO2 in ppm, NOx in µg m−3, and CO in
µgm−3) from Mäkelänkatu supersite (60◦11 ′ N,
24◦57 ′ E, 24 m a.s.l.), operated by the Helsinki
Region Environmental Services Authority (HSY) for
the summer workday and winter weekend cases. The
supersite is situated at 3 km from the city center at
a street canyon in the immediate vicinity to one of
the main roads leading to downtown Helsinki, with
six lanes and two tramlines. The annual mean traffic
volume in 2018 per workday was 28 100 vehicles, 11%
of which were recorded as the heavy-duty vehicles.
The traffic loads are especially high during rush hours
at 8 a.m. and 5 p.m.. The street canyon of 42 m width
is surrounded by rows of 17 m high buildings, which
weaken the dispersion process of the direct traffic
emissions. All the inlets for the measuring devices are
positioned approximately at a height of 4 m from the
ground level [40].

A.6. Evaluationmetrics
The correlation coefficient (r) is a statistical meas-
ure indicating the strength and direction of a rela-
tionship (A.2). It ranges from –1 to 1, with positive
values denoting a positive correlation and negative
values representing a negative correlation. A value of
0 implies no correlation at all. In practical applica-
tions, r is utilized to assess correlations between dif-
ferent parameters from two separate data sources.
For example, it can be employed to compare driving
speeds obtained from TomTom with those recorded
by traffic counters.

The coefficient of determination, denoted by R2,
measures the goodness of fit of a model (A.3). R2 is
often interpreted as the proportion of response vari-
ation ‘explained’ by the regressors in themodel. Thus,
R2 = 1 indicates that the fittedmodel explains all vari-
ability, while R2 = 0 indicates no ‘linear’ relationship.
R2 was used when we intended to show how well our

proposed models explain the variability of the traffic
density, and also the corresponding gridded emission
in the HMA.

Symmetric mean absolute percentage error
(sMAPE) is an accuracy measure based on percent-
age (or relative) errors (A.4). sMAPE was used when
the ground truth is unknown. As neither the national
emission inventory nor the real-time emission estim-
ated byTomTom is the ground truth, sMAPE is, there-
fore, applied to avoid leaning towards either one. The
percentage error ranges between 0% and 100%. Both
over- and under-estimates have the same positive
sign

r=

∑
(xi − x)(yi − y)√∑
(xi − x)2

∑
(yi − y)2

, (A.2)

where xi and yi are the two parameters of interest at
data point i, respectively, and x and y the correspond-
ing mean of the datasets

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − y)2
, (A.3)

where yi and ŷi are the output parameter and the
estimated output parameter at data point i, respect-
ively

sMAPE=
100

n

∑ |ŷi − xi|
|ŷi|+ |xi|

, (A.4)

where xi and ŷi are the input parameter and
the estimated output parameter at data point i,
respectively. n is the total number of data points.

A.7. Extended results for driving speed and traffic
density evaluation
Scatter plots of the driving speed of TomTom raster
against traffic counters are plotted for summer work-
days and winter weekends in figure B6. The correl-
ations in both cases are high (r = 0.74–0.77) with
around 11% of sMAPE. This indicates that the hourly
raster data retrieved fromTomTomhas a high consist-
ency with the in-situ measurements collected in cer-
tain road types in the HMA. The small discrepancy
might be due to the difference in temporal sampling
method [38]. The traffic counter data were averaged
hourly while data from TomTom were retrieved once
per hour representing traffic conditions at that very
moment. Driving speed in the winter case is slower
due to adverse weather conditions leading to anticip-
atory driving [59].

Furthermore, we used three methods to quantify
traffic density. Table B7 illustrates the coefficients of
k0 and k1 using the dynamic MFD (Greenshield’s
equation, [31]) at some hours (8 a.m. and 4 p.m.
to represent rush hours) along different road types
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(varying FRCs and SL). The flow–density–speed (q–
d–v) relationship of other major roads with SL of 60
kph using this dynamicMFD is visualized in figure B4
as an example. The individual R2 at certain hours
along certain road types vary a lot (R2 = 0.05–0.94).
For caseswith highR2, for example, othermajor roads
with SLs of 60 kph, the reasons could be due to the
traffic dynamics during that hour are towards its full
road capacity, so that the q–d–v relationship of that
road type can be well portrayed. On the contrary, the
R2 in other cases would be due to the lack of road util-
ization. If there are a few cars utilizing the road, there
may exist many possibilities that govern the relation-
ship of q–d–v in that road segment. Combining all
individual road types, the R2 would be fairly good
between 0.60–0.69, which is described in the main
text.

