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Iterative Filtering and Smoothing In Non-Linear and
Non-Gaussian Systems Using Conditional Moments

Filip Tronarp, Ángel F. García-Fernández, and Simo Särkkä, Senior Member, IEEE

Abstract—This letter presents the development of novel iter-
ated filters and smoothers that only require specification of the
conditional moments of the dynamic and measurement models.
This leads to generalisations of the iterated extended Kalman
filter, the iterated extended Kalman smoother, the iterated pos-
terior linearisation filter, and the iterated posterior linearisation
smoother. The connections to the previous algorithms are clarified
and a convergence analysis is provided. Furthermore, the merits
of the proposed algorithms are demonstrated in simulations of
the stochastic Ricker map where they are shown to have similar
or superior performance to competing algorithms.

Index Terms—State estimation, non-linear/non-Gaussian sys-
tems, statistical linear regression, iterative methods.

I. INTRODUCTION

STATE estimation is a frequently occurring problem in
science and engineering. Its applications include tracking,

audio signal processing, and time series modelling [1]–[4].
Formally, the system is described by a partially observed
Markov process (POMP) for which inference is conducted,
in the Bayesian sense, by computing conditional distributions
given the measurements resulting in either filtering or smooth-
ing distributions depending on what measurements are included
in the conditioning (see [2]). In linear Gaussian models, these
problems are efficiently solved by the Kalman filter (KF) and
the Rauch-Tung-Striebel (RTS) smoother [5], [6]. However,
exact inference is intractable in general.

In the case of a non-linear system excited by Gaussian
white noise, an early approach was to make local affine
approximations by means of Taylor series which results in
extended Kalman filter/smoother (EKF/EKS) [1], [2]. This
approach belongs to the assumed density framework [7], where
a Gaussian assumption is enforced on the state marginals. More
recently, other methods for assumed Gaussian estimation, based
on numerical integration, were suggested in [8], [9] (see [10] for
a thorough discussion) which can be seen as another approach
to linearising the system called statistical linear regression
(SLR) [11] (see also [12]). More general Gaussian filters can
be obtained if the conditional mean and variance of the dynamic
and measurement models are tractable [13], [14].

Although the aforementioned approaches are often adequate,
their performance can deteriorate severely when the system
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description departs too much from affine and Gaussian. In such
a case, sequential Monte Carlo offers an arbitrarily low ap-
proximation error, though at an arbitrarily large computational
cost [15]–[17]. This prompts investigations into lightweight
algorithms for approximate and accurate inference. Examples
that improve the update step are the recursive update filter
(RUF) [18] and the progressive Gaussian filters (PGF42/PGFL)
[19], [20]. However, RUF only operates under the additive
Gaussian noise assumption, PGF42 only operates under the
Gaussian excitation assumption, and the PGFL requires a
tractable likelihood, which is not always available. Moreover,
neither of the aforementioned methods offers improvement
to the smoothing recursion. On the other hand, Expectation
propagation [21] targets the smoothing solution. However, it
also requires a tractable likelihood and, in general, the required
integrals cannot be approximated with lightweight methods.

Another approach, which can improve filtering and smooth-
ing, though only applicable to the additive Gaussian noise case,
is the Gauss-Newton method resulting in the iterated extended
Kalman filter/smoother (IEKF/IEKS) [22], [23]; this enables
the use of traditional optimisation methods (see [24] for an
overview). This approach was recently extended on the basis
that it ought to be better to perform the SLR with respect
to the posterior distribution rather than the prior distribution.
While this is intractable, it leads to a scheme where the SLR
is iteratively computed using the current best approximation to
the posterior, why it is called iterated posterior linearisation
filtering/smoothing (IPLF/IPLS) [25], [26]. However, these
methods assume additive Gaussian noise.

In this letter, new iterative filters and smoothers are developed
by exploiting tractable conditional moments in the dynamic
and measurement models. The developed algorithms offer
accurate state estimation in a wide class of non-linear/non-
Gaussian models at a low computational cost and IEKF/IEKS
and IPLF/IPLS come out as special cases. The algorithms are
verified on the stochastic Ricker map [27], where iterations
turn out to be essential.

