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Abstract: Alginate hydrogels have gathered significant attention in biomedical engineering
due to their remarkable biocompatibility, biodegradability, and ability to encapsulate cells
and bioactive molecules, but much less has been reported on the kinetics of gelation. Scarce
experimental data are available on cross-linked alginates (AL) with bioactive components.
The present study addressed a novel method for defining the crosslinking mechanism using
rheological measurements for aqueous mixtures of AL and calcium chloride (CaCl2) with
the presence of hydroxyapatite (HAp) as filler particles. The time-dependent crosslinking
behaviour of these mixtures was exploited using a plate–plate rheometer, when crosslinking
occurs due to calcium ions (Ca2+) binding to the guluronic acid blocks within the AL
polymer, forming a stable “egg-box” structure. To reveal the influence of HAp particles as
filler on crosslinked sample morphology, after rheological measurement and crosslinking,
crosslinked samples were freeze-dried and their morphology was assessed using an optical
microscope and SEM. It was found that the addition of HAp particles, which are known to
enhance the mechanical properties and biocompatibility of crosslinked AL gels, significantly
decreased (usually rapidly) the interaction between the Ca2+ and AL chains. In this
research, the physical “shielding” effect of HAp particles on the crosslinking of AL with
Ca2+ ions has been observed for the first time, and its crosslinking behaviour was defined
using rheological methods. After crosslinking and rheometer measurements, the samples
were further evaluated for morphological properties and the observations were correlated
with their dewatering properties. While the presence of HAp particles led to a slower
crosslinking process and a more uniform development of the rheological parameters, it also
led to a more uniform porosity and improved dewatering properties. The observed effects
allow for a better understanding of the crosslinking process kinetics, which directly affects
the physical and chemical properties of the AL gels. The shielding behaviour (retardation)
of filler particles occurs when they physically or chemically block certain components in a
mixture, delaying their interaction with other reactants. In hydrogel formulations, filler
particles like hydroxyapatite (HAp) can act as barriers, adsorbing onto reactive components
or creating physical separation, which slows the reaction rate and allows for controlled
gelation or delayed crosslinking. This delayed reactivity is beneficial for precise control
over the reaction timing, enabling the better manipulation of material properties such as
crosslinking distribution, pore structure, and mechanical stability. In this research, the
physical shielding effect of HAp particles was observed through changes in rheological
properties during crosslinking and was dependent on the HAp concentration. The addition
of HAp also enabled more uniform porosity and improved dewatering properties. The
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observed effects allow for a better understanding of the crosslinking process kinetics, which
directly affects the physical and chemical properties of the AL gels.

Keywords: crosslinking kinetics; rheology; calcium alginate hydrogels; hydroxyapatite

1. Introduction
Alginate hydrogels (AL) are widely used in biomedical engineering due to their bio-

compatibility, biodegradability, and ability to encapsulate cells and bioactive molecules [1,2].
A successful deployment of AL gels requires careful control of key material properties,
including biomechanical compliance, swelling behaviour, degradation rates, cell reactivity,
and interactions with bioactive molecules and fillers [3–5]. By incorporating various fillers
and employing diverse crosslinking techniques, it is possible to additionally fine-tune
alginate-based biomaterials to meet specific needs [6–8].

Alginates are linear polyuronic polysaccharide extracted from brown seaweed (Phaeo-
phycea) consisting of linked blocks of polymannuronic acid (M) and polyguluronic acid (G)
with different sequential occurrence [9]. Recent macromolecular model investigations have
demonstrated that divalent Ca2+ ions preferentially bind to the G -blocks, which are stiffer
and have a more extended polymer chain compared to M blocks. The internal gelation
technique occurs when Ca2+ ions trigger association of the polyguloronate sequences of the
alginate chain by a dimerization mechanism, giving rise to aligned ribbon-like assemblies
with cavities into which calcium ions are located, so called egg-box dimers [7,8]. As the
extent of association increases through aggregation of the ordered dimers, clusters expand
in size until they form a continuous three-dimensional crosslinking network [9].

AL gels crosslinked with divalent cations, of which calcium (Ca2+) is one of the most
used, are used for different applications: biodegradable supports for water decontam-
ination agents, scaffolds for cell culture, tissue engineering, drug delivery, and topical
drug formulations [8,9]. Calcium-crosslinked AL hydrogels have been widely used in
applications such as biodegradable supports for water decontamination agents, scaffolds
for cell culture, tissue engineering, drug delivery, and topical drug formulations [10–12].
These materials offer key benefits, such as providing a moist environment that promotes
wound healing and allowing for controlled drug distribution based on structure–activity
relationships [13,14].