For the second method GLM, we explained a bit
further the choice of adaptive inputs in table B8. As
driving speed and congestion level (fixed effect) and
hour (random effect) are always available, the dif-
ference between the four sub-models is whether or
not to include the other two random effects FRCs
and/or LCZs. Apparently, if we consider all four input
variables, the sub-model performance would be the
best (R2 = 0.82–0.86, sMAPE = 33%–43%) as com-
pared to sub-models with fewer input variables (R2 =
0.73–0.85, sMAPE = 36%–55%). The overall model,
surprisingly, shows even better performance (R2 =
0.84–0.88, sMAPE = 33%–43%) in both studied
times. This implies that the input-adaptive frame-
work indeed helps boost the flexibility and accuracy
as shown in previous studies (e.g. [37]). The use of
GLM is to employ a simple model with widely access-
ible data that can be effectively scaled to other test
locations.

To evaluate the traffic density calculated using the
proposed three methods, we present scatter plots of
calculated versus measured traffic density from the
traffic counters in the HMA (figure B7). Comparing
the three methods, GLM appears to have the best per-
formance while MFD fails to estimate traffic density
in local roads. ENS, as the ensemble of both, ranks
between them. This noticeable difference is attrib-
uted to the difference in model architecture. As GLM
is entirely a data-driven model, it would work relat-
ively well if we test it at the same site where we col-
lect our training data. The hourly calibratedMFD fol-
lows some physical equations that might not work
perfectly in every condition.

A.8. Extended results for emission evaluation
Before quantifying the gridded emission, one import-
ant component is the speed-dependent emission
factor. We visualize the emission factor curves for
the six selected vehicle types, and the total fleet
(figure B3). While speed-dependent emission factor

equations for individual vehicle class have been estab-
lished with real-world measurements, the overall
emission factor characteristics depend on the unique
fleet composition of each city. The curves describing
the relationship between emission factors and driv-
ing speed, to some extent, have a concave shape for all
three emittant species. At driving speeds below 40 kph
and above 100 kph, the emission factors are higher
than driving at medium speeds. For CO, the elev-
ated emission factors even show exponential incre-
ments after 80 kph. The non-linearity properties of
both the fundamental diagrams and emission factors
for various emittant species imply that the relation-
ships among traffic congestion, driving speed, traffic
volume, traffic density, and the resulting emission are
more than a one-to-one straightforward function.

Calculated emissions were plotted against the
national emission inventory FRES in raster format.
Each point represents a grid of 250 × 250 m2 inside
the bounding box. Boxplots showing their binned
median and interquatiles can be found in figure B10
for CO2, figure B11 for NOx and figure B12 for
CO. The calculated CO2 has an overall estimation
for the inventory as shown by their R2s. The total
CO2, NOx, and CO emissions using ENS in the HMA
are, respectively, 1330, 3.65, and 1.74 t on a sum-
mer workday and 747, 1.42, and 0.89 t on a winter
weekend. The variances for the boxes in figure B10
within the range of small CO2 values (e.g. below 1 ×
10−3 gm−2 s−1) are much smaller than that of lar-
ger values. MFD apparently outperforms the other
two methods (R2 = 0.76–0.77, sMAPE = 35%). The
case for NOx is very different from CO2 in such a way
that the whole framework fails to give a good estim-
ate for large inventory emissions regardless of which
method is used. The correlation for small emissions
appears to be good until emissions reach 4 × 10−6

gm−2 s−1 where the proposed models introduce lar-
ger discrepancies (figure B11). This also leads to a low
overall R2 (R2 = 0.08–0.18). The overall errors are as
high as 50%. CO, interestingly, shows another distinct
pattern from the other two emittants (figure B12).
The three models all show moderate R2 (0.53–0.66),
but very high sMAPE (70%–79%). This high sMAPE
representing a large discrepancy is plausibly owing
to the technological advancement of emission con-
trol for vehicles. Considering the data used for pro-
jecting the national emission inventory was collected
for the year 2015, the rapid change in transportation
transformation has been significant. Meanwhile, the
designed framework uses the most up-to-date emis-
sion factors taking into account of the new models of
vehicles. The comparison of these two datasets might
not be perfect as they were not implemented using the
same baseline; however, the national emission invent-
ory is the best available material so far for evalu-
ation purpose. The insufficiency of reference datasets
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is not an individual issue. Updated national emission
inventory is not available in every European country,
let alone in less developed regions in the world.