II. PROBLEM FORMULATION

Herein the problem of estimating the state in a POMP
is considered. More specifically, consider the latent Markov
process {Xt ∈ RDX}Tt=0 for which a series of imperfect
and noisy measurements are available, {Yt ∈ Y}Tt=1, where
Y ⊂ RDY . The system is then specified as follows:

Xt | Xt−1 = x ∼ fXt|Xt−1
(xt | x), (1a)

Yt | Xt = x ∼ fYt|Xt(yt | x), (1b)
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where X0 ∼ fX0
(x0), ∼ denotes drawn from or distributed

as, Y | X = x the random variable Y conditioned on X = x,
and fY |X(y | x) its probability density function (pdf)1. The
subscripts of the pdf f shall be omitted unless needed for
clarity. Furthermore, let E[X], C[X,Y ], and V[X] denote the
expected value of X , the cross-covariance matrix of X and Y ,
and the covariance matrix of X , respectively.

In state estimation, the goal is to obtain a series of
densities fXt|Y1:τ

(x | y1:τ ) := f(xt | y1:τ ); where t = τ and
τ > t correspond to filtering and smoothing, respectively [1],
[2]. As exact inference is generally intractable for the system in
Eq. (1), the filtering and smoothing densities are approximated
by Gaussians. Previous approaches are reviewed in Section II-A
and the present contributions are summarised in Section II-B.

A. Prior Work

Typically, the densities in Eq. (1) are implicitly defined by
a transformation of Gaussian variables according to

Xt = a(Xt−1,Wt), (2a)
Yt = c(Xt, Vt), (2b)

where Wt ∼ N (0,ΣWt) and Vt ∼ N (0,ΣVt) are mutually
independent white noise sequences. When a and c are non-
affine, a typical strategy is to make an implicit linear Gaussian
approximations according to [11]

Xt ≈ AtXt−1 + bt +Qt, (3a)
Yt ≈ CtXt + dt +Rt, (3b)

where At ∈ RDX×DX , bt ∈ RDX , Ct ∈ RDY ×DX , dt ∈ RDY
and Qt, Rt are white noise sequences with covariance matrices
ΣQt and ΣRt , respectively. Once the approximation in Eq. (3)
has been made, filtering and smoothing can be done by the
linear methods [5], [6]. If the parameters are chosen by Taylor
series linearisation around the filtered/predicted mean then
EKF/EKS are retrieved [1], [2] and sigma-point approximations
of the SLR with respect to the filtering/predictive distribution
[11] results in the sigma-point filters/smoothers [8], [9].
Hence, a series of linearisations of a and c are constructed
based on the sequence of approximate filtering and predictive
densities, {f(xt | y1:t)}Tt=1, {f(xt | y1:t−1)}Tt=1. This results
in an approximation of Eq. (2) by a linear time-varying system
of the form given in Eq. (3) for which inference can be
carried out based on linear estimation theory [5], [6]. The
IEKF/IEKS iteratively linearise the system by Taylor series
around the current mean of the approximate filtering/smoothing
distribution [22], [23]. On the other hand, IPLF/IPLS iteratively
linearise the system using SLR with respect to the current
approximate filtering/smoothing density [25], [26]. The RTS
smoother is given in Alg. 1 for future reference.

B. The Contribution

In this letter, linear methods for estimation in Eq. (1)
are developed under the assumptions that (i) E[Xt | Xt−1],
E[Yt | Xt], V[Xt | Xt−1], and V[Yt | Xt] are tractable and (ii)

1Here pdf is used for both discrete and continuous random variables.

