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A B S T R A C T

Ship collisions can result in catastrophic outcomes, necessitating effective real-time collision risk assessment 
methods for proactive risk management. These methods need to rapidly evaluate both the probability of collision 
and the potential damage dimensions (length, height, and penetration) in real conditions. Existing frameworks 
often underestimate collision damage consequences during operational risk assessments. This paper presents a 
hybrid deep learning approach for the real-time prediction of collision damage dimensions under real ship 
operation conditions. Collision scenarios are identified using Automatic Identification System (AIS) data, with 
damage extents simulated through the Super Element (SE) method. A comprehensive database of collision 
scenarios and corresponding damage assessments is developed, sourced from realistic operational data of Ro-Pax 
ship in the Gulf of Finland. The deep learning model is trained and validated using this dataset, ensuring the 
model’s relevance and practical applicability. Extensive comparative analyses and generalization tests demon
strate the high accuracy of the model in predicting ship collision damages in diverse ship operational conditions. 
In addition, traditional simulation methods for evaluating damage dimensions require approximately 10 min, 
whereas the trained deep learning model reduces the time to less than 0.1 s, enabling real-time potential collision 
consequence assessment in real operational conditions. The proposed model may provide significant insights for 
ship operators, enhancing ship safety and supporting intelligent decision-making in ship operations.

1. Introduction

Ship-ship collisions rank among the most frequent and consequential 
maritime accidents, with potentially catastrophic outcomes including 
capsizing, sinking, severe environmental damage such as oil spills, and 
tragic loss of life (Mauro and Vassalos, 2024; Zhang et al., 2021a,b). The 
stakes are particularly high in passenger shipping, where safeguarding 
human lives and maintaining ship damage stability in the event of sig
nificant flooding are paramount concerns (Ringsberg, 2010; Mauro and 
Vassalos, 2022; Mauro and Vassalos, 2023; Mauro et al., 2024). In such a 
context, the development of real-time intelligent decision support sys
tems for collision prevention may be considered essential, especially in 
complex traffic and environmental conditions (Zhang et al., 2023b; Liu 
et al., 2024; Gil et al., 2020).

The system risk assessment framework proposed by Kaplan (1997)
remains a foundational approach for evaluating collision risk in the time 
domain. In this model, the assessment function F (t) = PC (t)*CC (t)
serves as a critical principle for quantifying collision risk (Arici et al., 
2020; Goerlandt et al., 2012; Montewka et al., 2011; Montewka et al., 
2014). Specifically, when conducting ship collision risk assessments, it is 
essential not only to evaluate the probability of collision but also to 
assess the associated consequences. This dual evaluation—considering 
both the likelihood of a collision and its potential impact—provides a 
more comprehensive understanding of collision risk, which is crucial for 
implementing effective risk mitigation strategies in maritime 
operations.

Real-time intelligent decision support systems are expected to sys
tematically evaluate both the probability of occurrence PC (t) and the 
potential severity of consequences CC (t) under actual operating condi
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tions (Gil et al., 2020). Existing methodologies predominantly focus on 
probabilistic evaluations of collision risk in real conditions, often 
underestimating the potential collision damage consequences when 
collisions cannot be avoided (Zhang et al., 2021a,b). This shortcoming 
highlights the need for advanced models capable of predicting collision 
consequences in real-time under real conditions, thus ensuring safer ship 
operations (Zhang et al., 2024a,b; Zhang et al., 2025).

1.1. Literature review

Accurate assessment of ship collision damage consequences is critical 
for the estimation of the consequences of collisions, including asset loss 
and potential loss of life due to ship flooding, ship capsizing, sinking, etc. 
(Mauro et al., 2024; Vassalos et al., 2022; Vassalos and Mujeeb-Ahmed, 
2021). Models that evaluate damage dimensions are essential to calcu
late crashworthiness and potential damage extents. They are crucial for 
minimizing adverse unavoidable consequences throughout the 
decision-making processes (Sormunen et al., 2013; Van de Wiel and van 
Dorp, 2011). These evaluations are a key component of collision risk 
assessment and support the development of intelligent decision support 
systems (Zhang et al., 2024a,b; Zhang et al., 2025).

Various methods, including Finite Element Analysis (FEA), empirical 
studies, and analytical approaches, have been employed to conceptu
alize ship collision damage (Qu et al., 2024; Kim et al., 2021; Zhang 
et al., 2019; Liu and Soares, 2023). They primarily address the internal 
and external mechanics of ship collisions. External mechanics encom
pass ship motions influenced by factors such as added inertia, damping 
effects, evasive manoeuvres, and environmental forces like waves, wind, 
and currents. During collisions, energy dissipation occurs because of 
structural deformations caused by contact between ships or between a 
ship and her environment (Deeb et al., 2017; Zhu et al., 2002; Hogström 
and Ringsberg, 2013; Youssef et al., 2016). Internal mechanics focus on 
the structural response of ship components, such as plates, stiffeners, 
bulkheads, girders, and floors, when subject to collision forces (Chen 
et al., 2019). To understand these responses, it is crucial to develop 
crashworthiness models that predict the extent of damage (Bužančić 
Primorac et al., 2020; Wang et al., 2020; Tabri et al., 2009; Tabri et al., 
2018).

Current approaches for collision risk assessment can be broadly 
categorized into probabilistic and simulation-based methods. 

Probabilistic approaches estimate the likelihood of accidents based on 
traffic distributions, historical data, and associated hazards (Zhang 
et al., 2019). However, these methods are often limited by their reliance 
on historical data, which can hinder accurate predictions of future sce
narios (Kuznecovs et al., 2021). Consequently, numerical models that 
simulate the physical dynamics of accidents are becoming essential for 
identifying effective risk control measures (Gholipour et al., 2020). 
Simulation-based methods are aimed at predicting the structural 
response of colliding ships. Among them, analytical methods, particu
larly those based on the upper-bound theorem, are used in deterministic 
evaluations to calculate energy dissipation in structural components 
during collision events (Haris and Amdahl, 2013; Heinvee and Tabri, 
2015). While FEA is recognized as the most reliable and widely used 
method for evaluating structural responses in ships due to its ability to 
provide accurate deformation predictions (Calle et al., 2017, 2020), its 
computational intensity poses significant challenges, particularly in 
scenarios requiring real-time analysis. Explicit numerical simulations 
like FEA often demand substantial computational resources and time, 
which may not be feasible for real-time applications. To address these 
limitations, reduced-order models or simplified methods, such as the 
Super Element (SE) method, are employed (Liu et al., 2018; Pedersen, 
2010; Kim et al., 2021). The SE method enables rapid calculations of 
ship collision damage, making it more suitable for scenarios where 
computational efficiency is critical. However, it should be noted that the 
SE method may face challenges in handling the complexities of diverse 
collision scenarios. Additionally, Automatic Identification System 
(AIS)-based ship collision detection methods can effectively address the 
challenge of detecting diverse collision scenarios, further enhancing the 
applicability of SE methods in dynamic and varied operational contexts 
(Zhang et al., 2021a,b).

Machine Learning (ML) methods (Artificial Neural Networks (ANN), 
K-Nearest Neighbors (K-NN), and Support Vector Machines (SVM)), 
excel in modelling complex nonlinear structural systems under real 
operational conditions (Thai, 2022; Das et al., 2022). For example, 
Braidotti et al. (2021) developed a ML model using SVM to predict 
damage consequences, demonstrating the model’s ability to capture 
flooding mechanisms resulting from ship damage. Similarly, Silionis and 
Anyfantis (2022) designed an ANN model trained on FEM data to predict 
ship damage under extreme conditions, offering a faster alternative to 
traditional methods. Advanced ML approaches have further enhanced 

Nomenclature

PC (t) Probability of collision at time t
CC (t) Consequence of collision at time t
F (t) Collision risk function over time, defined as F (t) =