As for their spatial evaluation, figure B13 shows
two CO2 emission maps for winter weekends: one
for the FRES model and another is the calculated
emissionusing our proposed framework ENS. Similar
to the one presented in the main text for summer
workdays, the emission hotspots are located simil-
arly, mostly along main roads. Figure B14 shows
the spatial discrepancies of the emissions modeled
by the proposed framework versus the FRES model
(after adjustment from annual to daily emission). The
overall discrepancies are not large, but considerable
grid variances can be observed for CO2 emissions, in
alignment with the boxplots in figure B10.

In figure B15, we also compared our emission
products calculated using ENS (orange dotted lines)
with hourly concentration measurements (blue solid
lines) of CO2, NOx, and CO at a traffic site in a
street canyon in the HMA for both temporal cases.
During summer workdays, the morning peaks of
CO2 and NOx traffic emissions match the concen-
trations measured at the traffic site. However, due to
the progression of the meteorological conditions and
enhanced mixing throughout the day, the measured
concentrations failed to match the afternoon peaks
of the corresponding emissions calculated using our
model. For CO, due to external factors, such as more
diverse emission sources, very low ambient concen-
trations, and the meteorological conditions men-
tioned above, no diurnal patterns could be observed
for the measured concentrations. For winter week-
ends, as the emissions of all the three emittants were
even lower, it was more likely that the abovemen-
tioned external factors suppressed the development of
a noticeable diurnal cycle for concentrations.

A.9. Extended results for congestion variation
To investigate to additional emission induced by
congestion, we first illustrate the congestion hot-
spots in the HMA in figure B16 for the two studied
periods (summer workdays and winter weekends).
Apparently, congestion instances are more intense
on summer workdays, especially in the south of the
HMA where commercial activities actively take place
intensive [53]. Highways do not show frequent con-
gestion despite they usually have large traffic flow
because they have been designed to support large
traffic flux by buildingmore lanes. Therefore the road
capacity for highways is high enough to keep vehicles
moving at a (near-)optimal speed. Therefore, most of
the congestion-induced emissions do not take place
along major roads, but in smaller roads, such as local
roads and other roads in (figure B8). This situation
can be observed for all emittants, especially NOx,
for which major roads constitute a trivial amount of
emissions induced by congestion. Similar partition-
ing was carried out for fleet composition (figure B9).
Passenger cars (using both diesel and petrol) account
for most of the congestion-induced emissions of CO2

andCO, due to the substantial amounts of vehicles. As
for NOx, heavy-duty trucks fueled with petrol appar-
ently become more significant in contributing to the
total emission. Despite the relatively small quantity of
heavy-duty vehicles, they account for more than 80%
of NOx emission.

The daily emissions (CO2, NOx and CO) induced
by congestion (emission difference between real-
world driving schedule and ideal free-flow driving
scenario) are, respectively, 35 900, 203, and 43.6 kg
on a summer workday and 18 700, 40.4, and 24.5
kg on a winter weekend, which constitute up to
10% of the total on-road emission in the HMA
(figure B17).
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Appendix B. List of supplementary figures and tables

Figure B1. Road network in the Helsinki Metropolitan Area (HMA) colored by road classes using Functional Road Class (FRC).
Black markers represent the locations of the traffic counters. Grey region indicates a downtown bounding box for the scenario
setting.