Crosslinked AL hydrogels have been utilized to fill voids in tissues in cases where
bioactivity was not the primary goal. These hydrogels create a chemically favourable
environment that supports essential physicochemical reactions [15–17]. For instance, com-
posite beads have been developed using a combination of AL, hydroxyapatite (HAp), and
a calcium chloride (CaCl2) solution [18–20]. Hybrid composite materials can enhance the
strength and stiffness by incorporating inorganic fillers like hydroxyapatite. Hydroxyap-
atite shows great potential in tissue engineering applications due to its close resemblance to
the inorganic component of human bone. This similarity endows it with unique properties,
including biocompatibility, osteoconductivity, and the ability to promote bone cell adhesion
and proliferation [21]. Its chemical similarity to natural bone enhances integration with
host tissues, promoting efficient osteointegration (Figure 1) [22,23].

One of the methods to produce macroporous composite scaffolds based on AL and
mineral particles comprises mixing of an alginate with particle dispersion in a CaCl2
solution followed by controlled slow gelation and subsequent freeze-drying [14,20]. Un-
derstanding the evolution and kinetics of crosslinking, directly impacting the mechanical
properties and porosity, is critical for the fabrication of composite AL structures [15–17].
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Porosity control is important, because fluid flow through scaffolds is important for suc-
cessful fulfilment of complex parameters such as nutrient passage, cell growth, metabolic
product removal and tissue regeneration [24].
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Figure 1. Schematic presentation of crosslinking of polyguloronate sequences of the alginate (AL)
chain by a dimerization mechanism with Ca2+ ions via formation of the “egg-box” structure. Formed
porous scaffolds made of crosslinked hydrogels enable bodily fluids transport through their matrix
and can be used for tissue engineering and bone regeneration [5,14].

It is common to use rheometers to study polymer and gel crosslinking kinetics: when
crosslinking solutions are placed on the bottom plate of a rheometer and exposed to a
crosslinking agent, they undergo a series of structural transformations [24,25]. These
transformations can be tracked by monitoring the changes in their rheological parameters
over time [25,26].

In addition, conventional rheometry relying on small amplitude oscillatory shear
(SAOS) is limited by long measurement times, posing challenges when studying rapidly
evolving materials [27,28]. While time sweeps at a constant frequency or strain can provide
valuable data, they are often insufficient for capturing fast-evolving processes—especially
for new material combinations without prior data about the proper operational window of
the experimental parameters [29–31]. To address this limitation, researchers have imple-
mented a combined frequency- and amplitude-strain method to catch crosslinking kinetics
as a development of viscoelastic properties within a linear viscoelastic region (LVE) for
these time-sensitive materials [27,30]. Using these methods, using viscoelastic measure-
ments within a linear viscoelastic region, we have developed a novel measuring protocol
that reveals the nonlinear crosslinking interval for various concentrations of HAp and
Ca2+ ions and was able to access the porosity distribution using optical microscopy, SEM
imaging, and the dewatering properties of samples. Using these methods, we developed a
novel measurement protocol that utilizes viscoelastic measurements within the linear vis-
coelastic region. This approach allowed us to identify the nonlinear crosslinking interval for
different concentrations of HAp and Ca2+ ions [26,27]. Additionally, we assessed the poros-
ity distribution of the samples using optical microscopy, SEM imaging, and dewatering
properties [32–34].

The present study proposes a novel method for defining the crosslinking mechanism
using rheological measurements for aqueous mixtures of AL and calcium chloride (CaCl2)
with the presence of hydroxyapatite (HAp) as filler particles. The present study provides
novel insight into the following crosslinking mechanism using rheological measurements
for aqueous mixtures of AL and calcium chloride (CaCl2) with the presence of hydrox-
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yapatite (HAp) as filler particles. The time-dependent crosslinking behaviour of these
mixtures was exploited using a plate-plate rheometer when crosslinking occurs due to
calcium ions (Ca2+) binding to the guluronic acid blocks within the AL polymer, forming
a stable “egg-box” structure. To reveal the influence of the concentration of Ca2+ ions,
especially when HAp particles as filler were present, on the crosslinked sample morphol-
ogy, crosslinked samples were freeze-dried and their morphology was assessed using
optical microscope and SEM [35,36]. As more calcium ions become available, the pair-wise
association monocomplexes form one-dimensional egg-box dimers, which aggregate via
inter-cluster associations. In this way, rheology has been proposed for the observation
of the dynamics of chemical reactions and cluster formation, and their consequences for
the final crosslinked sample porosity. In this study, the objective was to track rheological
parameters during the crosslinking interval, which in turn affects porosity and the related
transport of fluids within these scaffolds [23,33]. The novel data in this work are related
to the effect of delayed crosslinking when Ca2+ ions are in the presence of HAp particles,
analysed with rheological measurements [34]. This allows for revealing the complex dy-
namics of crosslinking, which is linked to new possibilities in the control of porosity and
the mechanical properties for such scaffold materials.