PC (t)*CC (t)
AIS Automatic Identification System
SE Method Super-Element Method
LSTM Long Short-Term Memory
Transformer A deep learning model architecture that uses attention 

mechanisms for capturing long-range dependencies
DBO Algorithm Dung Beetle Optimization
DL Damage Length
DP Penetration Depth
DH Damage Height
M0 Fully plastic bending moment in structural analysis
σij Stress tensor component in the structural element
εij Strain rate tensor component in the structural element
Ro-Pax ship Roll-on/Roll-off Passenger ship
SHARP Model A software tool used for simulating ship collision and 

damage scenarios
RMSE Root Mean Square Error

MAE Mean Absolute Error
R2 (R-squared) Coefficient of determination
δ̇ Surge velocity of the striking ship
V Volume of the structural component
Ėb Bending energy rate
Ėm Membrane energy rate
θk Rotation of the k-th hinge in structural analysis
lk Length of the k-th hinge
tp Thickness of the plate in the structural component
A Area of the plate in the structural component
σ0 Flow stress in the structural material
DFT Damage Frequency Table
FEM Finite Element Method
ANN Artificial Neural Network
SVM Support Vector Machine
K-NN K-Nearest Neighbors
KG Vertical distance from the keel to the center of gravity
Rxx, Ryy, Rzz Radii of gyration in roll, pitch, and yaw directions, 

respectively
DT Decision Tree
Bi-LSTM Bidirectional Long Short-Term Memory
ReLU Rectified Linear Unit
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real-time damage assessment and flooding risk evaluation, such as the 
development of a damage evaluation model that captures the nonlinear 
relationship between collision accident scenarios and damage extents 
(Mauro and Vassalos, 2023; 2024). Despite these advancements, exist
ing approaches still struggle to reliably quantify the consequences of the 
potential collisions during real shipping operations, particularly in 
complex traffic situations.

1.2. Research gaps and contributions

The critical literature review in Section 1.1 indicates that, despite 
significant advancements in ship collision risk assessment and damage 
prediction methodologies, several research gaps still remain. Current 
probabilistic and simulation-based approaches are often limited in their 
ability to address real-time and real-world complexities, particularly in 
scenarios involving diverse ship types, dynamic collision scenarios, and 
environmental conditions. Probabilistic models rely heavily on histori
cal data, which may not capture future scenarios accurately, while 
simulation-based methods, such as finite element analysis, are compu
tationally intensive and lack real-time of rapid applicability. Although 
machine learning techniques have demonstrated potential in capturing 
nonlinear relationships and expediting damage assessments, existing 
models frequently fall short in reliably predicting collision damage 
consequences during real operations. This gap underscores the need for 
advanced, hybrid methodologies that integrate the strengths of tradi
tional physics-based simulation models with the adaptability and effi
ciency of deep learning to enable accurate, real-time assessments of 
collision damage consequences under complex real operational 
conditions.

This paper presents a deep learning-based framework that addresses 
a critical gap in real-time collision damage consequences evaluation for 
ship collision risk assessment. The proposed hybrid deep learning model 
combines the hyperparameter optimization algorithm with advanced 
deep learning architectures, integrating Long Short-Term Memory 
(LSTM) networks and Transformer models for effective regression of 
complex temporal data. The Dung Beetle Optimization (DBO) algorithm 
is further utilized to update the hyperparameters, enhancing predictive 
accuracy and overall performance. By integrating AIS data with damage 
simulations generated through the Super Element (SE) method, the 
study constructs a comprehensive database derived from real opera
tional data of Ro-Pax ships in the Gulf of Finland. The proposed hybrid 
deep learning model not only significantly improves the accuracy of 
damage prediction but also demonstrates robust generalization across a 
wide range of collision scenarios in real operational environments. 
Notably, the model’s ability to rapidly assess collision con
sequences—achieving results in less than 0.1 s—offers a substantial 
computational advantage over traditional methods. This breakthrough 
enables the evaluation of realistic, potential collision scenarios in real 
time, providing ship operators with a highly effective tool for enhancing 
maritime safety and supporting intelligent decision-making in complex 
traffic conditions. The framework represents a significant advancement 
in proactive risk management, contributing to more efficient collision 
prevention strategies.

The rest of this paper is organized as follows. Section 2 presents the 
research framework and methods, including the comprehensive data
base, the hybrid deep learning model, and the AI-based surrogate model 
for collision damage prediction. Section 3 focuses on case studies and 
results, discussing collision scenarios, ship damage predictions, and 
evaluations. Section 4 concludes the paper with key findings and future 
research directions.

2. Research framework and methods

In this paper, the SE method is employed to develop a comprehensive 
database that encompasses collision scenarios and associated damages. 
A hybrid deep learning model, combining Long Short-Term Memory 

(LSTM) networks and Transformer models, is utilized. The Dung Beetle 
Optimization (DBO) algorithm is applied to optimize the hyper
parameters of this Transformer-LSTM model. The trained ship damage 
prediction model is then tested and validated, with a particular focus on 
Ro-Pax ships operating in the Gulf of Finland. The methodology pre
sented comprises the following three steps (see Fig. 1). 

• Step I: Development of a comprehensive database of collision sce
narios and associated damages

In this step, a detailed database is created by simulating various 
collision scenarios using AIS data and incorporating key ship-related 
parameters such as ship type, speed, and collision angle, etc. The SE 
method is employed to idealize the damage extends. For each simulated 
collision scenario, collision breaches are assessed using the SE method in 
software SHARP (Conti et al., 2021). This method allows for a more 
precise representation of the structural impact during collisions. Then, a 
comprehensive database is created, encompassing over 5500 collision 
scenarios and their associated damages. This database serves as the 
foundation for training the predictive model. It therefore ensures that it 
is grounded in realistic and diverse scenarios. 

• Step II: Hybrid deep learning model development for collision 
damage prediction

In this step, a hybrid deep learning model is developed by integrating 
LSTM networks with attention mechanisms and Transformer architec
ture. The LSTM network is particularly effective in capturing long-term 
dependencies in sequential data, while the Transformer model enhances 
the network’s ability to focus on the most relevant features within the 
data streams. The Dung Beetle Optimization (DBO) algorithm is 
employed to update the hyperparameters of the Transformer-LSTM 
model. The choice of DBO is because of its proven efficiency in 
handling complex optimization problems with multiple parameters, 
thus ensuring that the model is not only accurate but also computa
tionally efficient. The final AI-based surrogate model, optimized through 
DBO, is saved for real-time application. By inputting the dynamic 
collision information (ship type, ship speed, ship draft, collision angle, 
etc.) of the collision scenario, the model can calculate potential collision 
consequences within 0.1 s (see more in Section 3). This model is spe
cifically tailored for predicting ship collision damages in the Gulf of 
Finland, potentially allowing it to be directly applicable to real collision 
scenarios. 

• Step III: AI-based surrogate model for real-time collision damage 
prediction

The AI-based surrogate model undergoes extensive validation using 
k-fold cross-validation techniques to ensure its robustness and accuracy. 
Performance metrics namely the R-squared, Root Mean Square Error 
(RMSE), and Mean Absolute Error (MAE) are used to benchmark the 
model against traditional methods. The validated model is then applied 
to real collision scenarios, with a particular focus on Ro-Pax ships in the 
Gulf of Finland. This application tests the model’s generalization capa
bilities. It ensures that it can accurately predict collision damage in 
diverse operational conditions. The results are analysed to validate the 
model’s predictions, comparing them against actual simulated data. The 
potential for future applications is also explored, particularly in terms of 
enhancing maritime safety protocols and the operational decision- 
making processes.

2.1. Comprehensive database of collision scenarios and associated 
damages

The database presented in this section encompasses over 5500 ship 
collision scenarios and their associated damages. It forms the foundation 
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for training predictive models, thus ensuring they are grounded in 
realistic and diverse scenarios. By meticulously cataloguing details from 
numerous simulations conducted with SHARP software (Conti et al., 
2021), the database captures critical parameters like ship specifications, 
collision angles, impact velocities, and associated damage dimensions. 
The data enhance the accuracy and reliability of predictive models.

2.1.1. Super element method
The SE method is employed to model the ship structure using large- 

sized structural units, referred to as super elements. This approach le
verages closed-form analytical formulations that have been extensively 
validated in Simonsen and Ocakli (1999) and applied in the literature 
(Conti et al., 2021; Le Sourne et al., 2021). These formulations, derived 
from principles of plastic limit analysis and supported by experimental 
data, characterize the resistance and energy dissipation properties of SE, 
which vary depending on their structural type and the specific defor
mation mechanisms they undergo. Additionally, previous studies indi
cate that the SE solvers, SHARP, have been shown to be both accurate 
and efficient in solving the collision mechanics of ships (Kim et al., 
2022).

