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A B S T R A C T

Essential Tremor (ET) is a very common neurological disorder characterised by involuntary rhythmic movements 
attributable to pathological synchronization within corticothalamic circuits. Previous work has focused on 
tremor in isolation, overlooking broader disturbances to motor control during naturalistic movements such as 
reaching. We hypothesised that ET disrupts the sequential engagement of large-scale rhythmic brain networks, 
leading to both tremor and deficits in motor planning and execution. To test this, we performed whole-head 
neuroimaging during an upper-limb reaching task using high-density electroencephalography in ET patients 
and healthy controls, alongside optically pumped magnetoencephalography in a smaller cohort. Key motor 
regions—including the supplementary motor area, premotor cortex, posterior parietal cortex, and motor cer-
ebellum—were synchronized to tremor rhythms. Patients exhibited a 15 % increase in low beta (14–21 Hz) 
desynchronization over the supplementary motor area during movement, which strongly correlated with tremor 
severity (R2 = 0.85). A novel dimensionality reduction technique revealed four distinct networks accounting for 
97 % of the variance in motor-related brain-wide oscillations, with ET altering their sequential engagement. 
Consistent with our hypothesis, the frontoparietal beta network- normally involved in motor planning-exhibited 
additional desynchronization during movement execution in ET patients. This altered engagement correlated 
with slower movement velocities, suggesting an adaptation towards feedback-driven motor control. These 
findings reveal fundamental disruptions in distributed motor control networks in ET and identify novel bio-
markers as targets for next-generation brain stimulation therapies.

1. Introduction

The ability to effectively control movement is a primary function of 
the nervous system (Wolpert et al., 2001) and is critically impaired in 
neurological disorders such as Essential Tremor (ET). Many neurological 
disorders are associated with hypersynchronous oscillations (Schnitzler 

and Gross, 2005), that can disrupt activity in neural circuits and lead to 
debilitating symptoms. In ET, pathological synchrony manifests as 
involuntary rhythmic tremors affecting the limbs, head, or trunk (Elble 
and Deuschl, 2009). A wealth of neuroimaging work supports the exis-
tence of a distributed central tremor circuit (Raethjen and Deuschl, 
2012; Helmich et al., 2013), involving the thalamus, cerebellum, 
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parietal, and motor cortex. This network has been established using both 
hemodynamic correlates of tremor (Gallea et al., 2015; Archer et al., 
2018; Boscolo Galazzo et al., 2020; Buijink et al., 2015a), as well as 
electrophysiological signals measured using electroencephalography 
(EEG) (Muthuraman et al., 2018; Raethjen et al., 2007; Pedrosa et al., 
2017) and magnetoencephalography (MEG) (Schnitzler et al., 2009).

Electrophysiological signals accessible from the scalp are particu-
larly promising targets for non-invasive stimulation, as an alternative 
therapy to deep brain stimulation (DBS) of the ventrolateral thalamus. 
DBS provides an adaptable and bilateral therapy for ET, yet by its 
invasive nature, is only available to the most severely affected patients. 
To date, non-invasive brain stimulation has targeted the primary motor 
cortex (Hellriegel et al., 2012; Brittain et al., 2013) and the cerebellum 
(Popa et al., 2013; Bologna et al., 2015; Olivier et al., 2023; Schregl-
mann et al., 2021), with the latter demonstrating superior clinical out-
comes. Despite this, most approaches to stimulation remain open-loop 
and require high stimulation energies that can be uncomfortable for the 
patient. The development of next generation neurostimulation for ET 
requires: (a) targets that can be accessed with minimally invasive 
techniques, and (b) biomarkers that can provide closed-loop, on-de-
mand stimulation proportional to changes in symptom severity.

The substantial overlap of the tremor circuit with volitional motor 
control networks (Inagaki et al., 2022; Haggard, 2005) implies that 
common neural signals, such as 14–30 Hz beta band oscillations, could 
predict tremor state. For example, movement associated event related 
desynchronization (ERD) (Pfurtscheller and Lopes da Silva, 1999) of the 
beta band has been used to trigger DBS in tremor (Herron et al., 2017; 
He et al., 2021; Opri et al., 2020) at the onset of action or postural 
tremors, offering a method for anticipatory control. However, it remains 
unclear how the aberrant synchronization at tremor frequencies impacts 
these physiological markers of motor processing. Previous studies have 
demonstrated that beta ERD over the primary motor cortex is signifi-
cantly increased during movement in patients with ET or Parkinson’s 
disease using electrocorticography (Kondylis et al., 2016; Crowell et al., 
2012). The narrow spatial coverage of these surgical recordings cannot 
address whether the observed changes align with the broader cortical 
disruptions reported in functional MRI studies (Buijink et al., 2015b; 
Roy et al., 2019). It is also unknown whether changes are pathological or 
compensatory (Palop et al., 2006). Furthermore, most studies to date 
have adopted a static paradigm, focusing on tremor during unchanging 
postures, and thus ignoring the dynamics of motor control in ET, espe-
cially during active limb movements such as reaching (Farkas et al., 
2006; Köster et al., 2002; Britton et al., 1994).

Motivated by a need to identify new biomarkers of tremor state and 
movement in ET, we hypothesised that the pathophysiology of ET dis-
rupts the large-scale motor dynamics associated with naturalistic 
reaching movements. To investigate this, we performed high-resolution 
neuroimaging using high-density EEG and optically pumped magneto-
encephalography (OPM) (Boto et al., 2018). This represents the first 
application of OPM technology in the study of movement disorders. Our 
aim was to leverage the enhanced spatial precision of OPM and its 
increased flexibility to examine large-scale human movement, enabling 
us to study motor control networks that overlap with neural circuits 
activated by both whole limb reaching movements and pathological 
tremors. We also utilised high-density EEG to provide validation and 
comparison of our findings.