2. Materials and Methods
2.1. Preparation of Starting Solutions/Dispersions

Alginate solution was prepared by dissolving low-viscosity sodium alginate powder
(A3249, AppliChem Darmstadt, Hamburg, Germany), which will be referred to in the text
as alginate (AL) in distilled water, to obtain a 2% wt. concentration. Aqueous cross-linking
solutions were prepared by dissolving CaCl2·2H2O powder (Sigma–Aldrich, Hamburg,
Germany) in distilled water at concentrations of 0.3 and 0.4 wt.% calculated by dihydrate
(which corresponds to 0.22 and 0.30% wt. of CaCl2 respectively). Hydroxyapatite (average
particle size 2.5 µm, surface area ≥ 80 g·m−2; Sigma–Aldrich, Sant Luis, MO, USA) was
added to these solutions at varying concentrations as shown below. SEM images of the
HAp samples are presented in Figure 2.
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Figure 2. SEM images of hydroxyapatite (HAp) particles used in this research at two different
magnifications, revealing particles of micrometre dimensions with a spherical structure (a,b).

Mixtures of crosslinking samples with varying concentrations of crosslinking solution
CaCl2 and HAp are presented in Table 1. The percentages represent the amount of HAp
filler in the CaCl2·2H2O dispersion and the percentage of AL solution in deionized water.
These mixtures were prepared using a method based on similar experiments [10,32,33].
Experiments were conducted in several steps to define the effect of HAp on the gelation ki-
netics, morphology, porosity, liquid penetration and dewatering and mechanical properties
of the scaffolds, as presented in Figure 3.
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Table 1. Crosslinking suspension composition and sample labelling used in this research.

CaCl2·2H2O wt.% HAp wt.% Sample Label

0.3

0 Al/0.3%CaCl2
20 Al/0.3% CaCl2/20 HAp

40 Al/0.3% CaCl2/40 HAp

60 Al/0.3% CaCl2/60 HAp

0.4

0 Al/0.4% CaCl2
20 Al/0.4% CaCl2/20 HAp

40 Al/0.4% CaCl2/40 HAp

60 Al/0.4% CaCl2/60 HAp
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Figure 3. A schematic overview of the experimental setup in this study includes the preparation of sus-
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2.2. Rheological Measurements for Evaluation of SA Crosslinking

The kinetics of crosslinking and phase transformations of a 2% alginate (AL) solution
was studied using a plate–plate rheometer (Anton Paar 302, Gratz, Austria). The SA
solution (1.3 mL) was placed on the rheometer plate using a syringe. Crosslinking samples
(1.3 mL), comprising CaCl2 solution and CaCl2–HAp dispersions (Table 1), were injected
directly into the SA solution. These additions were made immediately before the start of
each rheological measurement to observe the phase transformation process as presented
in Figure 4.

Crosslinking dynamics were evaluated in the linear viscoelastic region (LVE). At the
bottom of the rheometer, a Peltier temperature controller kept the temperature at 23 ◦C
with the gap between plates at 1.5 mm. These conditions were used due to the presence
of HAp particles causing possible strain hardening, known as “Mullins effect”—an in-
crease in the viscoelastic properties and nonlinear argumentation within the crosslinked
structure [35–37]. The linear viscoelastic region (LVE) was identified with oscillatory mea-
surements. For amplitude sweep at ω = 0.1 rad·s−1, the critical strain was determined
to be γc = 0.1%, and this was later used as a constant parameter at amplitude sweep
measurements with the shear strain varying between γ = 0.01. . .500%. Following ampli-
tude sweep tests, crosslinking dynamics were observed with rheological measurements in
time-dependent mode with constant strain 0.1% and different constant angular frequencies



Polymers 2025, 17, 242 6 of 18

(ω = 0.1, 0.5 and 1 rad·s−1) that simulated different mixing frequencies and probability of
contacts between SA, Ca ions and HA particles. Once the viscoelastic parameters (transient
complex viscosity (η*+), storage (G′) and loss modulus (G′′)) reached their plateau values
after 2500 s, the crosslinked films were removed from the rheometer. The measurements
were performed five times.
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Figure 4. Schematic presentation of experimental set-up prior to rheological measurements; samples
are mixed on the bottom plate of the rheometer prior to initiation of the measurements, leading to
crosslinking of the AL solution with crosslinking dispersion of the suspension.

2.3. Gravimetric Dewatering

Five crosslinked samples for each composite from Table 1 were removed from the
rheometer and placed in an oven overnight at 60 ◦C, followed by placing the samples
on a stuck of blotter papers, modifying the standard Åbo Akademi gravimetric dewater-
ing measurement (ÅboGWR, Turku, Finland) for characterization of the water holding
fine properties of the crosslinked AL gels [38]. A cylindrical vessel contained a filter
made of polycarbonate membrane (Nucleopore Track-Etch membrane 5 µm, Whatman,
Sigma–Aldrich, Sant Luis, MO, USA), below which were placed five crosslinked oven
dried samples and five blotter papers as absorbents to avoid saturation. Water (5 mL)
was added on top of the membrane and the overpressure of 0.5 bar was applied. After
105 s, the pressure was released and the weight of water that had passed through the
blotter papers was measured and recorded. The blotter papers were weighed before and
after the measurement, as presented in Figure 5. The weight difference was multiplied
by 15,091 m−2, which is the inverse of the cylinder cross-sectional area. An average of
five determinations was computed with the data variation found to be within ±10%.
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2.4. Freeze-Drying of Samples

For analysis of the suitability of the samples crosslinked in the rheometer, the samples
were removed from the rheometer bottom plate after the viscoelastic measurements of
time-dependent behaviour, after 2500 s of constant strain γ = 0.01% and constant angular
frequency ω = 0.1 rad·s−1 (assuming that with these parameters the structure of the sample
was the least distorted) and dipped in liquid nitrogen for 3 min, as previously found to be
an optimal time for freezing the total volume of the sample. After freezing, the samples
were left for 24 h in a freeze-dryer (Labconco Freezone 2.5, Kansas City, MO, USA) at
−50 ◦C and −24 kPa.