Algorithm 1 Affine (RTS) Smoother
Input: prior moments µ0|0,Σ0|0 and measurement sequence {yt}Tt=1
Output: smoothing means {µt|T }Tt=0 and covariances {Σt|T }Tt=0

for t = 1 to t = T {Forward pass}
µt|t−1 ← Atµt−1|t−1 + bt {Prediction}
Σt|t−1 ← AtΣt−1|t−1A

T
t + ΣQt

Gt ← Σt−1|t−1A
T
t Σ−1

t|t−1
{Used in backward pass}

ΣYt|t−1 ← CtΣt|t−1C
T
t + ΣRt {Update}

Kt ← Σt|t−1C
T
t Σ−1

Yt|t−1

µt|t ← µt|t−1 +Kt(yt − Ctµt|t−1 − dt)
Σt|t ← Σt|t−1 −KtΣYt|t−1K

T
t

end
for t = T − 1 to t = 0 {Backward pass}
µt|T ← µt|t +Gt(µt+1|T − µt+1|t)
Σt|T ← Σt|t +Gt(Σt+1|T − Σt+1|t)GT

t
end

C[Xt, Xt−1] 6= 0, C[Yt, Xt] 6= 0, ∀t. This leads to extensions
of IEKF/IEKS and IPLF/IPLS since if Yt = c(Xt, Vt) then

E[Yt | Xt] =E[c(Xt, Vt) | Xt] (4a)

V[Yt | Xt] =E[c(Xt, Vt)c(Xt, Vt)
T | Xt]

− E[c(Xt, Vt) | Xt]E[c(Xt, Vt) | Xt]
T.

(4b)

These expectations are readily approximated by sigma-point
integration over Vt. More importantly, the present development
may be applied to systems that are not explicitly generated by
Gaussian excitations; consider, for example, Poisson measure-
ments, Yt | Xt = x ∼ Po(c exp(x)). Then

E[Yt | Xt] = V[Yt | Xt] = c exp(Xt), (5)

which does not fit in the frameworks [1]–[9] that assume Yt
of the form in Eq. (2), which would require an inversion of
the cumulative probability function, lacking closed form.

III. GENERALISED STATISTICAL LINEAR REGRESSION

Previous presentations of SLR have considered linearisation
of deterministic functions with respect to the distribution of its
random inputs [11], [12], [28]. Here, a more general presenta-
tion is required. Suppose a linear relationship is sought between
the random variables X and Y , Y = CX + d+R, with C and
d being linearisation parameters and R is a random variable
accounting for the error. Choosing (C, d) = arg minE[||R||2]
gives the SLR formulae that can be computed only using the
conditional moments. This can be seen by using laws of total
expectation/covariance and the principle of orthogonality (c.f
[29]). This results in Thm. 1 below.

Theorem 1. Let X and Y be random variables with finite
variance. The affine function, CX + d, that minimises the
mean square norm of the residual, R = Y − CX − d, and the
resulting moments of R are given by

C = C[Y,X]V[X]−1, d = E[Y ]− CE[X],

E[R] = 0, ΣR = V[Y ]− CV[X]CT.
(6)

Furthermore, the parameters C, d, and ΣR can be computed
using the conditional moments, as follows

E[Y ] = E[E[Y | X]], (7a)
V[Y ] = E[V[Y | X]] + V[E[Y | X]], (7b)

C[Y,X] = C[E[Y | X], X]. (7c)
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The consequence of Thm. 1 is that the POMP in Eq. (1)
can be linearised in a mean square optimal manner by just
computing expectations of the moments of Y | X , which are
possibly non-linear mappings of X , for example, see Eq. (5).
This means that applying Thm. 1 is in general intractable.
Fortunately, the usual approximation methods, Taylor series
and sigma-points, can still be used. The latter approximation
is obtained by expanding E[Y | X] and V[Y | X] around µ̂
according to

E[Y | X] ≈ E[Y | µ̂] + (∇XE[Y | X])(µ̂)(X − µ̂), (8a)
V[Y | X]i,j ≈ V[Y | µ̂]i,j , (8b)

where ∇X denotes the Jacobian operator, and then substituting
Eq. (8) into Eq. (7). On the other hand, the sigma-point
approach is to produce a set of points {X (n)}Nn=1 with
corresponding weights {w(n)}Nn=1 and then for any function,
γ(X), approximate its expectation, E[γ(X)], according to (see
[2], [8], [10])

E[γ(X)] ≈
N∑

n=1

w(n)γ(X (n)).

Therefore, with appropriate choices for γ (see Eq. (7)), the
joint moments of X and Y can be approximated.