To aid interpretation of high-resolution neuroimaging recorded 
across multiple regions and frequencies, we use time frequency principal 
component analysis (tfPCA) (Bernat et al., 2005). This dimensionality 
reduction method allows us to decompose time locked, movement 
responsive oscillations recorded over the brain, into simplified compo-
nents with associated latent dynamics. These low-dimensional repre-
sentations capture how the brain coordinates during movement and 
tremor, linking regions and frequency bands into ensemble circuits with 
correlated activities. This can be thought of as analogous to identifying 
the separate sections (e.g. brass, strings, etc.) of an orchestra working 

together. Using these tools, we tested our central hypothesis: that 
changes in cortical networks in ET alter the coordination of large-scale 
synchronous neural dynamics during movement.

2. Results

2.1. Behavioural analyses of the delayed reach-to-target task

We recruited patients diagnosed with ET by a movement disorders 
specialist according to the clinical MDS-criteria (Bhatia et al., 2018) and 
age matched controls for recordings with either 128 channel EEG or a 
whole head OPM array. Patients exhibiting neurological soft signs sug-
gesting an ET plus diagnosis were not included in the study. All patients 
displayed a mild to moderate upper limb tremor, scoring between 3 and 
6 on “The Essential Tremor Rating Assessment Scale” (TETRAS, (Elble, 
2016)). To minimize potential motion artefact in neuroimaging, patients 
scoring over 2 for head tremor were excluded from the study. Individual 
participant’s clinical details and relevant medication are provided in 
tables in Supplementary Information I and II.

All participants performed an upper limb reaching task outlined in 
Fig. 1A. Four of 31 EEG participants were excluded as they did not 
follow the task sequence, and four additional EEG participants were 
removed due to large muscle/movement artefact. This left a total of 23 
subjects for analysis (11 healthy controls, 12 ET patients). Nine addi-
tional participants were recorded with OPMs (5 controls, 4 ET patients) 
with none excluded.

ET and control subjects’ reach kinematics were similar, with com-
parable reaction times and path lengths measured using motion tracking 
marker affixed to the hand of the dominant tremor. ET patients reached 
with slower average velocities (ANOVA (84), F-statistic = 4.76, P <
0.05). To focus on within-subject variance, we subtracted the subject 
mean before computing task-related differences. Smaller target sizes 
resulted in slower reaction times in both groups (Fig. 1D; ANOVA (82), 
F-statistic = 37.7, P < 0.001). Slower reach velocities were observed 
with both high cue uncertainty and smaller targets (Fig. 1E; Uncertainty: 
ANOVA (84), F-statistic = 14.1, P < 0.001; Size: ANOVA (84), F-statistic 
= 7.39, P < 0.01). Only control participants showed changes in path 
length with target size (Fig. 1F; t-test (20), t-statistic = 3.66, P < 0.01), 
indicating trajectory adaptation for small targets.

These results show that high cue uncertainty and high target preci-
sion modulate all subjects’ reaching kinematics, with ET patients mak-
ing slower movements overall and showing more variation in velocity in 
response to changes in required motor precision, relative to controls. We 
return to this in Section 2.7 where we analyse how variations in oscil-
latory network dynamics can explain these behavioural variations.

2.2. Analysis of upper limb tremor

Upper-limb tremor amplitude was estimated from accelerometery 
(Supplementary Fig. 1). ET patients on average exhibited a 0.85 ± 0.98 
m/s2 increase in tremor amplitude from rest to postural raise (paired t- 
test (10); t-statistic = 4.69; P < 0.001) at an average frequency of 5.8 ±
1.6 Hz. In 4/12 patients, a small (> 0.1 m/s2) rest tremor was also 
present. Control subjects displayed a small physiological tremor at 
posture of ~0.19 ± 0.04 m/s2 (paired t-test (10); t-statistic = 7.06; P <
0.001). For reference, thresholds for visual detection of tremor are 
~0.07 m/s2 (Wade et al., 1982).

Postural tremor amplitudes positively correlated with clinical 
scoring (TETRAS performance subscale; Spearman’s (12); R = 0.75; P =
0.010). There was no significant effect of cue uncertainty or target size 
on the tremor amplitude as evaluated at either motor preparation or the 
hold period (Supplementary Fig. 2).
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2.3. Peripheral tremor rhythms are synchronized to motor associated 
brain regions

Our first analysis localized sources in the brain synchronized to 
tremor using a Dynamic Imaging of Coherent Sources (DICS) beam-
former (reported in Fig. 2A and B, Table 1A and B, for EEG and OPM, 
respectively). In 10/11 ET patients with valid EEG and accelerometery, 
a peak in coherence was found over the cSMA (4–12 Hz, >85th 
percentile of the whole brain; binomial test, P < 0.001). This peak was 
also significantly higher in ET patients compared to controls (Fig. 2C; 
peak t-statistic (10) = 1.93). A cSMA peak was also seen in OPM patients 
(Fig. 2D; peak t-statistic (3) = 2.90). In a subset of patients, tremor 
coherence was found in the contralateral dlPFC (5/11 EEG cohort, 
binomial P = 0.016; 4/4 OPM cohort, binomial P = 0.001), that was 
found to be significantly greater in ET patients compared to controls 
(EEG cohort only, Fig. 2C). In the OPM cohort, 3/4 patients had a tremor 
source in the contralateral PPC (binomial P = 0.012), that was also 
significantly elevated in ET (Fig. 2D; peak t-statistic (3) = 2.71).

An auxiliary DICS analysis, designed to detect weaker sources by 
regressing out the cSMA signal and focusing on the top 50 % of coherent 
trials, revealed a tremor-coherent source in the ipsilateral and contra-
lateral cerebellar lobule VI in 7/11 EEG patients (Fig. 2E; binomial P <
0.001). Additionally, a dlPFC peak was found in 3/4 OPM patients 
(Fig. 2F; binomial P = 0.003). Sources varied across patients, with 
coherent peaks found in the cerebellum VI, cPPC, or dlPFC that 
exhibited limited overlap between patients (Venn diagram in Supple-
mentary Fig. 3). There were no significant differences in kinematics 
when ET patients were divided by these peak regions (ANOVA (11); P >
0.05). The group with predominant cerebellar coherence tended to have 
more severe tremor although this did not pass significance (t-test (8), t- 

statistic = 1.27; P > 0.05). These results identify ROIs in the cSMA, 
cPPC, dlPFC and Cerebellum VI that are synchronized to tremor in ET 
patients and are consistent with previous reports (Muthuraman et al., 
2018; Raethjen et al., 2007; Schnitzler et al., 2009).