2.5. Optical and Scanning Electron Microscopy

Optical microscopy was applied to study the morphology of the crosslinked gel
samples after the rheological measurements with an Olympus BX61 microscope equipped
with a ColorView12 camera (Olympus, Shinjuku Monolith, 3–1 Nishi-Shinjuku 2-chome,
Shinjuku-ku, Tokyo, Japan). Scanning electron microscopy (SEM) imaging was used to
assess the morphology of the freeze-dried gel samples. The samples were coated with
a thin layer of gold and then placed into a field emission scanning electron microscope
(FE-SEM, model, Zeiss Sigma, Jena, Germany) with an accelerating voltage of 25 kV.

2.6. Reproducibility of Measurements

Data variation of the static water retention and rheometrical measurements for
SA solutions were within ±5%, while for samples containing crosslinking solutions
they were within ±10% due to the nature of the particle size of the sensitive gel struc-
ture. For the plate–plate geometry, there is also the presence of shear inhomogeneities
contributing to reduced reproducibility. The data noise was partially removed with
exponential smoothing [39].

3. Results and Discussion
Elastic moduli G′ and G′′ are strain-dependent and with the increase in strain am-

plitude (γ) at a constant frequency (ω = 0.1 rad·s−1), the moduli change their magnitude
due to the interactions of particles, ions and polymer chains. Crosslinking occurs when
the storage modulus (G′) becomes equal to the loss modulus (G′′), while the strain on-
set at which this occurs is called critical strain (γc) [40]. This crosslinking strain moves
towards higher values with the increase in Ca2+ concentration in the suspension, from
0.3 to 0.4 wt.% due to more interactivity and crosslinking segments with the alginate chains.
An increase in HAp concentration widens the span and increases the values of γc, the onset
of the LVE region, defined as a value of G′ = 0.9 G′′, allowing more time for the formation
of a stable structure within the crosslinking gel [41]. The G′ value was found to decrease
after LVE had been reached due to distortion of the viscoelastic structure, while the G′′

value increased as a result of the effect of the gel-like structures observed previously and
defined as “gel hardening” [42,43]. Crosslinking values of viscoelastic moduli G′ and G′′

increased with an increase of the concentrations of both Ca2+ ions due to more sites for
crosslinking and the physical presence of HAp particles that act as filler inserted into the
alginate matrix (Figure 6c).

At a constant strain within the LVE region (γ = 0.1%) at a frequency sweep with
ω = 0.01. . .100 rad·s−1, higher concentrations of Ca2+ led to increased values of both the
shear storage modulus (G′) and the viscous modulus (G′′). Samples containing 0.4% CaCl2
exhibited higher elastic moduli than those crosslinked with 0.3% CaCl2, as observed with
amplitude sweep measurements. Also, increasing the amount of HAp particles further
amplified the moduli (G′ and G′′) due to a greater amount of sample volume filled with
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particles and their interactions that also caused agglomeration within the alginate matrix.
For gels with lower concentrations of Ca2+ ions, G′ and G′′, there were fewer crosslinking
segments seen as the oscillatory dependence of the elastic moduli on deformation, i.e., ω,
decreased, while the moduli were separated though the whole frequency range, without a
distinct crosslinking of moduli (Figure 7a). Without HAp particles, moduli crossover at
1 rad·s−1 and a higher magnitude of G′ and G′′ for samples with 0.4% CaCl2 was observed.
As seen, when crosslinking was induced solely by a CaCl2 solution, without the presence
of HAp particles, the increase in shear moduli (G′ and G′′) was steeper and showed a more
pronounced dependence on frequency [44,45].
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Figure 6. Viscoelastic properties of alginate (AL) and calcium chloride (CaCl2) crosslinking samples
as a function of strain amplitude for constant angular frequency 0.1 rad·s−1 and increase in concen-
trations of HAp (a) 0.3% CaCl2, (b) 0.4% CaCl2 and (c) Calcium cloride CaCl2. Effect of concentration
increase of CaCL2 and HAp on development of viscoelasticity and increase of elastic moduli as the
crossover point where G′ = G′′.
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Due to the oscillatory nature of the dependence of the viscoelastic parameters of the
angular frequency, in order to compare the viscoelastic properties in respect to the presence
of Ca2+ ions and the presence of Hap particles, in Table 2, we present the average values
of the storage modulus (G′) and loss modulus (G′′) (Figure 7) at distinct values of angular
frequency (ω) 10, 50 and 100 rad·s−1, with slopes of fitted curves (G′ and G′′ dependence
on ω) with a power low model as an average of five measurements. With an increase
of presence of Ca2+ ions, the slope of the curves increased from 0.3% to 0.4% due to a
higher amount of crosslinking within the Al suspension matrix. With the increase of HAp
concentration, the slope decreased due to a mechanism of physical shielding of Ca2+ ions
by the HAp particles.