Figure B2. Color-coded local climate zone (LCZ) distribution in the Helsinki Metropolitan Area (HMA).
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Figure B3. Speed-dependent emission factors (in g km−1) for the six selected vehicle types (colored lines) and the fleet
composition (black bold line) in the Helsinki Metropolitan Area (HMA). The first row represents the case for CO2, followed by
NOx and CO in rows 2 and 3, respectively. For vehicles types, PC, LCV, and HDT stand for passenger cars, light commercial
vehicles, and heavy-duty trucks, respectively. N = 3769. All p-values are below 0.05.
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Figure B4. Comparison of flow–density–speed (q–d–v) relationship using traditional MFDs [28] against dynamic MFDs ([31], at
8 a.m. and 4 p.m. as examples) for other major roads with speed limit of 60 kph. The relationships of q–v and v–d are shown in
row 1 and 2, respectively. The first column illustrates the interrelationship for the summer workday case while the second column
represents the winter weekend. The MFD has been fitted using real-world traffic counter data.

Figure B5. Color-coded diurnal and weekly traffic profile in The Helsinki Metropolitan Area (HMA) in terms of TomTom
aggregated congestion index (upper panel) and normalized traffic volume used in our reference dataset FRES national emission
inventory (lower panel).
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Figure B6. Comparison of driving speed retrieved from TomTom against traffic counters colored by Functional Road Classes
(FRCs). The left panel shows the summer workday case. The right panel shows the winter weekend case. r and sMAPE are shown
for each case. N = 1512. All p-values are below 0.05.

Figure B7. Comparison of traffic density using proposed models (M1: macroscopic fundamental diagram MFD in column 1, M2:
generalized linear model GLM in column 2, M3: ensemble method ENS in column 3) against that calculated from traffic counters
colored by Functional Road Classes (FRCs). The upper row shows the summer workday case. The lower row shows the winter
weekend case. R2 and sMAPE are shown for each case. N = 1512. All p-values are below 0.05.
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Figure B8. Emission partitioned by road classes. The left column shows the summer workday case. The right column shows the
winter weekend case. Row 1 illustrates CO2 emission, followed by NOx and CO in rows 2 and 3, respectively.
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Figure B9. Emission partitioned by fleet composition. The left column shows the summer workday case. The right column shows
the winter weekend case. Row 1 illustrates CO2 emission, followed by NOx and CO in rows 2 and 3, respectively.
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Figure B10. Comparison of CO2 emission using proposed models (M1: macroscopic fundamental diagram MFD in column 1,
M2: generalized linear model GLM in column 2, M3: ensemble method ENS in column 3) against emission inventory. The upper
row shows the summer workday case. The lower row shows the winter weekend case. Model evaluation metrics including R2,
binned r, sMAPE, and slopem are shown for each case. N = 3769. All p-values are below 0.05.

Figure B11. Comparison of NOx emission using proposed models (M1: macroscopic fundamental diagram MFD in column 1,
M2: generalized linear model GLM in column 2, M3: ensemble method ENS in column 3) against emission inventory. The upper
row shows the summer workday case. The lower row shows the winter weekend case. Model evaluation metrics including R2,
binned r, sMAPE, and slopem are shown for each case. N = 3769. All p-values are below 0.05.
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Figure B12. Comparison of CO emission using proposed models (M1: macroscopic fundamental diagramMFD in column 1, M2:
generalized linear model GLM in column 2, M3: ensemble method ENS in column 3) against emission inventory. The upper row
shows the summer workday case. The lower row shows the winter weekend case. Model evaluation metrics including R2, binned r,
sMAPE and slopem are shown for each case. N = 3769. All p-values are below 0.05.

Figure B13. Color-coded emission map (in kg per grid) of daily exhaust CO2 on a winter weekend. The left panel illustrates the
spatial distribution of daily emission using the national emission inventory Finnish Regional Emission Scenario model (after
adjustment from annual to daily emission). The right panel illustrates the one using our proposed ensemble ENS model based on
real-time hourly data (summation of hourly profile to one day). N = 3769.
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Figure B14. Color-coded emission ratio map of daily exhaust CO2 modeled by the proposed framework versus the national
emission inventory Finnish Regional Emission Scenario model (after adjustment from annual to daily emission). Red colors
indicate higher values of modeled emissions while blue colors show vice verse. The left panel illustrates the case on a summer
workday while the right panel represents a winter weekend. N = 3769.

Figure B15. A comparison of our emission products using the ensemble method ENS (orange dotted lines) with hourly
concentration measurements (blue solid lines) of CO2 (first column), NOx (second column), and CO (third column) at a traffic
street canyon in the Helsinki Metropolitan Area (HMA) for both temporal cases (upper panel: summer workdays; lower panel:
winter weekends).
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Figure B16. Congestion distribution in the Helsinki Metropolitan Area (HMA) on summer workdays (left panel) and winter
weekends (right panel).