During a collision, as the impacting ship penetrates the structure of a 
struck ship, the super elements are sequentially activated. The contri
bution of each activated SE to the total collision force is then evaluated. 
The force F leading to the collapse of a given structural component is 
determined using the upper-bound theorem (Jones, 1989), shown as: 

F ⋅ δ̇ =

∫∫∫

V

σij⋅ϵ̇ij⋅dV (1) 

where, δ̇ is the surge velocity of the striking ship, σij represents the stress 
tensor of the component, ϵ̇ij d enotes the strain rate tensor of the 
component, and V is the volume of the structural component.

To facilitate for an analytical derivation of the force F, two as
sumptions are made: (1) The material constituting the structure is 
assumed to behave as a perfectly rigid-plastic solid, and (2) Shear effects 
near the edges of the plate are neglected, allowing for the internal en
ergy rate to be computed as the sum of bending and membrane contri
butions, which are considered fully uncoupled.

If we consider a plate in a plane-stress condition, assuming that 
bending deformations are localized within m plastic hinges, the bending 
energy rate Ėb and membrane energy rate Ėm can be calculated using 

Ėb = M0

∑m

k=1
θ̇klk (2) 

Ėm =
2σ0tp

̅̅̅
3

√

∫∫

A

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϵ̇2
11 + ϵ̇2

22 + ϵ̇2
12 + ϵ̇11ϵ̇22

√

⋅dA (3) 

where M0 represents the fully plastic bending moment, σ0 is the flow 
stress, A and tp denote the area and thickness of the plate, respectively, 
and θk and lk are correspond to the rotation and length of the k-th hinge.

The SE method is implemented within the SHARP software, thus 
enabling detailed modelling of ship structures during collision events. As 
depicted in Fig. 2 (a), the model categorizes the struck ship into four 
distinct types of SE namely (1) Hull and longitudinal bulkheads, (2) 
Vertical frames and transverse bulkheads, (3) Secondary stiffeners, and 
(4) Stringers, decks, and bottom structures. This classification allows for 
an accurate representation of the structural behaviour under collision 
forces, thus providing critical insights into the energy dissipation and 
failure mechanisms during maritime accidents.

In SHARP, a collision scenario is defined in Fig. 2 (b), where the 
damage bounding box is estimated based on the calculated penetration 
and the geometry of the striking ship’s bow.

2.1.2. Struck ship and geometrical damage model
In this paper, the struck ship was modelled using the SE approach 

over a 100-m section centered in way of the mid-ship area, with SE 
components defined for the side shell, decks, transverse and longitudinal 
bulkheads, see Table 1. To optimize computational efficiency, contin
uous decks with uniform thickness were modelled, while floors, girders, 
and secondary rooms were excluded. All materials were treated as rigid- 
perfectly plastic, using S235 mild steel properties, see Table 1. The 
membrane strain was calculated for the impacted SE and compared to a 
10% failure strain, as proposed by Lützen (2001). For decks and bulk
heads, the deformation was modelled by a concertina splitting mode 
followed by edge tearing, with resisting forces compared to empirical 

Fig. 1. The deep learning-based framework for the prediction of ship damage in real conditions.
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thresholds derived from weld characteristics (Taimuri et al., 2022). The 
ship hydrodynamic properties, necessary for the MCOL method 
(external dynamics solver within SHARP software), were obtained via 
BV Hydrostar software (Kim et al., 2022), with input data detailed in 
Table 2, assuming infinite water depth and no forward speed.

Before discussing the crash analysis results, it is crucial to establish 
the framework for damage characterization. From a geometric 
perspective, collision-induced damage (leakage opening) is represented 
as a box. This box features two surfaces aligned with the waterplane, two 
aligned with the transverse plane of the ship, and two shaped to follow 
the hull’s longitudinal contour at the waterline. It intersects both the 
waterline and one side of the ship. The damage is characterized by six 
geometrical parameters namely indside, Xc, Lx, Ly, zUL, zLL, see Fig. 3. 
Accordingly, the damage height can be defined as: Dh = zUL − zLL. In 
SOLAS (IMO, 2006), the lower vertical damage limit zLL is typically not 
treated as a random variable, with a worst-case approach being used for 
computing the s-factor in case of horizontal subdivision below the 
waterline. Bulian et al. (2019) introduced the probabilistic approach to 
this parameter, which is used in this paper. The method incorporates the 
probabilistic description of zLL within the extended SOLAS framework.

2.1.3. Collision scenarios and associated damages calculation
Collision scenarios at sea can be detected using AIS data, see Zhang 

et al. (2021a,b). The identified collisions and their relative striking po
sitions can be classified into the following categories: (a) head-on, (b) 
front-side, (c) frontal, (d) back-side, and (e) rear-end, as illustrated in 
Fig. 4. The parameters characterizing each collision scenario can be 
extracted, as demonstrated in Fig. 2 (b) and Table 3. These parameters 
enable the descriptions of ship collision scenarios and the estimation of 
the probable relative collision location along the ship hull and collision 
energy, which are critical for conducting a thorough ship collision 
damage analysis.

Additionally, based on our previous study (Zhang et al., 2021a,b), 
AIS data was used to identify all ships posing collision risks to Ro-Pax 
ships in the Gulf of Finland. Through this analysis, 11 representative 
striking ship types were categorized. This selection reflects real-world 
scenarios in a region with significant maritime activity, ensuring the 
practical applicability and relevance of the study. The striking ships are 
categorized into 11 clusters, with their general characteristics detailed 
in Table 3, while the information pertaining to the struck ship is pro
vided in Table 4. The primary objective of this super element method is 
to calculate the damage dimensions for a specific ship under operational 
conditions. In SOLAS (IMO, 2018), the damage distributions assume that 
a breach occurred following a collision event. Therefore, all potential 
collision scenarios are simulated on the reference ship, treated as the 
struck ship (Table 1), using the crash analysis software SHARP. Results 
of these SHARP simulations are summarized in Table 5. They demon
strate ship collision damage length DL, penetration DP, height DH etc, see 
Fig. 3.

In addition to the comprehensive simulations, the collision scenarios 
and the corresponding damages have been meticulously catalogued to 
construct a database, that comprises of over 5500 collision scenarios and 
their associated damages and consists of the backbone of the predictive 
model, see Section 3.1. By incorporating such a wide range of realistic 
and diverse collision scenarios, the deep learning model can be trained 
to provide accurate and reliable predictions of various collision 
scenarios.

2.2. A hybrid deep learning model for collision damage prediction

The proposed deep learning model synergizes the strengths of 
traditional machine learning techniques with advanced deep learning 
architectures to effectively manage complex temporal data. Specifically, 
the model integrates LSTM networks and Transformer models, 
leveraging their respective advantages in regression modelling. Addi
tionally, a DBO algorithm is employed to update the hyperparameters of 
the hybrid model, thereby enhancing its predictive accuracy and overall 
performance.

2.2.1. Transformer-LSTM model with DBO algorithm optimization
Although LSTM can handle long data sequences, there may be 

attenuation for very long sequence messaging. However, the self- 

Fig. 2. Super element method to simulate ship collision damage.

Table 1 
Struck ship SHARP model and material parameters.

Parameter Value Parameter Value
LPP [m] 216.8 Yield 

Strength 
[MPa]

235

Breath moulded 
B [m]

32.2 Tensile 
Strength 
[MPa]

400

Depth D [m] 16 Flow Stress 
[MPa]

317.5

Draft Dr [m] 7.2 Failure 
Strain [-]

10%

Displacement 
[tons]

33 
923

​ ​

Table 2 
The input data used for hydrodynamic calculations in Hydrostar.

Parameter Value

Draft [m] 7.2
Displacement [tons] 33 923
KG [m] 15.14
Gyration radius in roll Rxx [m] 11
Gyration radius in pitch Ryy [m] 60
Gyration radius in yaw Rzz [m] 61
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attention mechanism in a Transformer can directly capture the rela
tionship between any two positions in a sequence, regardless of distance.

Combining LSTM and Transformer models leverages the sequence 
memory capability of LSTM and the global modelling capability of a 
Transformer. Thus, a hybrid model can capture long-distance de
pendencies more effectively and can enhance the extraction of diverse 
features, see Fig. 5. The input data X = (x1, x2, …, xt), containing in
formation for the past t moments, is processed by LSTM to output hidden 
states (H1, H2, …, Ht). These hidden states are then fed into the Trans
former’s encoder, which processes them through its attention and feed- 
forward layers. The final output of the Transformer is passed through a 
fully connected layer to match the target values dimensionality.