Importantly, these brain areas also exhibit significant movement 
associated activity in the beta frequency (Fig. 2G and H; Supplementary 
Fig. 4) suggesting the potential for ET pathophysiology to influence 
healthy motor oscillations. Most notably, our time frequency analyses 
show that cPPC exhibits a clear desynchronization during a period of 
motor planning following cue onset that is apparent in both controls and 
patients (Supplementary Figs. 5 and 6) In later analyses, we will use 
dimensionality reduction to capture the collective dynamics of induced 
oscillations across motor networks including regions identified with 
DICS here (Section 2.5).

2.4. Essential tremor patients exhibit deeper movement related beta 
desynchronization during reaching

To investigate whether ET pathophysiology impacts physiological 
signals associated with motor processing, we first focused on the activity 
in the SMA, as this region was synchronized to tremor activity and 
exhibited motor induced responses in the majority of subjects recorded 
(Section 2.3). Relative to controls, ET patients exhibit a 15 % increase 
(relative to when at rest) in lower beta frequency (14–21 Hz) ERD in 
SMA (Fig. 3A) during reach execution (two-sided t-test, permutation 
statistic (21), P* = 0.021) and the post-movement hold period (two- 
sided t-test, permutation statistic (21), P = 0.003).

ET patients studied with OPM also exhibited greater movement- 
related low beta frequency ERD to controls (Fig. 3B), although this did 
not reach statistical significance, likely due to the small sample size. The 

Fig. 1. Structure of delayed reach-to-target task and kinematic analysis. (A) Illustration of the sequence and timings of the reaching task. Each block began with 30 s 
of postural hold and eyes open rest. The reaching task consisted of rest (3 s), posture (3 s), onset of a directional cue (2.5 ± 1 s), reach execution (max. 4 s), and 
sustained hold (1.5 s). The task followed a 2 × 2 design: high versus low uncertainty (HUC vs LUC), and large versus small targets (LRG vs SML). (B) An example set of 
trajectories from a single subject for the centre-out reaches, colour coded by the target. (C) The group averaged velocity profiles of the reaches, plot in normalized 
time from reach onset (0 %) to hold onset (100 %). (D-G) Boxplots summarising the between-subject statistics of task kinematics. Each point gives the deviation from 
the subject’s mean value. Data is shown for EEG experiment controls (red) and ET patients (blue), with colour matched bars indicating significant post-hoc t-tests. 
Black bars demark significant post-hoc t-test when comparing ET and controls. Brackets indicate tests that did not survive Bonferonni correction for multiple 
comparisons. Data shown for the EEG cohort only. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

T.O. West et al.                                                                                                                                                                                                                                 Neurobiology of Disease 207 (2025) 106858 

3 



degree of SMA beta desynchronization during reach execution and the 
post-movement hold period were both negatively correlated with 
overall subject averaged tremor severity (as computed from 45 s blocks 
of continuous postural hold) of ET patients in the EEG cohort (Fig. 3C; 
reaching: R2 = 0.54, P < 0.05 and hold: R2 = 0.85, P < 0.01; one outlier 
removed on Cook’s distance). These findings support our hypothesis that 
ET pathophysiology disrupts physiological neural activity such as that 
found in the SMA. In the following sections, we examine whether this 
phenomenon is localized or extends to a broader motor network.

2.5. Time-frequency principal component analysis identifies known motor 
circuits

To understand how ET may affect large scale motor induced oscil-
lations, we used time-frequency PCA (tfPCA) (Bernat et al., 2005) to 

summarise a large set of time-frequency descriptions of M/EEG source 
activity estimated across brain regions identified to both synchronize to 
tremor and exhibit motor responsive beta oscillations.

When applied to the group averaged EEG data (all ET and control 
subjects), tfPCA yielded four components with distinct spatial and 
spectral weights (Fig. 4B) that explained 97 % of the total variance and 
accurately reconstructed the original data (Fig. 4H). These four com-
ponents can be visualized in the original time-frequency space via back- 
projection (Fig. 4C-H) or represented via their latent time dynamics 
(shown in Fig. 5). Component (1) represents a fronto-parietal- 
sensorimotor network active in the lower beta band (14–21 Hz) and 
desynchronises at the onset of the movement cues (i.e. motor planning; 
64 % of total variance). Component (2) represents a sensorimotor 
network that exhibits movement locked high frequency gamma activity 
(> 30 Hz; 17 % of the total variance). Component (3) represents a 

Fig. 2. Source maps of OPM/EEG data coherence with the 4–12 Hz peripheral tremor accelerometer signal estimated using a Dynamic Imaging of Coherent Sources 
(DICS) beamformer from postural hold data and movement related beta (14–30 Hz) power changes. Subjects’ anatomy was flipped such that all slices were aligned 
contralateral to the dominant hand prior to performing statistics. (A and B) EEG and OPM source image of the overlap of the top 90th percentiles subject level 
coherence at source level. The slice location corresponds to the peak of the ET group average peak at the contralateral supplementary motor area (cSMA). (C and D) 
T-contrast of EEG and OPM DICS images comparing coherence in tremor band between control and ET. Maps were thresholded at the critical T-value (P < 0.05, 
uncorrected). Positive T-statistics indicate control > ET. (E and F) Same as (C and D) but for overlaps computed from the auxiliary DICS analysis, performed after 
regressing out the cSMA virtual channel. (G and H) Grand averaged EEG and OPM source power images across both controls and ET patients. Contrasts show 
unthresholded t-statistics using a baseline period at each stage of the reaching task.
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premotor/dorsolateral prefrontal network active across mu and lower 
beta bands (8–16 Hz) that desynchronises at the onset of movement (i.e., 
motor execution; 10 % of total variance). Component (4) represents a 
premotor/dorsolateral prefrontal network active across the upper beta 
band (18–30 Hz) that desynchronizes at movement onset (i.e. motor 
execution; 6 % of the total variance). Notably, our analyses unveil 
components that dissociate between movement planning (component 1) 
and preparation (component 2).