Figure B17. Hourly congestion-induced emissions as bars partitioned color-coded by functional road classes in the Helsinki
Metropolitan Area (HMA). The upper panel illustrates the situation on a summer workday while the lower panel displays the
winter weekend case. The left column demonstrates the NOx emissions while the right column shows the CO emissions. Solid
lines indicate the contribution of congestion to total on-road emissions.
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Table B2. The specifications of six selected vehicle types in Helsinki fleet composition (FC1–FC6). For vehicles types, PC, LCV, and
HDT stand for passenger cars, light commercial vehicles, and heavy-duty trucks, respectively. The corresponding percentage has been
rounded to its nearest integer.

FC1 FC2 FC3 FC4 FC5 FC6

Vehicle type PC PC LCV LCV HDT HDT
Fuel used Petrol Diesel Petrol Diesel Petrol Diesel
Mass (kg) 1334 1334 1752 1752 6839 6839
Percentage (%) 63 24 <1 10 <1 3

Table B3. Functional Road Class (FRC) defined by TomTom in short and long descriptions [15]. The proportion (%) of FRC in the
Helsinki Metropolitan Area (HMA) is calculated. The corresponding percentage has been rounded to its nearest integer.

FRC % Short Description Long Description

1 10 Major Roads; Motorways;
Freeways

All roads that are officially assigned as motorways. All roads of
high importance, but not officially assigned as motorways, that are
part of a connection used for international and national traffic and
transport.

2 7 Other Major Roads All roads used to travel between different neighboring regions of a
country.

3 6 Secondary Roads All roads used to travel between different parts of the same region.
4 10 Local Connecting Roads All roads making all settlements accessible or making parts (north,

south, east, west, and central) of a settlement accessible.
5 13 Local Roads of High

Importance
All local roads that are the main connections in a settlement.
These are the roads where important through traffic is possible
e.g. arterial roads within suburban areas, industrial areas or
residential areas, a rural road, which has the sole function of
connecting to a national park or important tourist attraction.

6 16 Local Roads All roads used to travel within a part of a settlement or roads of
minor connecting importance in a rural area.

7 10 Local Roads of Minor
Importance

All roads that only have a destination function, e.g. dead-end
roads, roads inside a living area, alleys: narrow roads between
buildings, in a park or garden.

8 28 Other Roads All other roads that are less important for a navigation system:
a road that is too small to be driven by a passenger car, bicycle
paths or footpaths that are especially designed as such stairs,
pedestrian tunnel, pedestrian bridge, and alleys that are too small
to be driven by a passenger car

Table B4. Urban (aka built types, 1–10) and natural (aka land cover types, A–G) Local Climate Zone (LCZ) definitions in short and long
descriptions [43]. The proportion (%) of LCZ in the Helsinki Metropolitan Area (HMA) excluding open sea area is calculated. The
corresponding percentage has been rounded to its nearest integer.

LCZ % Short Description Long Description

1 1 Compact highrise Dense mix of tall buildings to tens of stories. Few or no trees. Land cover mostly
paved. Concrete, steel, stone, and glass construction materials.

2 1 Compact midrise Dense mix of midrise buildings (3–9 stories). Few or no trees. Land cover mostly
paved. Stone, brick, tile, and concrete construction materials.

3 <1 Compact lowrise Dense mix of lowrise buildings (1–3 stories). Few or no trees. Land cover mostly
paved. Stone, brick, tile, and concrete construction materials.

4 4 Open highrise Open arrangement of tall buildings to tens of stories. Abundance of previous land
cover (low plants, trees). Concrete, steel, stone, and glass construction materials.

5 24 Open midrise Open arrangement of lowrise buildings (3–9 stories). Abundance of pervious land
cover (low plants, scattered trees). Concrete, steel, stone, and glass construction
materials.

6 15 Open lowrise Open arrangement of lowrise buildings (1–3 stories). Abundance of pervious land
cover (low plants, scattered trees). Wood, brick, stone, tile, and concrete
construction materials.