Table 2. Values of storage modulus (G′) and loss modulus (G′′) at three distinct intervals of angular
frequency (ω), representing behaviour at low (10 rad·s−1), intermediate (50 rad·s−1) and high values
of angular frequency (100 rad·s−1).

Sample Label G′
ω=10rad·s

−1/Pa G′′
ω=50rad·s

−1/Pa G′
ω=50rad·s

−1/Pa G′′
ω=50rad·s

−1/Pa G′
ω=100rad·s

−1/Pa G′′
ω=100rad·s

−1/Pa nG ′ nG ′′

AL/0.3CaCl2 58.6 62.6 63.2 68.3 101.5 92.7 5.3 6.5

Al/0.3CaCl2/20HAp 72.5 65.6 84.3 65.4 96.2 69.7 3.1 3.7

Al/0.3CaCl2/40HAp 355.3 314.8 397.1 325.8 425.4 379.1 2.8 3.3

Al/0.3CaCl2/60HAp 675.4 491.4 721.1 524.3 729.1 560.3 2.4 3.1

AL/0.4CaCl2 59.6 103.4 321.5 109.5 321.5 212.7 6.3 6.8

Al/0.4CaCl2/20HAp 1071.4 1097.3 1102.8 952.5 1102.3 1065.6 3.8 4.4

Al/0.4CaCl2/40HAp 3102.7 2913.4 3320.2 2913.4 3320.2 3187.7 3.4 3.7

Al/0.4CaCl2/60HAp 4821.6 4461.2 5168.3 4461.2 5168.3 4682.6 2.9 3.3

The effect of time-dependent structure development related to only interactions be-
tween AL, Ca ions and HAp, without external forces, was evaluated within LVE at ultralow
and low constant strain (γ = 0.01% and γ = 0.1%, respectively), and at fixed angular fre-
quencies (ω = 0.1, 1, 2.5, 5, and 10 rad·s−1). Increasing the rate of deformation enhanced
particle-to-particle contact between HAp particles and a reduction of the physical barrier
to enable expelling of Ca2+ ions towards the alginate molecular chains. Faster shearing
through the suspension matrix, seen as strain of γ = 0.1%, in comparison to γ = 0.0.1%,
accelerated both the crosslinking process and possibly the flocculation of the HAp par-
ticles, leading to higher shear moduli (G′ and G′′) [46]. This rapid crosslinking created
crosslinked zones that swelled, alongside areas that remained flat and non-crosslinked,
causing flocculation in the gel matrix and an increase in the dynamic moduli [47]. For
all samples, a lower concentration of HAp led to lower magnitudes of G′ and G′′ and a
pronounced nonlinear, oscillatory time-related pattern of increase. Slower motion of Ca2+

ions from the HAp particles, with lower values of ω, were caused by reduced shearing and
collision between particles, resulting in a more linear, sinusoidal shape of the elastic moduli,
particularly in samples containing 20% w/w HAp. An increase in Ca2+ concentration from
0.3% to 0.4% CaCl2 led to faster crosslinking and increased magnitudes of G′ and G′′ [48,49].
An increase of ω had a similar effect to raising the Ca2+ ion concentration, as it increased
movement of HAp particles within the suspension matrix, related to a faster crosslinking
rate. Increased collisions between HAp particles correlated with the movement of Ca2+

ions, resulting in swollen, crosslinked regions interspersed with flat, noncrosslinked areas
of the alginate chains as described in previous research [50,51]. Additionally, raising the
constant strain from 0.01% to 0.1% enhanced the thixotropic properties of the hydrogels,
evidenced by the time-dependent behaviour of G′ and G”. The average values of rheological
data from Figure 8a–d is summarized in Figure 9a–c, presenting the average values from
five measurements for two different strain levels (γ = 0.01% and γ = 0.1%, respectively).
The elastic moduli (G′ and G′′) increase is more prominent for higher strain (0.1%) due to
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the strain hardening effect and enhanced collision between HAp particles that enhance
interactions between Ca2+ ions and AL polymer chains (Figure 8a–d), which increases
crosslinking dynamics. Moreover, a progressive increase in sample deformation with an
increase of the angular frequencies (ω) from 0.1 rad·s−1 to 5 rad·s−1 results in an increase in
magnitude of G′ as a result of the faster aggregation and the stronger interactions between
the AL and Ca2+ ions. Although the ion diffusion towards the alginate chains increases,
more uniform crosslinking is achieved, contributing to the increased moduli [49,51].
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The rheological data explicated in Figure 8a–d are summarized in Figure 9a–c, pre-
senting average values from five measurements for two different strain levels (γ = 0.01%
and γ = 0.1%, respectively). The elastic moduli (G′ and G′′) increase is more prominent for
higher strain (0.1%) due to the strain hardening effect and enhanced collisions between HAp
particles that enhance interactions between Ca2+ ions and AL polymer chains (Figure 8a–d),
which increases the crosslinking dynamics. Moreover, a progressive increase in sample
deformation with an increase in the angular frequency (ω) from 0.1 rad·s−1 to 5 rad·s−1