2.6. Essential tremor patients exhibit differences in large-scale circuit 
dynamics

Using the tfPCA loadings computed at the group level we recon-
structed trial-averaged latent dynamics for each subject (Fig. 5A) and 
examined differences between cohorts (ET and age-matched controls). 
Latent dynamics were preserved between the controls and ET subjects 
(Fig. 5E), with average between-subject Pearson’s correlation co-
efficients of R = 0.91 and R = 0.84 for EEG and OPM, respectively 
(Supplementary Information III, Table 1). Across EEG and OPM mo-
dalities, we found an average correlation coefficient of R = 0.73 (Sup-
plementary Information III, Table 2).

Our results show that in the EEG data, the frontoparietal low beta 
(14–21 Hz) network (1st component) exhibits a cue locked desynchro-
nization that does not differ between controls and ET patients (Fig. 1A) 
in the planning stage (i.e., at cue onset). However, during movement 
execution, ET participants exhibit further desynchronization compared 
to controls (Fig. 5C 1st row; permutation t-statistic (74), P < 0.001). 
Both OPM and EEG dynamics exhibited an ERD at upper beta (18–30 Hz) 
frequencies in the dorsolateral prefrontal beta network (4th component) 
that was increased in ET relative to controls, during execution of both 
the postural hold (Fig. 5A 4th row; EEG permutation t-statistic (74), P* 
= 0.001) as well as the reach (Fig. 5C 4th row; EEG permutation t-sta-
tistic (74), P* = 0.004). This was followed by a faster and stronger 
rebound during the post-movement hold period (Fig. 5D 4th row; EEG 
permutation t-statistic (74), P* = 0.004). These latent dynamics 
computed at the single subject level expand on our finding of ET asso-
ciated increases in beta ERD in the SMA (Section 2.4) by showing that 
the observed changes are associated with increased beta ERD distributed 

across the wider frontoparietal network following movement. This 
supports our principal hypothesis that ET results in altered latent dy-
namics of large-scale motor networks during reaching.

2.7. Whole brain latent networks can explain within-subject variation in 
tremor and kinematics

To understand how pathophysiological changes in motor dynamics 
may relate to functional processes, we analysed the association between 
latent dynamics and kinematic variables. To this end, we projected 
latent dynamics to the single trial level, using the same coefficients as 
before (Section 2.6), and made a statistical comparison between data 
split into low and high trials of each kinematic variable (1st and 4th 
quartiles, respectively). For statistical power, we looked only at the EEG 
cohort due to its larger sample size. We analysed both the tremor power 
(in ET patients only), and the averaged reach velocity/movement vari-
ability (for combined ET and controls).

In Fig. 6, we examine the frontoparietal and premotor networks 
(components 1 and 4, respectively), as these were most clearly impacted 
in ET (Fig. 5). This analysis shows that prolonged desynchronization of 
the low beta frequency (14–21 Hz) frontoparietal network during 
reaching (Fig. 6C), is associated with reaches of slower average velocity 
(1st component; green bar; permutation t-statistic (21), P = 0.005). This 
was not found to be related to the total duration of the reach. Further-
more, faster resynchronization of this same network (Fig. 6D) increased 
the stability of movement in the hold period (red bar; permutation t- 
statistic (21), P = 0.007). These findings may help explain why the ET 
subjects exhibit overall slower reaches, when compared to controls.

In the premotor-frontal network, faster resynchronization of upper 
beta frequencies (18–30 Hz) after reaching (Fig. 6H) – a marker of ET as 
shown in the previous analysis – was associated with increased kine-
matic stability during the hold period (red bar; permutation t-statistic 
(21), P < 0.001). A similar effect was found during the postural hold 
period (red bar; permutation t-statistic (21), P* = 0.008) suggesting that 
premotor network can act to stabilize movement during static contrac-
tion. An increase in frontoparietal engagement during reaching suggests 
that ET subjects may increase their reliance on sensory circuits for online 
control during movement, a point we will return to in the discussion.

Table 1 
A: DICS analysis of HD-EEG source to accelerometer coherence (4–12 Hz).

Essential tremor only ET - controls

DICS DICS auxiliary Contrast

count % P count % P peak T-stat P

Contra. Motor Cerebellum 5 45.5 % 0.016 7 63.6 % < 0.001 1.76 0.092
Ipsi. Motor Cerebellum 5 45.5 % 0.016 6 54.5 % 0.003 1.81 0.085
Contra. Sup. /Mid. Frontal 5 45.5 % 0.016 6 54.5 % 0.003 1.70 0.104
Ipsi. Sup. /Mid. Frontal 5 45.5 % 0.016 5 45.5 % 0.016 1.58 0.129
Contra. Parietal/Precuneus 6 54.5 % 0.003 5 45.5 % 0.016 1.99 0.060
Ipsi. Parietal/Precuneus 7 63.6 % < 0.001 6 54.5 % 0.003 2.25 0.036
Contra. Sensorimotor 10 90.9 % < 0.001 7 63.6 % < 0.001 1.93 0.067
Ipsi. Sensorimotor 10 90.9 % < 0.001 6 54.5 % 0.003 2.18 0.041

B: DICS analysis of OPM source to accelerometer coherence (4–12 Hz).