IV. ITERATIVE FILTERS AND SMOOTHERS BASED ON
CONDITIONAL MOMENTS

On the basis of re-linearising the system around the current
posterior approximation, this section presents the development
of novel iterative filters and smoothers by repeated applications
of Thm. 1. The filter is presented in Section IV-A, where
emphasis is on the update as it is the only stage of the algorithm
that utilises iterations [25]. The iterative smoother is presented
in Section IV-B and a convergence theorem is provided in
Section IV-C. In Section IV-D, connections between the present
algorithms and IEKF/IEKS and IPLF/IPLS are explored.

A. Filter

Suppose a Gaussian approximation to the filtering pdf is
available, f(xt−1 | y1:t−1) ≈ N (xt−1;µt−1|t−1,Σt−1|t−1).
In order to form an approximation to the predictive
pdf, f(xt | y1:t−1), Thm. 1 is used to compute
the first two moments E[Xt] = E[E[Xt | Xt−1]] and
V[Xt] = E[V[Xt | Xt−1]] + V[E[Xt | Xt−1]], the outer
expectations being taken with respect to f(xt−1 | y1:t−1)
and the approximations described in Section III are used if
necessary. In the update, the linearisation parameters, Ct, dt,
and ΣRt (see Eq. (3)) can be acquired by using Thm. 1. The
approximate posterior moments of Xt are then computed with
the usual linear estimator (see Update step of Alg. 1).

The key insight of [25] was that posterior moment approx-
imations can be improved by re-computing the Ct, dt and ΣRt
using the current approximate posterior together with SLR,
while keeping the original predictive moments in the Update
step of Alg. 1. This yields a family of approximate posteriors
{f (j)X|Y (x)}Jj=0 with f (0)X|Y := fX(x), see Alg. 2. An illustrative
example of the update is provided in the supplement.

Algorithm 2 Conditional Moments Based Iterative Update
Input: prior moments µX ,ΣX , evaluators of E[Y | X], V[Y | X], meas-

urement y, and maximum number of iterations J .
Output: posterior moment approximations µ(J)

X|Y , Σ
(J)
X|Y .

Set µ(0)
X|Y ← µX and Σ

(0)
X|Y ← ΣX

for j = 1 to j = J
compute C(j), d(j), Σ

(j)
R using f (j−1)

X|Y and Thm. 1.
K(j) ← ΣX(C(j))T

(
C(j)ΣX(C(j))T + Σ

(j)
R

)−1

µ
(j)
X|Y ← µX +K(j)(y − C(j)µX − d(j))

Σ
(j)
X|Y ← ΣX −K(j)

(
C(j)ΣX(C(j))T + Σ

(j)
R

)
(K(j))T

end

Algorithm 3 Conditional Moments Based Iterative Smoother
Input: prior moments µ0|0,Σ0|0, evaluators of E[Xt | Xt−1],

V[Xt | Xt−1], E[Yt | Xt] and V[Yt | Xt], measurement sequence
{yt}Tt=1, and maximum number of iterations J .

Output: posterior moment approximations (µ
(J)
0:T |T ,Σ

(J)
0:T |T ).

Compute the smoothing moments (µ
(0)
0:T |T ,Σ

(0)
0:T |T ) by using Thm. 1 to

linearise with respect to the filtering distribution and Alg. 1.
Compute Θ(0) = (A

(0)
1:T , b

(0)
1:T ,Σ

(0)
Q1:T

, C
(0)
1:T , d

(0)
1:T ,Σ

(0)
R1:T

), using

(µ
(0)
t|T ,Σ

(0)
t|T ), and Thm. 1 to compute (A

(0)
t+1, b

(0)
t+1,Σ

(0)
Qt+1

) and

(C
(0)
t , d

(0)
t ,Σ

(0)
Rt

).
for j = 1 to j = J

Compute the smoothing moments (µ
(j)
0:T |T ,Σ

(j)
0:T |T ) using Θ(j−1) and

Alg. 1.
Compute Θ(j) = (A

(j)
1:T , b

(j)
1:T ,Σ

(j)
Q1:T

, C
(j)
1:T , d

(j)
1:T ,Σ

(j)
R1:T

), using
(µ

(j)
t|T ,Σ

(j)
t|T ), and Thm. 1 to compute (A

(j)
t+1, b

(j)
t+1,Σ

(j)
Qt+1

) and

(C
(j)
t , d

(j)
t ,Σ

(j)
Rt

).
end

B. Smoother

Building on the previous section, an iterative fixed in-
terval smoother can be obtained by starting from a col-
lection of smoothing marginals, {f (0)(xt | y1:T )}Tt=1, ob-
tained by for instance the usual sigma-point smoother
[2] and perhaps using Alg. 2 in the filter update. Now,
let (A