resulted in an increase in magnitude of G′ as a result of the faster aggregation and the
stronger interactions between the AL and Ca2+ ions. Although the ion diffusion towards
the alginate chains increased, more uniform crosslinking was achieved, contributing to the
increased moduli [49,51].

The time-dependent increase in transient, complex viscosity (η*+) at a constant strain
of γ = 0.01% and a constant angular frequency ω = 0.1 rad·s−1 during crosslinking is
presented in Figure 10 for suspensions containing HAp, which indicates the formation
of a mechanically stronger structure, in comparison to AL suspensions crosslinked with
only Ca 2+ ions [51]. The presence of HAp particles slows the rise in η*+, in contrast to the
nearly immediate increase observed when Ca2+ ions are used as the sole crosslinking agent.
The dynamic of η*+ increase is related to a reduced crosslinking rate, as fewer Ca2+ ions
are available for crosslinking as they interact with HAp particles [32]. Furthermore, the
addition of HAp particles reduces the rate of crosslinking by limiting the availability of free
Ca2+ ions [36]. For solutions without HAp particles, the time required for suspensions to
reach plateau values of η*+ is much shorter, with more time required when the concentration
of Ca2+ ions is higher, most probably due to the thixotropic effect of strain hardening. As
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more calcium ions are available, aggregates of crosslinked guluronate sequencies increase
via a nucleation growth mechanism, and as a consequence, the nuclei grow via coalescence
of those gel nuclei, increasing transient complex viscosity. Conversely, the maximum
value of transient complex viscosity (η*+

max) is higher when HAp particles are present in
the crosslinking suspension added to the SA solution, as shown in Figure 10c [52]. This
suggests that while the crosslinking process may be slower with the presence of HAp
particles, the resulting viscosity of the crosslinked gel matrix is higher, and the structure is
more robust due to the incorporation of filler particles [53,54].
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Figure 10. Crosslinked cluster formation during junction of calcium ions with alginate molecular
chains presented with time-dependent increase of transient complex viscosity (η*+) increase up to the
final crosslinked structure when the plateau value is reached (a) as a function of the concentration of
CaCl2 and the presence of HAp particles, (b) gelation influenced only by the presence of Ca2+ ions
and (c) maximum of transient complex viscosity η*+

max.

The average values of transient complex viscosity (η*+) within the LVE that follow the
crosslinking with an increase in time, where they reach the plateau value and the onset of
crosslinking (Figure 10) are presented in Table 3 as average values of five measurements.
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Table 3. Values of transient complex viscosity (η*+) during crosslinking at constant strain 0.1% and
constant angular frequency 0.1 rad·s−1 for the given time intervals and maximum plateau value.

Sample Label η*+
t=500s/Pa·s η*+

t=1500s/Pa·s η*+
t=2000s/Pa·s η*+

max/Pa·s
AL/0.3CaCl2/ 1748.5 1726.6 1754.3 1757.6

AL/0.3CaCl2/20HA 47.8 368.6 828.8 856.3

AL/0.3CaCl2/40HA 56.6 472.3 946.3 968.1

AL/0.3CaCl2/60HA 64.3 849.3 1178.7 1185.4

AL/0.4CaCl2/ 5631.3 5724.6 5637.5 5729.5

AL/0.4CaCl2/20HA 49.1 1472.6 6489.3 6587.9

AL/0.4CaCl2/40HA 58.2 2574.3 7291.6 7358.3

AL/0.4CaCl2/60HA 69.3 6845.1 9745.4 9884.1

The increase in static stress (τs) during crosslinking, similarly to the development of
transient complex viscosity, differs significantly depending on whether the crosslinking
agent contains HAp particles or not. As presented in Figure 11a, rapid crosslinking with
Ca2+ ions shows an immediate rise in static stress at the start of the measurement, with
the “overshooting” character at the instant of the beginning of measurement [43]. This
happens due to water being drawn into the “egg-box” crosslinked segments and then
expelled, causing shrinkage and a drop in static stress, as shown in Figure 11a. Comparing
the strength of the suspensions over time shows that the crosslinking kinetics depend on
both the concentrations of Ca2+ ions and HAp particles. The static stress average values
presented in Figure 11b show the average maximum static stress (τs