This hybrid deep learning model significantly enhances real-time 
collision damage prediction by combining the strengths of LSTM and 
Transformer models, enabling the predictive model to accurately cap
ture complex temporal patterns and long-range dependencies that are 
crucial for predicting associated collision damage of potential collision 
scenario with greater precision.

2.2.1.1. Long Short-Term Memory (LSTM). Conventional Recurrent 
Neural Networks (RNNs) suffer from gradient explosion and vanishing 
issues that may limit their performance in long sequence predictions (Yu 
et al., 2019). To address this, the LSTM model introduces three gates 
namely input, output, and forget. These gates allow for effective utili
zation of the long-distance temporal information and improve the 
model’s learning capability.

As shown in Fig. 6, at a time step t, the current input is combined 
with the previous hidden state and processed by the Sigmoid (σ) acti
vation function to compute the gate values as Eqs. (4)–(6). 

Ft = σ(WF ⋅ [Ht−1, Xt ] + bF), (4) 

It = σ(WI ⋅ [Ht−1, Xt ] + bI), (5) 

Ot = σ(WO ⋅ [Ht−1, Xt ] + bO), (6) 

where WF, WI, WO are the weight matrices of the forget, input and 
output gates, and bF, bI, bO are their respective biases.

The candidate memory element C̃t was computed as shown in Eq. 
(7), using tanh as the activation function. In this way some information 
has been retained by multiplying the output of the forget gate, Ft with 
the hidden state Ht−1. By adding the memory cell to the information 
obtained after the oblivion gate selection we can obtain the new cell 
state Ct . Finally, the latest hidden state Ht is obtained by combining the 
output gates Ot and Ct as shown in Eqs. (8) and (9). 

C̃t = tan h(Wc ⋅ [Ht−1, Xt ] + bc), (7) 

Ct = Ft*Ht−1 + It*C̃t , (8) 

Ht = Ot*tan h(Ct). (9) 

2.2.1.2. Transformer model. The Transformer model utilizes multi-head 
self-attention mechanisms and an encoder-decoder architecture to 
extract deep features from big data streams (Han et al., 2022). Unlike 
other neural networks, Transformers can handle larger datasets, provide 
higher predictive performance, and have superior learning capabilities 
(Zhang et al., 2023b, 2024). As shown in Fig. 7, a Transformer’s encoder 
consists of a stack of N identical layers, each with two sub-layers namely 
a multi-head self-attention mechanism and a fully connected 
feed-forward network. Both networks are normalized and use residual 

Fig. 3. The overview of ship collision damage geometrical parameters. (indside: Damage side, Port side (+1) or starboard side (−1); Xc: Longitudinal position of the 
center of the damage [m]; Lx: Longitudinal extent of the damage/Damage Length [m]; Ly: Transversal extent of the damage/Penetration [m]; zUL: Damage vertical 
position upper limit [m]; zLL: Damage vertical position lower limit [m]).

Fig. 4. Collision scenarios relative striking positions (Zhang et al., 2021a,b).

Table 3 
Collision scenario parameters.

Collision scenario parameters

Scenario id Scenario 
ID per 
striking 
ship

Striking 
ship id

Length 
Overall 
[m]

Breadth 
Moulded 
[m]

Max. Draft 
[m]

Striking 
Ship 
initial 
surge 
velocity 
[m/s]

Striking 
ship draft 
[-]

Struck Ship 
initial 
surge 
velocity 
[m/s]

Struck 
Ship 
draft [-]

Collision 
angle 
[deg]

Collision 
location 
[m]
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connections. The decoder similarly consists of N identical layers, with an 
additional sub-layer to masked attention heads.

The input data, combined with positional encoding, is first processed 
by the encoder consisting of N identical layers. The final output is ob
tained through a linear layer, which maps the decoder’s output to 
continuous values for regression predictions.

In a Transformer model, position encoding is added to the model as 
follows: 

PE(pos,2i) = sin
(
pos

/
100002i/dmodel

)
, (10) 

PE(pos,2i+1) = cos
(
pos

/
100002i/dmodel

)
, (11) 

where pos is the position and i is the dimension of the dmodel.
The attention mechanism computes the scaled dot-product attention 

as per Eq. (9): 

Attention(Q, K, V) = softmax
(

QKT
̅̅̅̅̅
dk

√

)

V, (12) 

The multi-head attention is formulated according to Eq. (13) and 
each head is defined as shown in Eq. (14). 

MultiHead(Q, K, V) = Concat(head1, …, headh)WO, (13) 

where headi = Attention
(
QWQ

i , KWK
i , VWV

i

)
, (14) 

To prevent access to future tokens during training, a causal mask is 
applied to the self-attention mechanism in decoder. The attention 
computation becomes as Eq. (15)

Masked − Attention(Q, K, V) = Y = softmax
(

QKT
̅̅̅̅̅
dk

√ + Mask
)

V, (15) 

Table 4 
The ID of the striking ships and their general characteristics.

ID Type Length Overall 
[m]

Breadth Moulded 
[m]

Min. Draft 
[m]

Inter. Draft 
[m]

Max. Draft 
[m]

Depth 
[m]

Displacement @maxDraft 
[tons]

Structure

1 Cargo Vessel 1 92 14,0 3,3 4,3 4,9 10,0 3500 Rigid
2 OSV 80 17,6 4,0 5,7 6,9 13,8 3500 Rigid
3 Chemical 

Carrier
110 19,5 5,5 6,8 7,6 10,6 11 064 Rigid

4 Gas Carrier 155 22,7 5,5 6,4 6,9 18,0 16 006 Rigid
5 Cargo Vessel 2 145 15,9 4,8 6,7 8,0 11,2 15 415 Rigid
6 RoRo Vessel 180 30,5 5,5 6,3 6,8 15,8 22 062 Rigid
7 Passenger 

Vessel
251 28,8 5,6 6,2 6,6 19,4 29 558 Rigid

8 RoPax Vessel 221 30,0 5,9 6,5 6,9 15,3 30 114 Rigid
9 Bulk Carrier 180 30,0 5,7 8,3 10,0 15,0 50 000 Rigid
10 Container 

Vessel
300 48,2 8,0 10,7 12,5 24,6 119 130 Rigid

11 Tanker 274 42,0 8,9 12,5 14,9 21,0 140 000 Rigid

Table 5 
The associated ship collision damage parameters from SHARP software.

Damage bounding box output from crash analysis

Computation status [-] Damage Length DL [m] Penetration DP [m] Waterline zUL [m] Bottom zLL [m] Damage Height DH [m] Dissipated energy [MJ]

Fig. 5. The structure diagram of Transformer-LSTM with DBO optimization algorithm.
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where the mask ensures that the model only attends to positions up to 
the current token.

The feed-forward network applies ReLU activation 
(Mastromichalakis, 2020) as Eqs. (16) and (17). 

FFN(x) = max(0, xW1 + b1)W2 + b2, (16) 

ReLU(x) = (x)
+

= max(0, x) =

{
x ifx > 0
0 ifx⩽0 , (17) 

where Q, K, V are query, key, and value respectively, 
̅̅̅̅̅
dk

√
is the vector 

dimension, h is the number of parallel attention heads, WQ
i , WK

i , WV
i are 

the weight matrices, W1, W2 are the weights, and b1, b2 are the biases. 
These components enable the Transformer to capture complex patterns 
and relationships in data, thus making it a powerful tool for various 
predictive tasks.

Finally, the encoder-decoder attention attends over the encoder’s 
output. Here, the keys and values come from the encoder’s output 
ZEncoder, while the queries are derived from the decoder’s previous layer 
output as Eq. (18). 

Q = YWQ, K = ZEncoderWk, V = ZEncoderWv, (18) 

These components, combined with the feed-forward network and 

causal masking, make the Transformer a versatile model for regression 
tasks.

2.2.1.3. The DBO algorithm. The Dung Beetle Optimization (DBO) al
gorithm is population-based optimizer inspired by the active behaviour 
of dung beetles in nature, i.e., rolling, dancing, foraging, stealing and 
breeding (Li et al., 2024). As compared with traditional optimization 
algorithms, the dung beetle algorithm has significant advantages in 
terms of convergence speed, solution accuracy and stability. Ball-rolling 
dung beetles roll their dung balls in a straight line to prevent competi
tion from other dung beetles during the rolling process. However, the 
intensity of the celestial light source or natural factors will cause the 
dung beetle’s travelling path will become curved. During the roll, the 
Rolling Dung Beetle position is updated as: 

xi(t + 1) = xi(t) + α × k × xi(t − 1) + b × Δx,

Δx = | xi( t ) − Xw |,
(19) 

where t is the number of iterations, xi(t) denotes the position of the i-th, 
dung beetle in the t-th iteration, k ∈ (0, 0.2] is the deflection coefficient, 
b ∈ (0, 1), α is taken as −1 or 1, Xw is the position of the worst dung 
beetle in the population, and Δx is the simulated change in light in
tensity.