Essential tremor only ET - controls

DICS DICS auxiliary contrast

count % P count % P peak T-stat P

Contra. Motor Cerebellum 1 25.0 % 0.478 3 75.0 % 0.003 2.77 0.028
Ipsi. Motor Cerebellum 2 50.0 % 0.110 1 25.0 % 0.386 3.39 0.012
Contra. Sup. /Mid. Frontal 4 100.0 % 0.001 3 75.0 % 0.003 4.52 0.003
Ipsi. Sup. /Mid. Frontal 3 75.0 % 0.012 2 50.0 % 0.061 3.74 0.007
Contra. Parietal/Precuneus 3 75.0 % 0.012 3 75.0 % 0.003 2.71 0.030
Ipsi. Parietal/Precuneus 2 50.0 % 0.110 1 25.0 % 0.386 7.24 < 0.001
Contra. Sensorimotor 3 75.0 % 0.012 3 75.0 % 0.003 2.90 0.023
Ipsi. Sensorimotor 2 50.0 % 0.110 2 50.0 % 0.061 6.61 < 0.001
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3. Discussion

Our results demonstrate that pathophysiological changes associated 
with ET lead to alterations of oscillatory dynamics within large-scale 
motor circuits during reaching movements. While ET patients 
executed movements with an accuracy comparable to controls, their 
reaching velocities were slower. Key motor regions were synchronized 
to tremor rhythms while also exhibiting movement-locked beta oscil-
lations. Notably, the SMA - a region found to be highly synchronized to 
peripheral tremor – exhibited a 15 % increase in beta desynchronization 
in ET patients that also inversely correlated with tremor severity. Whole- 
brain analyses using tfPCA revealed broader disruptions to a sequential 
pattern of latent network synchronization, particularly in frontoparietal 
and premotor networks. These networks, typically involved in visuo-
motor control and planning, showed enhanced beta desynchronization 
during movement in ET, which may reflect adaptive changes in patients 
that lead to slower reaching movements.

Our findings build on previous work linking SMA, PPC, and cere-
bellum to the tremor network (Muthuraman et al., 2018; Raethjen et al., 
2007; Pedrosa et al., 2017). These regions are also strongly coupled with 
ventrolateral thalamus at beta frequencies (Marsden et al., 2000), 

suggesting the capacity of DBS to alter these networks. Our results show 
that the expression of secondary tremor sources beyond the SMA varies 
between patients. Whilst the limited cohort sizes used here restricted our 
ability to determine functional or clinical differences between these 
groups, their presence may indicate an unexplained heterogeneity in ET 
pathophysiology or, alternatively, reflect differences in detection 
sensitivity due to anatomical variability. Cortically sensed activity offers 
potential control signal(s) for closed-loop control of DBS, as demon-
strated in Parkinson’s disease (Swann et al., 2018). This approach could 
deliver thalamic stimulation tailored to expected tremor levels while 
accounting for motor context, enabling state-dependent neuro-
modulation in ET (West et al., 2022; Fleming et al., 2023). Regions such 
as the PPC and cerebellum also emerge as promising targets for non- 
invasive stimulation, consistent with recent therapeutic advances with 
scalp level electrical stimulation (Olivier et al., 2023; Schreglmann et al., 
2021).

Beyond single-region analyses, our investigation of latent dynamics 
reveals the highly distributed nature of network disruptions in ET. These 
findings support the potential for multi-site sensing in closed-loop 
neuromodulation (Swann et al., 2017; Muldoon et al., 2016). Further-
more, dimensionality reduction approaches, such as tfPCA, can improve 

Fig. 3. Analysis of movement locked beta event related desynchronization (ERD) in the supplementary motor area (SMA) comparing between Essential Tremor (ET) 
patients and control recordings in EEG. (A) The grand-averaged accelerometer trace indicates the sequence of the task. (B) Time courses of low beta power (14–21 
Hz) of the combined left and right SMA, scaled as the percentage change relative to at rest (0 %), shown across the postural hold, reach planning, execution, and the 
hold period (columns left to right). Data is shown as the group average ± SEM, for controls (red) or ET patients (blue). Bars indicate significant decrease between 
controls and ETs, determined by cluster permutation statistics (P < 0.05). Brackets indicating tests that did not survive Benjamini and Hochberg False Discovery Rate 
correction for multiple comparisons. (C) Same as (A), but for OPM data. (D) Scatter plots of log scaled tremor amplitude versus the percentage change in beta power. 
In the case of significant Pearson correlation, bold blue lines indicate the associated regression for ET patients only. The circled point indicates the outlier (identified 
according to Cook’s criteria) removed from regression. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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estimation of motor and pathological states (Yang et al., 2021; Wang 
et al., 2016) via the identification of highly diffuse network reconfigu-
rations (Ottenhoff et al., 2024). Supervised methods for dimensionality 
reduction are likely to improve this further by focusing latent dynamics 
on context relevant signals (Pandarinath et al., 2018; Brunton et al., 
2016). These simplified, low dimensional representations of widespread 
activity may aid prediction of tremor severity, by effectively fusing 
separately sensed signals, that could be utilised for proportional delivery 
of DBS, such as that demonstrated for treatment of Parkinson’s disease 
(Schmidt et al., 2024).

Movement responsive neural oscillations in the healthy brain 

(Pfurtscheller and Lopes da Silva, 1999; Ramos-Murguialday and Bir-
baumer, 2015; Miller et al., 2007) reflect important elements of senso-
rimotor processing (Spitzer and Haegens, 2017). Our finding of 
increased beta ERD in ET suggests that the brain adapts to mitigate the 
effects of hypersynchronous tremor rhythms. Increased beta ERD may 
suggest that tremor engages mechanisms similar to intentional move-
ment (such as has been shown in Parkinsonian rest tremor (Qasim et al., 
2016)), and/or reflect an adaptation that allows cortical neurons to 
encode movement in the face of tremor-related entertainment. By 
freeing up cortical neurons to encode vital parameters of movement 
(Brittain et al., 2014), additional ERD may compensate for extraneous 

Fig. 4. Identification of large-scale, movement related brain circuits using time-frequency principal component analysis (tfPCA) applied to group averaged data 
(both ET and controls) derived from source-space projected EEG virtual electrodes. (A) Time-frequency spectrograms were computed for each region of interest (ROI) 
in the network, incorporating the dorsal prefrontal cortex, primary and supplementary motor areas, posterior parietal cortex, and cerebellum VI. tfPCA was applied to 
the group averaged EEG data, with spectrograms concatenated for each motor epoch. Prior to tfPCA, data was log scaled, and Z-normalized per subject. (B) Visu-
alization of the coefficients of each PCA component 1–4 (red, blue, green, and purple, respectively) in both the frequency and spatial domains. (C–F) Back projection 
of empirical data allows for visualization of the time-frequency dynamics of each component (averaged in space), across the four different epochs of the reaching task 
(corresponding to the rows). (G) Explained variance of the data by the four components. (H) Reconstruction of the original time-frequency data using the four 
components. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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entrainment at the tremor rhythm (illustrated in Fig. 7). Notably, dif-
ferences in beta ERD were most pronounced during goal-directed 
reaching, aligning with evidence that more complex tasks demand 
greater cortical resources (Pierrieau et al., 2023). In severe tremor, 
synchronization to tremor rhythms may saturate the neuronal pool, 

leaving fewer neurons available to desynchronize at beta frequencies, 
which may explain the weaker motor-related ERD observed in the more 
severely affected OPM cohort.