(0)
t , b

(0)
t ,Σ

(0)
Qt

) be the parameters of the linear-
isation Xt = A

(0)
t Xt−1 + b

(0)
t +Q

(0)
t and (C

(0)
t , d

(0)
t ,Σ

(0)
Rt

)
be the linearisation Yt = C

(0)
t Xt + d

(0)
t +R

(0)
t using the

smoothing densities f (0)(xt−1 | y1:T ) and f (0)(xt | y1:T )
together with Thm. 1. Denote the collection of lin-
earisation parameters after the first smoother pass as
Θ(0) = (A

(0)
1:T , b

(0)
1:T ,Σ

(0)
Q1:T

, C
(0)
1:T , d

(0)
1:T ,Σ

(0)
R1:T

). Now, by the
same rationale as for the development of Alg. 2, the smoothing
solution can be iteratively improved by alternating between
running Alg. 1 and re-linearising using the newly obtained
smoothing marginals. This yields a family of smoothing mar-
ginals {f (j)(xt | y1:T )}T,Jt=1,j=0 and a series of affine systems
{Θ(j)}Jj=1, approximating the POMP in Eq. (1) as

Xt+1 ≈ A(j)
t+1Xt + b

(j)
t+1 +Q

(j)
t+1, V[Q

(j)
t+1] = Σ

(j)
Qt+1

, (9a)

Yt ≈ C(j)
t Xt + d

(j)
t +R

(j)
t , V[R

(j)
t ] = Σ

(j)
Rt
, (9b)

whereby the marginals {f (j+1)(xt | y1:T )}Tt=1 are retrieved by
running Alg. 1 on the system in Eq. (9). The procedure is
outlined in Alg. 3.

C. Convergence Analysis

In a similar manner to [25], [26] a local convergence analysis
can be carried out, resulting in Thm. 2.
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Theorem 2. Alg. 3 converges if it is initialised sufficiently
close to a fixed point and the matrix Ξ, as defined in Eq. (11)
in the supplement, has a spectral radius less than unity.

Proof. See supplementary material.

D. Discussion

Further clarification on the connections between
Algs. 2 and 3 and the existing iterative estimators [22],
[23], [25], [26] is given as follows. When X0:T and
Y1:T are governed by the system, Xt = a(Xt−1) +Wt,
Yt = c(Xt) + Vt, with Wt and Vt mutually independent
white noise sequences, then the conditional moments are
given by E[Xt | Xt−1] = a(Xt−1), V[Xt | Xt−1] = ΣQ,
E[Yt | Xt] = c(Xt) and V[Yt | Xt] = ΣR. The Taylor series
and sigma-point implementations of Algs. 2 and 3 then
correspond to IEKF/IEKS and IPLF/IPLS, respectively.

Now, let a and c admit Taylor series expansions up to
first order at any point in RDX × RDW and RDX × RDV ,
respectively. Furthermore, let the sequences X0:T and Y1:T
be governed by Eq. (2), then the conditional moments are
given by Eq. (4). If the conditional moments are approximated
by replacing a and c in Eq. (4) by their first order Taylor
series in Wt and Vt around 0, respectively, then one iteration
of Algs. 2 and 3 corresponds to the non-additive EKF/EKS
[2, Algorithm 5.5] and several iterations correspond to the
extensions of IEKF/IEKS to the non-additive case. Furthermore,
when sigma-points are used, augmenting the noises to the state
(see [2, Algorithm 5.13]), generalisations of the IPLF/IPLS for
non-additive noise are obtained. Supporting calculations are
given in the supplement. Note that it is not trivial to implement
a particle filter for this case since the likelihood is intractable
in general.