When the Dung Beetle Roller encounters an obstacle that prevents it 
from moving forward, it changes its course by dancing to get a new 
route. The exact location of the update is listed below: 

xi(t + 1) = xi(t) + tan(θ)|xi(t) − xi(t − 1)|, (20) 

where θ ∈ [0, π] is the deflection angle.
Selection of suitable spawning sites is crucial for dung beetles to 

provide a safe environment for their offspring. Therefore, a boundary 
selection strategy is proposed to model the spawning area of dung 
beetles as: 

Lb* = max(X* × (1-R), Lb) Ub* = min(X* × (1 + R), Ub) (21) 

where X* is the current local optimum, Lb* is the lower boundary of the 
spawning region, and Ub* is the upper boundary of the spawning region, 
R is the inertia weight.

In the model it is assumed that each female dung beetle lays only one 
egg in each iteration. The boundary range of the spawning area varies 
dynamically with the value, so the location of the egg also changes 
dynamically during the iteration as follows: 

Bi(t + 1) = X* + b1 × (Bi(t) − Lb*) + b2 × (Bi(t) − Ub*), (22) 

where Bi(t) is the information about the position of the i-th ovoid at the 
t-th iteration, b1 and b2 are two independent random vectors of size 1 ×

D, D is the dimension.
Baby dung beetles dig holes in the ground in search of food and their 

boundaries of the optimal foraging area are defined as: 

Lbb
= max

(
Xb × (1-R), Lb

)
Ubb

= min
(
Xb × (1 + R), Ub

)
(23) 

where Xb is the global optimal position, and Lbb and Ubb are the lower 
and upper bounds of the optimal foraging range, respectively. Little 
Dung Beetle foraging locations have been updated as follows: 

xi(t + 1) = xi(t) + C1 ×
(

xi(t) − Lbb
)

+ C2 ×
(

xi(t) − Ubb
)

, (24) 

where xi(t) is the position information of the t-th small dung beetle in t 
iterations, C1 is a random number obeying a normal distribution, C2 ∈

(0, 1) the random vector.
In populations there will be some dung beetles that steal dung from 

other dung beetle balls from other dung beetles and are known as 
Thieving Dung Beetles. The location of the Thieving Dung Beetle can be 
updated as follows: 

Fig. 6. Long short-term memory neural network structure diagram.

Fig. 7. The diagram of Transformer structure.
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xi(t + 1) = Xb + S × g ×
(
|xi(t) − X*| +

⃒
⃒xi(t) − Xb⃒

⃒
)
, (25) 

where xi(t) is the position information of the i-th thief dung beetle at the 
t-th iteration, g is a random vector of 1 × D and follows a normal dis
tribution, and S is a constant value.

Initially, the DBO algorithm establishes the range of values for the 
hyperparameters, such as the learning rate, number of neurons, and 
number of iterations, as well as the initial locations of the dung beetles. 
Subsequently, the population size for each type of a dung beetle is 
defined. The algorithm then proceeds to update the positions of the ball- 
rolling, breeding, small, and thief dung beetles according to the estab
lished ranges, applying boundary function constraints on the hyper
parameters. Through the fitness function, it evaluates the optimal and 
worst fitness individuals, comparing the best fitness of the current 
iteration with the global best fitness. If the current fitness surpasses the 
global best, the algorithm updates the parameters accordingly. Finally, 
the algorithm verifies if the termination condition is met. If satisfied, it 
sets the global optimal parameters for the Transformer-LSTM model. If 
not, the process is reiterated, continuously refining the model parame
ters to achieve optimal performance. This iterative optimization ensures 
that the Transformer-LSTM model attains the highest possible accuracy 
and efficiency for predicting ship damage dimensions. By integrating 
these advanced AI techniques and optimization algorithms, this hybrid 
model significantly enhances the prediction accuracy of ship collision 
damages in real conditions.

2.2.2. Model evaluation
A predictive model that leverages the hybrid deep learning model 

introduced in Section 2.2.1 has been developed to capture the complex 
dynamics of collision scenarios and the resulting damage dimensions in 
real conditions. This model is designed to represent the nonlinear re
lationships between dynamic collision risks and their consequences with 
precision. The predictive accuracy of the model is rigorously evaluated 
against historical operational data using metrics such as Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), coefficient of 
determination (R2), as defined in Eqs. (24–26). To ensure a robust 
assessment of the model’s generalization capability, the widely recog
nized k-fold cross-validation method is employed. This involves dividing 
the dataset into k equally sized subsets, or folds, and iteratively using 
each fold as a validation set while the remaining k-1 folds serve as the 
training set, see Fig. 8. By rotating through all folds, performance met
rics are calculated after each iteration, and the results are averaged, 
providing a comprehensive evaluation of the model’s predictive 
performance. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1
(yn − yn

∧
)

2

√
√
√
√ (26) 

MAE =
1
N

∑N

n=1
(yn − yn

∧
) (27) 

R2 = 1 −
∑N

n=1
(yn − yn

∧
)

2
/ ∑N

n=1
(yn − yn

−
)

2 (28) 

where, yn is the actual value, yn
∧

denotes the predicted value, yn
−

is the 
mean value.

2.3. AI-based surrogate model for real-time prediction of collision damage

An AI-based surrogate model in this study refers to a computationally 
efficient approximation model, derived from a trained deep learning 
framework, that replicates the behavior of complex and resource- 
intensive numerical simulations. This section details the implementa
tion of an AI-based surrogate model designed for the real-time predic
tion of collision damage. The process begins with the detection of 
potential collision scenarios in real conditions using Automatic Identi
fication System (AIS) data, followed by the application of the AI-based 
model to estimate collision damage dimensions. The accuracy of these 
predictions is then rigorously validated against detailed simulation re
sults using the super element method, see Fig. 9.

2.3.1. Collision scenarios detection using AIS data
The AIS serves as a critical tool for detecting potential collision 

scenarios between ships. AIS data provides essential dynamic informa
tion, including position, heading, course, speed, and ship type
—parameters that are vital for assessing collision risks. An Avoidance 
Behaviour-based Collision Detection Model (ABCD-M) is proposed to 
identify potential collision scenarios (Zhang et al., 2021a,b). The 
detection process involves continuous monitoring and analysis of these 
parameters to identify possible collision scenarios based on the trajec
tories of the ships involved. When a potential collision is detected, the 
method conducts a detailed analysis to evaluate the probability and 
possible impact of the collision. Collision probabilistic risk can be 
evaluated by collision risk index estimation method (i.e., Liu et al., 
2023; Zhang et al., 2021a,b). The possible collision damage of potential 
collision scenarios can be evaluated by the AI-based surrogate model 

Fig. 8. The k folds cross-validation for model evaluation.
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developed in Section 2.2. In the absence of any collision risk, the system 
ensures that safe operations are maintained.

2.3.2. Collision damage prediction using AI-based surrogate model
As shown in Figs. 9 and 10, upon identifying a potential collision 

scenario using AIS data, the AI-based surrogate model is activated to 
predict the extent of the resulting damage if no evasive actions of the 
involved ships are made (Zhang et al., 2021a,b). This model is trained on 
a comprehensive dataset of collision scenarios (see Section 2.2). It uti
lizes the identified parameters (e.g. relative position, speed, and ship 
type) to predict critical damage dimensions, including the length, 
height, and penetration of the possible collision impact. The model 
employs advanced deep learning techniques to effectively capture the 
complex, nonlinear relationships between collision scenarios and the 
resulting damage. After training, the model is ready for use as a surro
gate model. It can predict potential ship collision damage under real 
conditions, as shown in Fig. 11. This predictive capability provides 
valuable insights, facilitating informed decision-making for safe avoid
ance actions and further detailed analyses.