These results build upon previous electrocorticography studies, 
which have reported increased beta desynchronisation in the 

Fig. 5. Visualization of motor responsive, latent circuit dynamics and a comparison between controls and ET patients recorded with EEG. Components were 
computed using tfPCA applied to the group averaged EEG data (Fig. 4). These coefficients were then used to project data to trial-level latent dynamics that could be 
used to explore differences between controls and ET patients. The grand averaged accelerometer traces are shown at the top to indicate the task sequence. (A) The 
latent dynamics exhibited during the postural hold for each component (columns) are plot for ET (blue) and controls (red) separately. Bars and associated P-values 
indicate the outcome of cluster permutation statistics between the two experimental groups. Brackets indicate tests that did not survive Benjamini and Hochberg 
False Discovery Rate correction for multiple comparisons (16 tests in total). (B-D) Same as (A) but for cue presentation, reach execution, and the sustained hold. (E-H) 
Plots of the 2D latent trajectories (components 1 and 4, only) indicate highly correlated dynamics between controls and ETs with quantitative differences in the 
weighting of the components such as increased engagement of the prefrontal beta network in ET subjects (4th component, apparent in plot G). An equivalent analysis 
was performed for OPM recordings (Supplementary Fig. 7). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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sensorimotor cortices during voluntary movement in ET, Parkinson’s 
disease (Kondylis et al., 2016), and dystonia (Crowell et al., 2012). Our 
findings extend this work by demonstrating that these changes are likely 
distributed across a broader frontoparietal and cerebellar network. Beta 
synchrony in the sensorimotor system is thought to reflect sensory 
gating (Mirzaei et al., 2017; West et al., 2023; Karvat et al., 2021), and 
post-movement error updating (Tan et al., 2016; Palmer et al., 2019). In 
ET, cerebellar deficits likely increase the sensorimotor system’s sus-
ceptibility to noise (Lee and Stein, 1981; Elble et al., 1992), suggesting 
that the enhanced post-movement rebound may serve as a compensatory 
mechanism to suppress sensory information at the end of a movement. 
Notably, we found that the frontoparietal circuit exhibited an additional 
desynchronization in ET, a network that is most typically associated 
with visuomotor control (Vaillancourt et al., 2005), and a feature that 
we hypothesize reflects a disruption of feedback control in ET patients. 
This accords with findings that both online control of movement 
(Blondiaux et al., 2024) and connectivity between parietal and motor 
cortices is disrupted in ET (Roy et al., 2019).

The reported changes to beta frequency oscillations may explain the 
decrease in the velocity of reaching associated with ET reported here, as 
well as in other tasks such as finger tapping (Bologna et al., 2020). 
Previous studies using functional MRI during movement have shown 

that motor slowing is negatively correlated with the functional con-
nectivity between cerebellar output nuclei and cortical targets 
(Passaretti et al., 2024). In contrast, the beta power dynamics reported 
here appear to act in opposition to these long-range connections. This 
raises the question of whether DBS for ET can be patterned to func-
tionally restore motor networks, such as that has been shown during DBS 
of the subthalamic nucleus in Parkinsonism (Oswal et al., 2016). Pre-
vious modelling work has shown that patterning of stimulation can be 
tuned to achieve specific network states (West et al., 2022), suggesting 
the potential for adaptive stimulation to improve functional motor 
networks in ET.

This work has investigated whole limb naturalistic movements and 
faces the well-recognised challenges of motion-related artefacts arising 
from either contamination by myographic activity and cable noise. 
Measurement of tremor during large movements is challenging, due to 
varying tremor axis and gravity artefacts, that could be avoided using 
gyroscope estimates of tremor severity in future studies. Additionally, 
there was no explicit forward model of the cerebellum, a component that 
would likely improve the accuracy of cerebellar localization in future 
studies (Andersen et al., 2020). The OPM data presented demonstrate a 
novel application in the study of naturalistic movements and movement 
disorders, validated by measures also recorded in a larger cohort with 

Fig. 6. Analysis of modulation of latent circuit dynamics altered in Essential Tremor, with movement kinematics during the reaching task. Latent states were 
projected to the single trial level, using coefficients computed from group averaged time frequency EEG data. Mean latent dynamics (reproduced from Fig. 5) for 
controls (red) and ET patients (blue). Differences in average velocity/hold variability are shown for both controls and ET patients, whereas tremor parameters were 
analysed for ET patients only. Trials were split into 1st (light colours) and 4th quartiles (dark colours) and then subject averages compared at the group level using a 
cluster permutation test (indicated by thick lines above, and relevant P value for the test statistic). Brackets indicate tests that did not survive Benjamini and 
Hochberg False Discovery Rate correction for multiple comparisons (16 tests per parameter). (A-D) Plots of the latent dynamics of the 1st component over the 
postural raise, cue onset, reaching, and hold, split by the tremor band power during each hold period (blue lines), the mean velocity during the postural raise/reach 
(green lines), and the hold variability (red lines). (E-H) Same as (A) but for the 4th component. The 1st and 4th components are shown as these were most modulated 
by ET,the remaining components are presented in Supplementary Fig. 8. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)
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HD-EEG. We observed larger effect sizes for patient–control contrasts in 
coherence using OPM compared to EEG (Table 1). OPM outperformed 
EEG during periods of expected low SNR, exhibiting sharper source 
images, and greater effect sizes during periods of active movement 
(Supplementary Information VIII). These findings strengthen the case 
for OPM’s ability to sense brain activity during large scale body move-
ments (Seymour et al., 2021; O’Neill et al., 2025).