max) at plateau values
at 2500 s, which has overshot for samples for which crosslinking occurred with Ca2+ ions,
while the crosslinking is more gradual at higher HAp concentrations [54,55].
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Optical images of crosslinked samples taken from the rheometer show that HAp 
particles tend to gather in the centre of the samples. In samples with lower HAp 
concentrations, crosslinking of AL happens more slowly in the centre, while the outer 
edges crosslink more quickly [50]. However, as the concentration of HAp increases, the 
particles distribute more evenly throughout the sample, leading to a more uniform 
crosslinking process. This results in smaller pores across the entire surface of the sample 
and a consistent colour. Figure 12 displays samples obtained during crosslinking at a 
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Figure 11. Structure formation during time dependent fluid gel crosslinking of alginate gels with
calcium ions revealed with an increase in static stress (τs). (a) Rheograms of static stress during
crosslinking and (b) average values of maximum of reached static stress(τsmax), revealing the effect
on overshoot due to instant monocomplex formation, containing compact swollen structures when
suspended without HAp particles. An increase in calcium ion concentration and HAp particle
concentration increases the crosslinking time.

Numerical values of the average depicted in Table 4, calculated as average values of
five measurements, show the differences of static stress values (τs) at different times during
crosslinking (Figure 11). The average value of measurements and yield static stress (τs

0)
obtained as the plateau value of static stress are presented in Table 4, revealing the static
stress values after 10, 500, 1000 and 2000 s, respectively, and from samples without HAp,
due to the instantaneous junction of Ca. The offset of static stress, the sudden increase and
decrease as the so-called “Mullins effect”, is seen as the overshoot is high for samples not
containing HAp particles, and that the strength of the crosslinked hydrogels increases with
the presence of HAp particles [49,54].
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Table 4. Time dependent values of static stress (τs) at distinct time intervals for all suspensions
from Table 1.

Sample Label τst= 10 s/Pa τst= 500 s/Pa τst= 1000 s/Pa τst= 2000 s/Pa τs
0/Pa

Al 7.5 5.4 4.2 4.7 4.7

AL/0.3CaCl2/ 226.4 9.6 14.5 19.8 20.3

AL/0.3CaCl2/20HA 22.4 24.6 26.5 28.4 29.2

AL/0.3CaCl2/40HA 43.1 45.2 46.4 48.5 49.4

AL/0.3CaCl2/60HA 767.3 771.2 778.3 782.3 789.5

AL/0.4CaCl2/ 1248.6 122.6 135.8 136.3 138.3

AL/0.4CaCl2/20HA 204.7 205.8 207.2 211.8 214.8

AL/0.4CaCl2/40HA 356.4 359.3 362.7 365.4 368.2

AL/0.4CaCl2/60HA 717.1 719.4 721.9 723.7 726.2

Optical images of crosslinked samples taken from the rheometer show that HAp parti-
cles tend to gather in the centre of the samples. In samples with lower HAp concentrations,
crosslinking of AL happens more slowly in the centre, while the outer edges crosslink more
quickly [50]. However, as the concentration of HAp increases, the particles distribute more
evenly throughout the sample, leading to a more uniform crosslinking process. This results
in smaller pores across the entire surface of the sample and a consistent colour. Figure 12
displays samples obtained during crosslinking at a constant static stress of γ = 0.1 s−1 and a
constant angular frequency of ω = 0.1 rad·s−1. The samples show noticeable differences in
colour: those without HAp appear transparent and porous with larger pores visible on the
surface, while samples with HAp turn white as the pore size decreases, creating a denser
appearance. Higher concentrations of HAp result in samples that are increasingly opaque
and whiter.
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Figure 12. Optical camera images of the alginate samples after crosslinking as a function of calcium
ion concentration and the amount of HAp filler particles. An increase of HAp filler particles increases
the opacity and colour of the samples, becoming white with fewer large pores.

Scanning electron microscopy (SEM) images were taken from freeze-dried crosslinked
samples. Images are shown in Figure 13 for the samples with 0.3% CaCl2 and 0.4% CaCl2,
with and without the presence of Hap particles in an Al solution matrix. The resulting SEM
images reveal differences in aerogel porosity, showcasing a layered open structure with
visible pores throughout the samples. When comparing samples crosslinked solely with
CaCl2, where the diffusion of Ca2+ ions and crosslinking is faster, as observed rheologically,
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we observe larger pores with the pore size increasing for a higher amount of ions. The
highly flocculated mechanism that results in large pores is suppressed with the presence
of HAp, which exhibits slower crosslinking kinetics [47–49]. A higher concentration of
Ca2+ ions promotes flocculation among the particles, leading to larger voids in the samples
crosslinked only with Ca2+ ions. These voids arise from the rapid formation of junctions
and the swelling of the egg-box structure, which traps water and creates pockets within the
sample. Upon sublimation, these pockets leave behind larger empty voids in areas where
more water was initially present.

In contrast, the incorporation of HAp enhances the development of a more compact
structure with uniform porosity due to consistent internal stress during the crosslinking
process. As illustrated in the optical images (Figure 13) and SEM images (Figure 13), the
structure formation is influenced by both the kinetics of crosslinking and the presence
of HAp. Additionally, smaller void sizes within the alginate layers that contain HAp
are dependent on the concentration of HAp; as the concentration increases, the structure
becomes denser and more compact.