To ensure the robustness and reliability of the AI-based surrogate 
model, its damage predictions are systematically compared with results 

generated by a simulation tool. This simulation tool employs the super- 
element method to model the structural response of ships under collision 
conditions, producing detailed outputs on damage dimensions such as 
length, height, and penetration. By juxtaposing the AI model’s pre
dictions with these simulation results, the model’s accuracy is rigorously 
validated. This comparison not only affirms the model’s predictive 
performance but also guides further refinements, providing critical in
sights into the balance between computational efficiency and predictive 
accuracy, as reflected in the metrics of accuracy, comparison, and time 
illustrated in Fig. 9.

3. Case study and results

This section presents a case study focused on the Gulf of Finland, 
specifically addressing the selected struck ship as detailed in Section 
2.1.2. It provides an overview of the comprehensive database (dataset 1: 
simulation dataset) of collision scenarios and the associated damage 
assessments as detailed in Section 3.1. Additionally, it describes the 
training and validation process of the deep learning method applied in 
this context. Furthermore, section 3.3 elaborates on the application of 
these methodologies to the selected struck ship within the Gulf of 

Fig. 9. Applications of the AI-based surrogate model for real-time prediction of collision damage.

Fig. 10. The diagram of collision scenarios detection for collision risk assessment and decision-making support for collision risk mitigation.
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Finland (dataset 2: real collision scenarios detected by using AIS data).

3.1. Collision scenarios and associated damages

To create a comprehensive database of collision scenarios and 
associated damage assessments for developing a ship damage prediction 
model, various collision scenarios are designed, and the corresponding 
damages are simulated as follows.

3.1.1. Collision scenarios design
This section introduces the design of collision scenarios (dataset 1) 

aimed at achieving comprehensive coverage of potential collision events 
by utilizing quasi-random sequences for variable sampling and stratified 
sampling techniques (Mauro and Vassalos, 2023). An example of a 
collision scenario is presented in Fig. 12.

The objective has been to develop a comprehensive set of collision 
scenarios (dataset 1) that adequately represent the full spectrum of 
potential ship collision conditions while minimizing the number of 
simulations required as illustrated in Fig. 12. Fig. 13 presents the dis
tributions of key parameters of collision scenarios in the comprehensive 
database. The scenarios consider 11 types of striking ship bows, detailed 
further in Appendix A, and involve the reference ship (Ro-Ro passenger 
ship). The forward speed of the striking vessel prior to collision is 
stratified across several discrete levels (e.g., 2, 4, 6, 8, and 10 m/s)/ 
(3.89, 7.78, 11.66, 15.55, and 19.44 kn). The longitudinal position of 
impact along the reference ship’s length is determined using quasi- 
random sequences to ensure uniform coverage across different poten
tial points of impact between 0.2 Lpp and 0.8 Lpp. Similarly, the collision 
angle between the striking and reference ships is sampled using quasi- 
random sequences to comprehensively cover a range from 20 to 90◦. 

Given that the scenarios focus on mid-ship impacts (0.2–0.8 Lpp) with no 
initial surge velocity for the struck ship, it is deemed unnecessary to 
calculate the complementary collision angles from 90 to 160◦.

The vertical distance between the waterline and the bottom of the 
ship, accounting for various loading conditions (ship draft), is stratified 
at multiple levels. By combining stratified and quasi-random sampling 
techniques, the study efficiently explores the multi-dimensional 
parameter space defined by these variables. This comprehensive 
design space ensures that all relevant collision conditions are repre
sented, which is essential for the development of reliable surrogate 
models for damage estimation.

To reduce computational demands while still generating a robust set 
of scenarios, 500 quasi-random samples are selected for the longitudinal 
impact position and collision angle, combined with stratified levels for 
other variables, resulting in a database of 5500 collision scenarios (500 
scenarios per target ship across 11 target ships, see Appendix A), as 
shown in Fig. 13. This approach balances manageability with sufficient 
detail to support accurate real-time collision damage prediction.

3.1.2. The associated damages
For each collision scenario, the damage characteristics are obtained 

through simulations conducted using the SHARP software. These cal
culations focus on the geometrical attributes of the damage, specifically 
the damage length (DL), penetration (DP), and height (Dh = zUL − zLL), 
as defined by the vertical limits (zUL and zLL). The study encompasses a 
total of 5500 collision scenarios, designed to ensure a comprehensive 
representation of the damage space across a wide range of conditions. Of 
these, 5205 scenarios were successfully simulated, while 295 cases 
resulted in computational errors, as shown in Fig. 14. The results 
demonstrate a sufficiently broad distribution across the parameter 

Fig. 11. The diagram of the real time ship collision damage prediction using AI based surrogate model.

Fig. 12. The diagram of collision scenario.
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space, which is conducive to the development of AI-based surrogate 
models for the real-time prediction of ship damage under diverse con
ditions. These models have significant potential to enhance the appli
cability of real-time collision risk assessment tools (Figs. 9 and 10) for 
onboard use.

Ultimately, this section illustrates that the proposed approach to 
collision scenario design markedly improves the reliability and effi
ciency of real-time collision damage prediction models. By contributing 
a robust database of collision scenarios and corresponding damage as
sessments, this approach supports the advancement of onboard decision 
support systems and safety management practices in maritime 
operations.

3.2. Ship damages prediction using the deep learning method

Based on the comprehensive database of collision scenarios and the 
associated damage assessments (see Figs. 13 and 14), this section in
troduces the deep learning methodology for predicting ship damage 
through a structured process of model training, validation, and testing. A 
hybrid deep learning model was developed, and after training, an AI- 
based surrogate for ship damage prediction was established. This sur
rogate model functions as a predictive tool, leveraging a carefully 
curated dataset to capture the complex relationships between input 
parameters and resultant damage. The model’s architecture ensures 
both robustness and generalization, making it well-suited for real-world 
applications in maritime environments. Its ability to accurately predict 

ship damage under diverse conditions marks a significant contribution 
to collision risk assessment and proactive safety management.

To meet the intelligent navigation requirements of ships in real 
conditions, this section specifies the use of several key input parameters 
for training the deep learning model. These parameters include the 
length, breadth, draft, speed, and type of the striking ship, the corre
sponding characteristics of the struck ship, and the angle of collision. 
These inputs comprehensively capture the spatial and temporal re
lationships between the colliding ships. The outputs of the model, con
sisting of the damage length, damage penetration, and damage height, 
are used to represent the consequences of ship collisions. Through 
training and validation, the deep learning model captures the nonlinear 
relationships between collision scenarios and their outcomes.

The section further details the testing process, where the model’s 
predictive performance is evaluated using a separate dataset to ensure 
its accuracy in real-world applications. Sensitivity analysis is conducted 
to assess the impact of variations in input parameters on the model’s 
outputs, thus confirming the model’s robustness in capturing the com
plexities of potential ship collision scenarios. The final trained model 
serves as an AI-based surrogate that facilitates intelligent decision- 
making in navigation, contributing to collision avoidance and damage 
mitigation strategies, see more in Fig. 15.

The paper describes a data partitioning strategy for training, vali
dation, and testing of a deep learning model using a comprehensive 
database containing 5205 cases. To ensure a robust model development 
process, 80% of the data is randomly selected from the database using a 
fixed random state (random_state = seed) to construct the training and 
validation dataset, while the remaining 20% of the data is reserved as 
the test set. For the training and validation of the model, the paper 
employs a 5-fold cross-validation technique on the 80% dataset. This 
approach involves dividing the training and validation dataset into five 
equally sized subsets (folds). In each iteration, one-fold is used as the 
validation set, while the other four folds are used for training the model, 
as shown in Fig. 8. This procedure is repeated five times, ensuring that 
each subset serves as the validation set exactly once. Such a method 
allows the model to be trained and validated on all available data, 
improving its generalization capabilities.

The test set, which comprises 20% of the original dataset and is not 
involved in any stage of the model training or cross-validation, is used to 
assess the final model’s performance, see Fig. 17. This provides an un
biased evaluation of the model’s predictive accuracy, ensuring its 
applicability and reliability for real-world scenarios.