This study reveals large-scale motor network disruptions in ET, with 
increased beta ERD across the circuit acting to compensate for neural 
resources entrained at tremor frequencies. For the first time, we have 
shown that frontoparietal beta rhythms are altered by ET pathophysi-
ology and reflect increased slowing of reaching movements that may be 
explained by an increased dependence on feedback control. Our findings 
have broader implications for understanding not only ET but also 

adaptive mechanisms in the motor system associated with other pa-
thologies, such as Parkinson’s disease. These results provide novel re-
gions and biomarkers that can inform the next generation of brain 
stimulation therapies for tremor.

4. Methods

4.1. Recruitment and details of participants

Ethical approvals were obtained from the committees of the Philipps- 
University Marburg and University College London. Consent was ob-
tained according to the Declaration of Helsinki. EEG experiments were 
conducted with 16 patients (51 ± 19 years of age, 7 female) diagnosed 
with essential tremor (ET) and 15 controls (42 ± 16 years of age, 9 

Fig. 7. Hypothetical neuronal mechanisms underlying alterations to motor induced dynamics following pathological synchronization in Essential Tremor. (A) During 
movement preparation (first column), neurons entrain to brain rhythms such as the sensorimotor beta rhythm (shown in red), but also tremor (blue). During 
movement (middle column), motor cortical neurons exhibit firing rate changes (assumed to be asynchronous; shown in green) that encode movement parameters. 
Simultaneously, ERD of the beta rhythm relinquishes units to participate in motor encoding, followed by a post movement beta rebound (final column). (B) In 
moderate ET, the tremor rhythm entrains a fraction of cortical neurons reducing the effective information encoding capacity of the available pool. To compensate, 
during movement, increased beta ERD frees up the neuronal “real estate” required to effectively encode movement. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
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female). OPM was conducted with 4 ET patients (50 ± 20 years of age, 1 
female) and 5 healthy controls (50 ± 13 years of age, 1 female). ET 
patients were recruited by a movement disorders specialist according to 
the clinical MDS-criteria (Bhatia et al., 2018) and exhibited predomi-
nantly upper limb or wrist tremors. Patients with soft neurological signs 
suggesting an ET plus diagnosis, or diagnosed with a secondary neuro-
logical condition were excluded from the study. Patients with significant 
head tremor (> 2 on the TETRAS subscale) were also excluded to limit 
potential artefacts arising from head movement. The EEG cohort (Mar-
burg) had a mean TETRAS performance score of 18.7 ± 8.2 and the OPM 
cohort (UCL) had scores of 19.5 ± 3.8. A subset of the EEG cohort dis-
played mild head tremor (5 of 12 included patients scoring 1 or 2).

4.2. Delayed reach-to-target task

Participants performed a delayed reach to target task, making whole 
limb reaches to mimic naturalistic movement. The task required par-
ticipants to adopt a 90-degree upper arm elevation against gravity with 
flexed elbow posture and then, from this position, make centre-out 
reaches to one of eight targets and hold their finger fixed to “pop” 
target balloons (Fig. 1A). The task sequence was: (a) 3 s eyes-open rest, 
(b) 3 s postural (as above) hold, (c) 2.5 ± 1 s movement cue presenta-
tion, (d) appearance of a GO cue, (e) 1.5 s of sustained hold. A point was 
scored if the correct balloon was popped (as predicted from the 
dispersion of arrow cues). Further details of the task design can be found 
in Supplementary Information IV.

4.3. High density electroencephalography

High-density EEG (HD-EEG) was recorded in a recording chamber 
using an elastic cap to mount active, gel-based electrodes (Brain Prod-
ucts GmBH, Gilching, Germany) in the standard 10–10 system with 128 
electrodes and amplified using a Brain Products DC amplifier. Electrode 
gel was applied to maintain electrode impedance below 10 kΩ. All data 
were recorded with a 1 kHz low pass filter and digitized at 5 kHz. EEG 
recordings were made with a reference at FCz, which was re-referenced 
offline to the common average.

4.4. Optically pumped magnetometer recordings

Optically pumped magnetoencephalography (OPM) was made using 
a combination of 2nd and 3rd generation QuSpin sensors (dual- and tri- 
axial sensors, respectively; QuSpin Inc., Louisville, Colorado, USA) 
mounted in rigid 3D-printed casts (Chalk Studios, London, UK) custom- 
built to each participant’s scalp shape determined from structural 
magnetic resonance images (MRIs). In the absence of an MRI (1 control 
and 1 patient), the head shape was estimated using an infrared depth 
camera. Offsets of 1–3 mm were added to scanner casts to allow for 
anatomical error, tissue deformation, and hair.

OPM experiments were conducted in a magnetically shielded room 
(MSR; Magnetic Shields Ltd., Staplehurst, UK). The inner layer of mu- 
metal lining the room was degaussed using a low-frequency decaying 
sinusoid driven through cables within the walls before the start of the 
experiment. The OPM sensors were then nulled using onboard nulling 
coils and calibrated. The OPM acquisition system (National Instruments, 
Texas, USA) had a sampling frequency of 6 KHz and a 16-bit resolution. 
An antialiasing 500 Hz low-pass filter (60th order FIR filter combined 
with a Kaiser window) was applied before data were down-sampled 
offline to 2 kHz.

4.5. Kinematics and accelerometery recordings

Arm movement was captured with Optitrack Motive software 
(Planar Systems, Oregon, USA) and an infrared camera (Optitrack Duo/ 
Trio) tracking a reflective marker attached to the participant’s hand. A 
five-point reflective rigid body was affixed over the dorsal surface of the 

hand. A spatial reference plane was defined using reflective markers 
affixed to the corners of the presentation screen to align the motion 
coordinates and metrics across participants. A manual calibration pro-
cedure was included to co-register the motion tracking and screen space 
used for cue presentation.