7 0 Lightweight lowrise Dense mix of single-story buildings. Few or no trees. Land cover mostly
hard-packed. Lightweight construction materials (e.g. wood, thatch, corrugated
metal).

(Continued.)
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Table B4. (Continued.)

LCZ % Short Description Long Description

8 14 Large lowrise Open arrangement of large lowrise buildings (1–3 stories). Few or no trees. Land
cover mostly paved. Steel, concrete, metal, and stone construction materials.

9 <1 Sparsely built Sparse arrangement of small or medium-sized buildings in a natural setting.
Abundance of pervious land cover (low plants, scattered trees)

10 1 Heavy industry Lowrise and midrise industrial structures (towers, tanks, stacks). Few or no trees.
Land cover mostly paved or hard-packed. Metal, steel, and concrete construction
materials.

A 24 Dense trees Heavily wooded landscape of deciduous and/or evergreen trees. Land cover mostly
pervious (low plants). Zone function is natural forest, tree cultivation, or urban
park.

B 6 Scattered trees Lightly wooded landscape of deciduous and/or evergreen trees. Land cover mostly
pervious (low plants). Zone function is natural forest, tree cultivation, or urban
park.

C 0 Bush, scrub Open arrangement of bushes, shrubs, and short, woody trees. Land cover mostly
pervious (bare soil or sand). Zone function is natural scrubland or agriculture.

D 7 Low plants Featureless landscape of grass or herbaceous plants/crops. Few or no trees. Zone
function is natural grassland, agriculture, or urban park.

E 0 Bare rock or paved Featureless landscape of rock or paved cover. Few or no trees or plants. Zone
feature is natural desert (rock) or urban transportation.

F <1 Bare soil or sand Featureless landscape of soil or sand cover. Few or no trees or plants. Zone function
is natural desert or agriculture.

G 2 Water Large, open water bodies such as seas and lakes, or small bodies such as rivers,
reservoirs, and lagoons.

Table B5. Reduction in congestion with varying penetration rates of connected and autonomous vehicles (CAVs) using traffic flow
simulated for Dublin, Ireland [48, 49].

CAV penetration rate Main roads Minor roads Downtown

25% 60.92% 6.88% 9.48%
50% 62.46% 13.87% 19.47%
75% 63.08% 20.51% 30.95%
100% 63.69% 30.95% 55.74%

Table B6. Evaluation results of driving speed, together with traffic density and gridded emissions using three methods (M1: macroscopic
fundamental diagram MFD, M2: generalized linear model GLM, M3: ensemble method ENS) for two studied time (summer workday
and winter weekend) against data from fixed traffic counters (all p-value below 0.05). N = 1512 for speed and traffic density. N = 3769
for the gridded emissions.

Summer Winter

r sMAPE r sMAPE

Speed (vFCD vs vT) 0.77 12% 0.74 11%

Summer Winter

R2 sMAPE R2 sMAPE

M1 – MFD

Density (d̂ vs dT) 0.60 68% 0.69 53%

CO2 0.77 35% 0.76 35%
NOx 0.17 45% 0.18 51%
CO 0.66 77% 0.65 79%

M2 – GLM

Density (d̂ vs dT) 0.84 40% 0.88 31%

CO2 0.70 36% 0.72 36%
NOx 0.08 46% 0.08 50%
CO 0.53 73% 0.61 76%

M3 – ENS

Density (d̂ vs dT) 0.62 62% 0.72 48%

CO2 0.71 35% 0.70 35%
NOx 0.15 45% 0.15 47%
CO 0.58 70% 0.60 72%
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Table B8. The input-adaptive mixed-effects linear regression model (GLM) using adaptive inputs with their corresponding accuracy in
terms of R2 and sMAPE. The overall performance is also included. Note that the speed limit has once been considered, but due to its
high collinearity with congestion, it was discarded in all runs shown in this table. All p-values are below 0.05.

Summer workdays Winter weekends

1 2 3 4 1 2 3 4

Driving speed (vFCD) x x x x x x x x
Congestion level (−→v ) x x x x x x x x
FRC x x x x
Hour x x x x x x x x
LCZ x x x x

R2 0.82 0.80 0.76 0.73 0.86 0.85 0.79 0.80
sMAPE 43% 45% 48% 55% 33% 36% 39% 39%

Overall R2 0.84 0.88
Overall sMAPE 40% 31%
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