To train the proposed LSTM-Transformer model, the architecture 
described in the paper consists of an input layer, two Long Short-Term 
Memory (LSTM) layers, each with 32 hidden units, followed by a 
Transformer Encoder layer with two attention heads, and an output 
layer. To prevent overfitting and enhance generalization, a layer with a 
dropout rate of 0.2 is included for regularization. The model is opti
mized using the QHAdam optimizer (Ma and Yarats, 2018) with an 
initial learning rate of 0.001, and a cosine learning rate scheduler is 
applied to dynamically adjust the learning rate throughout the training 
process. Additionally, for real-time collision consequence prediction, the 
model operates on a step-by-step basis, accounting for instantaneous 
changes in collision scenarios in real operational conditions. So, each 
prediction is made based on the current state, making the prediction step 
length equal to one. In practice, the time interval for each step aligns 
with the update frequency of the collision scenarios, ensuring real-time 
responsiveness to instantaneous changes. The paper employs the DBO 
algorithm to determine the optimal hyperparameters of the model, such 
as the number of layers, hidden dimensions, dropout rate, and learning 
rate. The DBO algorithm is utilized to efficiently search the hyper
parameter space, thus identifying the best settings that minimize the 
MSE during validation. This optimization approach aligns with estab
lished practices in hyperparameter tuning, such as grid search methods, 
and is implemented in conjunction with a 5-fold cross-validation 
scheme. The effectiveness of this methodology is supported by prior 

Fig. 13. The distributions of key parameters of collision scenarios in the 
comprehensive database.
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studies (Zhang et al., 2024a,b; Zhang et al., 2025), which have 
demonstrated the advantages of using cross-validation and advanced 
optimization techniques to enhance model performance.

The training and validation loss curves in Fig. 16 provide critical 
insights into the learning dynamics of the proposed LSTM-Transformer 
model. The curves demonstrate a consistent reduction in both training 

Fig. 14. The distributions of key parameters of associated damages in the comprehensive database.

Fig. 15. The deep learning processing of the ship damage prediction for model training, testing and application.
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and validation losses throughout the initial epochs, reflecting the 
model’s ability to progressively learn and adapt to the underlying data 
patterns. Notably, around the 70th epoch, both losses begin to stabilize, 
indicating that the model has reached a point where additional training 
does not significantly enhance its performance on the validation set.

This stabilization is a crucial indicator of the model’s optimal fitting. 
The minimal gap between training and validation losses at this point 
suggests that the model has struck a balance between underfitting and 
overfitting. It has effectively learned the relevant features of the training 
data without becoming overly complex or memorizing specific exam
ples, which would otherwise degrade its generalization ability to new, 
unseen data.

Furthermore, the convergence of the loss curves suggests that the 
model architecture, hyperparameters, and optimization strategy 
(including the use of dropout and the QHAdam optimizer with a cosine 
learning rate scheduler) have been appropriately tuned. The application 
of early stopping around the 70th epoch is supported by the lack of 
significant improvement in validation loss beyond this point, which 
prevents overfitting and ensures that the model retains a high level of 
generalizability.

Fig. 17 presents the performance of the trained deep learning model 
on a randomly selected 20% test dataset (1045 cases). The test results 
demonstrate the model’s ability to accurately predict the three critical 
damage parameters: damage length, damage penetration, and damage 

height, each with a high degree of correlation between predicted and 
ground truth values. The model achieves an R2 score of 0.84, indicating 
a strong linear relationship between the predicted and actual damage 
lengths. The MAE is 2.09 m, while the MSE is 11.99 m2, and the RMSE is 
3.46 m. These metrics confirm that the model can effectively capture the 
variability in damage length across different collision scenarios, with 
minimal prediction error. For damage penetration, the model also 
demonstrates a high degree of accuracy with an R2 score of 0.84. The 
MAE is 0.88 m, MSE is 1.58 m2, and RMSE is 1.26 m. These results 
indicate that the model can reliably predict the extent of damage 
penetration, maintaining a low prediction error and closely aligning 
with the actual observed values. The model’s performance in predicting 
damage height is slightly lower than for damage length and penetration, 
with an R2 score of 0.71. The MAE is 1.71 m, MSE is 9.95 m2, and RMSE 
is 3.15 m. While there is a reasonable degree of accuracy, the slightly 
lower R2 value suggests that the model captures the variations in dam
age height with less precision compared to the other two damage pa
rameters. However, it still maintains an acceptable level of performance, 
providing useful predictions for practical applications.

The results illustrate that the deep learning model is effective in 
predicting ship collision damage outcomes, with strong predictive per
formance for damage length and penetration and reasonably good per
formance for damage height. The high R2 values and low error metrics 
across all damage types confirm the model’s robustness and its capacity 

Fig. 16. The model performance evaluation.

Fig. 17. Model testing results of ship damage prediction based on Transformer-LSTM Model with DBO algorithm optimization.
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to generalize well to new, unseen data, validating its potential for real- 
world application in damage prediction and maritime safety analysis.

Figs. 18 and 19 present the testing results and sensitivity analysis of 
the ship damage prediction model for various striking ships, demon
strating the model’s ability to predict damage length, damage penetra
tion, and damage height across different collision scenarios.

The model generally performs well in predicting damage length, 
with most ships showing strong correlations between predicted and 

actual values, indicated by R2 values up to 0.95 (e.g., Ship IDs 8, 5, and 
2). Most ships have low MAE, MSE, and RMSE values, reflecting accurate 
predictions in most scenarios.

The model demonstrates robust performance in predicting damage 
penetration across different ships, with consistent R2 values ranging 
from 0.56 to 0.89. Ships like IDs 3, 5, and 7 exhibit high predictive ac
curacy with low associated errors, confirming the model’s reliability in 
estimating damage penetration.

Fig. 18. Model testing results of ship damage prediction for various striking ship (Ship ID 1–6).
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The model’s ability to predict damage height also shows satisfactory 
results for several ships, with R2 values reaching up to 0.92 (e.g., Ship 
IDs 7 and 8). These results highlight the model’s competence in 
capturing damage height with reasonable accuracy across multiple 
scenarios.

Overall, Figs. 18 and 19 indicate that the model performs effectively 
across various striking ship scenarios, with generally strong predictive 
accuracy for most damage parameters. However, the precision of the 
predictions varies somewhat across different striking ships, reflecting 
differences in model performance depending on the specific collision 
characteristics.

Table 6 presents a comprehensive evaluation of the predictive ac
curacy of various models for ship damage prediction i.e., MLP, DT, VSM, 

Fig. 19. Model testing results of ship damage prediction for various striking ship (Ship ID 7–11).

Table 6 
The accuracy evaluation for the prediction of ship damages using various tools.

Ship damage prediction Model R2 MAE 
(m)

MSE 
(m2)

RMSE 
(m)

LSTM-Transformer model 0.7231 2.1811 3.2742 10.7203
Transformer model 0.7936 1.7052 2.8066 7.8773
MLP model 0.7415 2.0897 3.1366 9.8385
RNN model 0.7797 1.8138 2.8924 8.3662
DT model 0.4872 3.1100 4.6838 21.9381
VSM model 0.5465 3.0414 4.3434 18.8647
LSTM model 0.787 1.7607 2.8365 8.0459
LSTM-Transformer model with DBO 

algorithm optimization
0.8087 1.5666 2.7088 7.3377
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RNN, LSTM, Transformer,LSTM-Transformer, and LSTM-Transformer 
model with DBO algorithm optimization. The comparison reveals that 
the LSTM-Transformer model with DBO algorithm optimization ach
ieves the highest performance among all models tested. This model ex
hibits a superior coefficient of determination, indicating a strong 
correlation between predicted and actual values. Additionally, it dem
onstrates the lowest MAE, MSE, and RMSE, reflecting its enhanced 
capability in minimizing prediction errors.

In contrast, the Transformer model and the LSTM model also show 
strong performance, with R2 values of 0.7936 and 0.787, respectively. 
These models maintain relatively low error metrics, demonstrating their 
effectiveness in capturing the complex relationships inherent in the ship 
damage data. However, they fall slightly short of the predictive accuracy 
achieved by the proposed LSTM-Transformer model with DBO optimi
zation, underscoring the impact of the DBO algorithm in fine-tuning the 
model’s hyperparameters for optimal performance.

Other models, such as the RNN model, and the MLP model, provide 
moderate predictive accuracy, with acceptable MAE, MSE, and RMSE 
values, suggesting they are reasonably effective but not at the forefront 
of performance compared to the proposed model.

Conversely, traditional models like the DT model and the VSM show 
markedly lower performance. These models are characterized by higher 
error metrics (e.g., RMSE = 21.9381 m for the DT model), indicating 
significant limitations in their ability to generalize across the diverse 
collision scenarios and capture the underlying nonlinear relationships in 
the data.