Dewatering is directly linked to the porosity of the composite structure, evidenced
by the flow of liquid through the porous material. An increase in Ca2+ ions accelerates the
rate of crosslinking and enlarges the pores, while the presence of HAp reduces the pore
size and increases the overall porosity, which usually improves the connectivity between
the pores in the z-direction [55]. This connectivity is crucial for fluid transport and the
transport of nutrients for tissue scaffolds and bone regeneration. Dewatering of filler-
containing gel structures relies on strong particle–particle crowding interactions during the
immobilization of Ca2+ ions and HAp particles throughout the crosslinking process [49,50].
After crosslinking and drying the samples in an oven, larger, swollen areas where junctions
occur develop larger voids and pores, while areas where junctions have not occurred yet
show smaller, more uniformly distributed pores [55,56]. When these oven-dried crosslinked
samples are placed on blotter paper, they mimic the formation of a 3D scaffold intended for
bone tissue regeneration. The arrangement of the crosslinked samples on top of each other
was made to simulate the porosity in the z-direction within the scaffolds.
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particles of Hap attached to alginate chains for 20% to 60% HAp, as revealed by a rheometer. 

Figure 13. SEM images of samples after gelation. The difference in structure between more open
layered pores with a lower amount of CaCl2 concentration, from 0.3 CaCl2 to 0.4% CaCl2, and more
particles of Hap attached to alginate chains for 20% to 60% HAp, as revealed by a rheometer.

The dewatering behaviour of water samples between the stacked filter membranes,
five crosslinked samples, and blotter papers varied based on the different gel strengths.
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The results presented in Figure 14 indicate that as the crosslinking kinetics decrease and the
pore size becomes smaller with more pores, the dewatering rate of the stacked crosslinked
samples decreases. This observation is supported by analysing the crosslinking time and
gel strength, presented as η*+

max (Figure 10 and Table 3), the interval in which the transient
complex viscosity reaches a plateau, and the corresponding dewatering values for varying
concentrations of CaCl2 (0.3% and 0.4%) and Hap [53,57,58].
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properties of crosslinked samples as a function of the amount of HAp particles, using a ÅA GWR
device for evaluation of the porosity of the crosslinked samples. The presence of HAp particles
improves water retention and leads to a more uniform porosity, facilitating better liquid distribution
through the samples.

4. Conclusions
This study has explored the rheological behaviour of alginate gelation kinetics with

calcium chloride and the resulting properties when hydroxyapatite is added to this system.
This study seeks to highlight, in a novel way, the development of rheological parameters
during the crosslinking of alginate with calcium ions, emphasizing the delayed reactivity
caused by the shielding effect of hydroxyapatite particles (HAp). This delay in crosslinking,
seen through rheological time dependent behaviour, which would otherwise occur imme-
diately through egg-box structure formation, allowed for more uniform ion diffusion and
loosely packed junctions between Ca2+ ions and alginate polymer chains. Consequently,
the crosslinked samples exhibited reduced disparities between swelling and shrinking
regions, resulting in more uniform porosity. The physical shielding effect of HAp particles
on Ca2+ proved effective at two different calcium ion concentrations.

The presence of HAp particles led to a rheologically totally different crosslinking
process than when there was free diffusion of Ca2+ ions towards AL polymer chains,
which resulted in the introduction of new types of crosslinked hydrogels with varying
porosity and fluid transfer properties. Complex viscoelastic behaviour was observed at
various concentrations of CaCl2 and HAp in crosslinking dynamics, demonstrating the
crosslinking process is significantly influenced by the concentration of HAp, which not only
affects the kinetic rate of crosslinking but also alters the crosslinked material viscoelastic
properties. This behaviour results in a more controlled and homogeneous structure within
the crosslinked sample, with reduced pore sizes and enhanced connectivity among pores,
which is essential for effective fluid transport. The SEM imaging and optical analysis
confirmed that the presence of HAp contributes to a more compact structure with improved
dewatering properties, facilitating better liquid flow through the samples.

The addition of HAp particles introduced a “shielding” effect that slowed the in-
teraction between Ca2+ ions and the alginate chains, leading to prolonged crosslinking
times. This behaviour resulted in a more controlled and homogeneous structure within
the hydrogels, reducing the pore size and enhancing the connectivity among pores, which
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is essential for effective fluid transport. The SEM imaging and optical analysis confirmed
that the presence of HAp contributes to a more compact structure with improved water
retention properties.

The findings of this study emphasize the importance of adjusting both Ca2+ ion
and HAp concentrations to optimize the viscoelasticity and porosity of alginate-based
biomaterials. This research provides valuable insights for developing advanced scaffolds
for tissue engineering applications, particularly in bone regeneration, where controlled
porosity and mechanical strength are crucial. Overall, this study highlights the potential of
using rheological techniques to better understand the crosslinking dynamics of alginate gels
and their composite materials, enabling further development in the field of biomaterials.
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