Task triggers were sent to the EEG amplifier or the OPM DAC using a 
LabJack U3 DAC (LabJack Corp., Colorado, USA). Acceleration was 
recorded via a triaxial sensor (EEG, Brainproducts GmBH; OPM; 
ADXL335; Analog devices Inc., Wilmington, Massachusetts, USA) 
affixed to the affected limb. For one EEG patient, accelerometery was 
not available. Therefore, this participant is excluded from analyses 
requiring estimates of tremor (EEG/Acc. coherence and trial-by-trial 
tremor analyses). Statistics of movement kinematics were computed 
by averaging trials over each condition, removing outliers with |Z- 
score| > 1.96, and then computing an ANOVA.

4.6. Preprocessing, artefact removal, and data rejection

Analysis was performed in MATLAB (The Mathworks, Massachu-
setts, USA) using the Fieldtrip (Oostenveld et al., 2011) and SPM 12 
toolboxes. Digitized data were down sampled to 512 Hz. For EEG, in-
dividual channels were inspected to remove those affected by gross 
movement artefact, and then high and low pass filtered at 2 and 98 Hz 
using FIR windowed-sync filters. Line noise was removed by fitting sine 
and cosine components to the line frequency and then subtracting from 
the data. Oculomotor, muscle, or cable artefacts were removed using 
independent component analysis (ICA). Trials with remaining artefacts 
were rejected visually, using Z-score and kurtosis measures set at |Z| >
5; and |K| > 6. Bad channels were replaced via local spline interpolation. 
OPM signals were processed identically but used adaptive multipole 
model (Tierney et al., 2021) for interference reduction following ICA.

Participants were removed when task sequence was not well fol-
lowed, greater than 75 % of reaches being automatically rejected (see 
below) or EEG data quality being poor (high prevalence of cable, 
movement or muscle artefact).

4.7. Time locking and spectral analysis of data

The onsets of each postural raise were found from thresholding the Z- 
normalized sum of the triaxial accelerometers at Z = 3. Reach onsets and 
holds were marked using a semi supervised approach in which three 
independent scorers manually marked accelerometer and motion 
tracking traces, provided a quality score of 1–3 for each trial in a random 
subset of the data (30 %). These labels were then used to train a con-
volutional neural network (CNN) that we deployed on the full dataset. 
For precise criteria of the labelling and details of the CNN, please see 
Supplementary Information V.

Performance assessments of the CNN are given in Supplementary 
Fig. 9. Time-frequency representations were calculated using Slepain 
multitapers, scaling the time window to 4 cycles per frequency bin, 
utilizing a 0.4 Hz smoothing window, and incorporating 10 s of zero 
padding.

4.8. Source space analysis

Dynamic Imaging of Coherent Sources (Gross et al., 2001) (DICS) 
mapped the distribution of power or coherence across the cortical vol-
ume. Wideband (2–98 Hz) beamformer weights were used to project 
sensor-level data to source-level virtual electrodes. To maximise sensi-
tivity of DICS to weakly synchronized sources, an auxiliary analysis used 
trials from the top 50 % of coherence for contralateral supplementary 
motor area (cSMA; the peak of the group averaged image), and then 
regressed out the cSMA virtual channel signal, following (Muthuraman 
et al., 2018). Brain parcellations used the Automated Anatomical 
Labelling atlas 3 (Rolls et al., 2020). For full details concerning the 
construction of forward models and sensor coregistration, please see 
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Supplementary Information VI.
Statistics in the source space were computed using either one-sample 

(DICS coherence in tremor band), or two-sample (ET/Control contrasts, 
cue locked contrasts) t-statistics. DICS images were first normalized to 
account for unequal sample size (Pedrosa et al., 2018; Bokil et al., 2007). 
Statistical maps are presented as (a) overlap maps of the top 85th 
percentile of each subject; and (b) t-statistics thresholded at the critical 
level (P < 0.05, uncorrected. The probability associated with overlaps 
was derived from a binomial distribution B(k ≥ n;N, p), indicating the 
probability of observing >k overlaps out of N subjects, where p repre-
sents the probability of overlap (p = 0.15, for thresholding at the 85th 
percentile). Uncorrected source statistics formed an initial analysis to 
define regions of interest (ROIs) that we carried forward to test our main 
hypothesis regard time-frequency domain activity.

4.9. Estimation of tremor amplitude

Tremor signals from triaxial accelerometery (Supplementary Fig. 1) 
were converted to units of acceleration (m/s2) using the manufacturer’s 
conversion factors. Tremor was measured at the following epochs: 
during the postural hold, post-cue onset, and after termination of the 
reach. For each epoch, we computed the principal component of the 
filtered triaxial accelerometer signal (4–12 Hz; bandpass FIR filter) 
(Elble and Deuschl, 2009). The peak tremor frequency was then 
computed from the multitapered power spectrum (1.5 tapers/Hz) of the 
first component. An estimate of the tremor amplitude was made by 
computing the root mean square of the dominant axis of the acceler-
ometer signal, after bandpass filtering around the tremor peak ±3 Hz. 
Correlations were checked for outliers using three times the mean 
Cook’s distance as a threshold (Kutner and Neter, 2004).

4.10. Identifying latent spectro-spatial components with time-frequency 
principal component analysis

Large-scale brain circuits associated with voluntary movement con-
trol and tremor were identified using time-frequency Principal Compo-
nents Analysis (tfPCA) (Bernat et al., 2005). tfPCA projects time- 
frequency data computed at voxels across the brain (time × frequency 
× space × repetitions) to a low dimensional set of components with 
associated latent dynamics (component × time). Voxels informed from 
the DICS source analysis included ROIs in the ipsi- and contra- lateral 
dorsal prefrontal cortex, primary and supplementary motor areas, pos-
terior parietal cortex, and cerebellum lobule VI. tfPCA was applied to the 
group averaged motor induced responses with weights used to back- 
project data to the single trial level. Further details are given in Sup-
plementary Information VII. To test changes associated with kinematics 
or tremor, we applied cluster-based permutation testing to data split by 
the 1st and 4th quartile of each subject, using P = 0.1 as a cluster 
forming threshold. This threshold is not the alpha level for cluster test 
significance (set at α = 0.05), but the threshold needed to carry a cluster 
forward for permutation testing.
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