Overall, the results from Table 6 clearly demonstrate the advantages 
of the proposed LSTM-Transformer model with DBO optimization in 
achieving superior predictive accuracy. This model’s robust perfor
mance highlights its potential for practical applications in ship damage 
prediction, offering a more reliable tool than both traditional machine 
learning models and other deep learning architectures without 
optimization.

3.3. Generalization evaluation and applications

To validate the generalization capability of the proposed deep 
learning method, potential collision scenarios (Dataset 2) in the Gulf of 
Finland were identified using an Avoidance Behavior-based Collision 
Detection Model (ABCD-M). As described by Zhang et al. (2021a,b), 
comprehensive research on AIS data processing and synchronization 
was carried out to ensure the availability of high-quality AIS data for this 
study. These methods were specifically developed to address challenges 
such as noise and missing values, providing a reliable foundation for the 
current analysis.

Using the cleaned AIS data, the ABCD-M detected potential collision 
scenarios involving struck ships with gross tonnages ranging from 10 
000 to 46 124 GT and lengths between 120 m and 218.8 m, covering the 
year 2029. In total, 3491 potential collision scenarios were initially 
identified, as illustrated in Fig. 20.

To refine the dataset, a filtering process was applied to exclude 
striking ships shorter than 50 m, as approximately 90% of these ships 

had lengths under 33 m, breadths under 10 m, and displacements below 
850 tons. Further filtering removed head-on and overtaking scenarios, 
retaining only crossing collision scenarios (collision angle is more than 
20◦, see more in Fig. 12). Following this filtering, 1529 collision sce
narios were deemed suitable for subsequent crash analysis (dataset 2). 
The distributions of the striking ship lengths, widths, speeds, and draft 
after filtering are shown in Fig. 21.

Potential collision scenario is a critical situation that triggers the ship 
to take evasive action when a collision accident may occur if no evasive 
action is taken (Zhang et al., 2021a,b). Based on the detected collision 
scenarios, the paper assumes that the striking ships did not undertake 
any evasive action. The trained deep learning model (from Section 3.2) 
was then used to predict the potential collision damage if no evasive 
action is taken. Notably, this paper assumes that the maximum draft of 
the ship is 120% of its actual draft. Additionally, to benchmark the 
predictions of the trained model, the SHARP software was used to 
simulate the same scenarios. The results of the SHARP simulations were 
compared with those from the trained model’s damage assessment, as 
depicted in Fig. 22. The results demonstrate that the proposed AI-based 
surrogate model effectively captures the intricate relationships between 
ship collision scenarios and the resulting damages, highlighting its 
strong potential for deployment in real operational conditions. 
Regarding computational time, the AI-based surrogate model demon
strates significant efficiency advantages, requiring less than 0.1 s per 
case, compared to several minute per case for the SHARP analysis. Thus, 
the AI-based surrogate model may offer a crucial tool for real-time 
estimation of potential collision consequences (damages), enabling 
rapid decision-making and risk assessment onboard ships.

The generalization evaluation and applications of the AI-based sur
rogate model to predict collision damages in real scenarios has signifi
cant implications for maritime safety management. The model’s ability 
to provide rapid and accurate predictions of collision outcomes allows 
for timely decision-making and the implementation of risk mitigation 
measures, such as adjusting ship courses or speeds to avoid potential 
collisions. This capability is particularly valuable in complex and con
gested maritime environments where real-time information is essential 
for ensuring safe navigation. Furthermore, t he model’s integration into 
shipboard decision support systems can enhance situational awareness 
by providing operators with a reliable tool to assess the potential 
severity of collisions. This predictive capability supports the proactive 
management of collision risks, reducing the likelihood of catastrophic 
outcomes such as ship capsizing, sinking, or severe environmental 
damage from oil spills.

3.4. Future works

Based on the proposed method for real-time prediction of collision 
damage consequences, future research will focus on the comprehensive 
integration of the ship maneuvering prediction model, collision proba
bility prediction model, and collision damage consequence prediction 
model to enhance onboard intelligent decision-making system adapt
ability and performance across diverse maritime environments for 

Fig. 20. The locations of the detected potential collision scenarios in the Gulf of Finland.
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proactive risk mitigation, as illustrated in Fig. 23. Incorporating real- 
time environmental and operational data, such as wave, wind, cur
rents, and maritime traffic, will be prioritized to improve prediction 
accuracy. Advanced ship maneuvering prediction models (Gil et al., 
2024; Zhang et al., 2023a) can be further explored by employing hybrid 
deep learning techniques, enabling the generation of precise and safe 
maneuvering commands while accounting for complex multi-ship in
teractions under real-world operational conditions. The integration of 
these models is expected to yield a robust system capable of accurately 
predicting collision probabilities and damage consequences based on 
realistic ship encounter situations at sea (Montewka et al., 2010; Zhang 
et al., 2021a,b). Furthermore, the integrated model will serve as the 

foundation for an onboard intelligent decision-making system, specif
ically designed to manage collision dynamics proactively. This system 
can be refined to generate and evaluate optimal maneuvering strategies 
that minimize collision risks and associated damage. Future work will 
emphasize testing and validating the system in real-world maritime 
operations, where it can provide predictive insights and proactive ship 
maneuvering risk management strategies (Zhang et al., 2024a,b; Zhang 
et al., 2025). Such efforts can ensure the practical applicability of the 
onboard intelligent decision-making system, delivering real-time deci
sion support that enhances the safety and efficiency of maritime 
navigation.

In this study, Ro-Pax ships were selected due to their distinct 

Fig. 21. The distributions of the striking ship lengths, widths, speeds, and draft.

Fig. 22. Comparative analysis of the predicted potential collision damages for detected collision scenarios using an AI-based surrogate model and SHARP 
simulations.
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operational characteristics, structural complexity, and significant safety 
implications (Montewka et al., 2014). This choice facilitated the 
demonstration of the proposed method’s effectiveness in real shipboard 
intelligent decision-making applications, particularly in predicting 
collision damage consequences. However, the framework is not limited 
to Ro-Pax ships and can be generalized to other vessel types by adapting 
it to their specific structural and operational features. Future research 
will focus on expanding the framework’s applicability by incorporating 
additional environmental and operational variables to refine prediction 
accuracy. Furthermore, collaboration with industry stakeholders and 
full-scale validation trials will ensure that the proposed system remains 
reliable, effective, and applicable to a wide range of maritime condi
tions, contributing to enhanced maritime safety and operational 
efficiency.

4. Conclusions

This paper presents an innovative deep learning-based framework 
for real-time prediction of ship collision damages in conditions, 
addressing a critical gap in current maritime safety management prac
tices. The framework integrates three key components: (1) a compre
hensive database of over 5500 collision scenarios and their associated 
damages, created using the SE method and AIS data; (2) a hybrid deep 
learning model that combines LSTM networks with Transformer models, 
optimized through the DBO algorithm; and (3) a validated AI-based 
surrogate model for real-time damage prediction applied to diverse 
maritime scenarios. Key findings of this study are summarized as 
follows. 

• The hybrid deep learning model, specifically the LSTM-Transformer 
model with DBO optimization, demonstrated superior predictive 
accuracy compared to traditional machine learning and deep 
learning models. It effectively captured the nonlinear relationships 
between ship collision scenarios and damage extents, achieving an 
R2 value of 0.81 and low error metrics across multiple damage 
parameters.

• The model’s validation through extensive k-fold cross-validation and 
generalization tests confirmed its robustness and reliability in pre
dicting collision damages across a wide range of scenarios. This 
capability was further supported by its successful application to real 
collision scenarios detected in the Gulf of Finland, where it accu
rately predicted collision damage outcomes with significant 

computational efficiency compared to conventional simulation 
methods.

• The proposed AI-based surrogate model may offer a promising tool 
for real-time maritime safety management. It enables rapid estima
tion of collision consequences, facilitating proactive decision-making 
and risk mitigation measures, which are crucial for maintaining safe 
navigation in complex and congested maritime environments.

In conclusion, the integration of advanced deep learning techniques 
and optimization algorithms, as demonstrated in this study, represents a 
significant advancement in maritime collision risk assessment. The 
proposed framework not only enhances the accuracy and efficiency of 
damage predictions but also contributes to the development of intelli
gent decision support systems for real-time operational safety.
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Appendix A 

Table A1 
The modelled striking ships bow shapes.

Id Side view Back view

1

2

3

4

5

6

7

8

(continued on next page)
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Table A1 (continued )

Id Side view Back view

9

10

11
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