Finally, if the system is not described in terms of non-
linear transforms of Gaussian variables, a new class of iterative
algorithms emerges. As mentioned, for additive Gaussian noise
the present algorithm reduces to previous iterative algorithms,
hence it has the same computational complexity. In general,
only one and 2N + 1 additional evaluations of V[Yt | Xt] and
V[Xt | Xt−1] are required per iteration for the Taylor series
and sigma-point implementations, respectively.

V. EXPERIMENTAL RESULTS

The proposed algorithms are evaluated on the stochastic
Ricker map, which is a population model, given by

Xt+1 = log(44.7) +Xt − exp(Xt) +Wt+1, (10a)
Yt | Xt = x ∼ Po(10 exp(x)), X0 ∼ δ(x0 − log 7) (10b)

where Xt is the log-population and Wt ∼ N (0, 0.32) is
environmental noise [27]. There are several factors which make
the state space model in Eq. (10) challenging for Kalman filters;
(i) the measurements are made in a discrete space, (ii) it is
very non-linear. Note that the conventional EKF/UKF cannot
deal with the measurement model in Eq. (10) [2].

A Monte Carlo experiment was carried out by simulating
the system in Eq. (10) 250 times with trajectories of length
T = 1 + 27. Algs. 2 and 3 are evaluated using the Taylor series

Table I
PERCENTILES OF THE RMSE FOR TS, SP, PGFL, PF, AND FPFBS . LEFT

COLUMN: FILTERS, RIGHT COLUMN: SMOOTHERS.

RMSE TS SP PGFL PF TS SP FPFBS
2.5% 0.542 0.540 0.537 0.536 0.243 0.241 0.250
50% 0.748 0.746 0.749 0.749 0.328 0.328 0.329
97.5% 1.084 1.082 1.091 1.083 0.466 0.464 0.484

0 1 2 3 4 5

0.4

0.6

0.8

#iterations

R
M

S
E

TS SP

Figure 1. The RMSE over iterations for TS and SP implementations of Alg. 3.
0 corresponds to the filters. Most of the improvement comes from the first
smoother pass, while subsequent iterations make smaller improvements.

(TS) and sigma-point (SP) integration, the latter using a UT
[8] with κ = 2. The number of iterations per filter update and
initialisation of the smoothers was set to 15 to reduce the
frequency of divergence for TS. Both filter implementations
diverge when using only one iteration, due to the severe non-
linearity of the system, justifying the proposed iterative scheme.
The number of smoothing iterations was 5. The suggested
estimators are compared to the progressive Gaussian filter
(PGFL) using explicit likelihoods [20], using 20 deterministic
points (using more had negligible impact on performance). It
should be noted there is no smoother counterpart to PGFL.

For reference, a bootstrap filter (PF) [15] was run using
N = 5000 particles and resampling at an effective number of
samples N/3. In order to obtain a smoothing reference 100
samples of the smoothing pdf was obtained using a bootstrap
filter with backward simulation (FPFBS) [17]. All algorithms
used N (log 7, 0.1) as initial distribution. It should be noted that
the Taylor series implementation diverged 7 times out of the 250
trials. These trials were discounted from the calculation of the
RMSE. As indicated in Table I, the sigma-point implementation
is, in general, superior to the alternatives.

A new trajectory was simulated to visualise the improve-
ments over iterations. Both implementations of the smoother
were run for 0–5 iterations, where 0 corresponds to the filter,
which used 15 iterations for the update; see Fig. 1.

VI. CONCLUSION

The IPLF/S methods were generalised to the case where only
the conditional moments in the dynamics and the measurement
models need to be evaluated, this makes the methods applicable
to strictly non-Gaussian state-space models. The resulting
algorithms were shown to give the IEKF/S and IPLF/S as
special cases for non-linear models with additive Gaussian
noise, and provide their natural extensions in the case of non-
additive noise. Furthermore, the developed algorithms were
evaluated on the stochastic Ricker map, where they were found
to be comparable or superior to other state-of-the-art estimators.
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