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Observation of first- and second-order
dissipative phase transitions in a two-photon
driven Kerr resonator

Guillaume Beaulieu 1,2,9, Fabrizio Minganti2,3,8,9, Simone Frasca 1,2,
Vincenzo Savona 2,3, Simone Felicetti4,5, Roberto Di Candia 6,7 &
Pasquale Scarlino 1,2

In open quantum systems, dissipative phase transitions (DPTs) emerge from
the interplay between unitary evolution, drive, and dissipation. While second-
order DPTs have been predominantly investigated theoretically, first-order
DPTs have been observed in single-photon-driven Kerr resonators.We present
here an experimental and theoretical analysis of both first and second-order
DPTs in a two-photon-driven superconductingKerr resonator.Wecharacterize
the steady state at the critical points, showing squeezing below vacuum and
the coexistence of phases with different photon numbers. Through time
resolved measurements, we study the dynamics across the critical points and
observe hysteresis cycles at the first-order DPT and spontaneous symmetry
breaking at the second-order DPT. Extracting the timescales of the critical
phenomena reveals slowing down across five orders of magnitude when
scaling towards the thermodynamic limit. Our results showcase the engi-
neering of criticality in superconducting circuits, advancing the use of para-
metric resonators for critically-enhanced quantum information applications.

Dissipative phase transitions (DPTs) are critical phenomena in
which the steady state of the system—or an observable associated
with it (e.g., the order parameter)—changes non-analytically upon
an infinitesimal change in a control parameter (see Fig. 1a)1–4. DPTs
extend the concepts of quantum and thermal phase transitions to
systems out of their thermal equilibrium and placed in interaction
with an environment2,3. The investigation of DPTs is of paramount
importance given their occurrence in various physical systems, span-
ning the fields of quantumoptics5,6, condensedmatter7,8, and quantum
information and technology9–11. Therefore, the lack of established
extremal principles to describe the steady states associated with
DPTs (such as the minimization of thermodynamic potentials)

calls for an effort to understand and characterize these critical
phenomena12.

DPTs can be either of first or second-order. First-order DPTs are
characterized by a jump in the steady state and order parameter,
together with phase coexistence, metastability, and hysteresis (see
Fig. 1a–c)1,2. Other signatures that can accompany first-order DPTs
include photon bunching and interference effects13,14. First-order DPTs
have been observed experimentally in several systems, including
trapped ions15, ultracold bosonic gasses16, nonlinear photonic or
polaritonic modes7,8,17, and circuit QED platforms6,14,18,19. Second-order
DPTs are characterized by symmetries and their spontaneous break-
ing, and display a continuous but non-differentiable steady state and
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order parameter as illustrated in Fig. 1a1. As such, they present a jump
in the derivative of the order parameter, which requires an exceptional
degree of controllability of the system to be observed20,21. The peculiar
characteristics of second-order DPTs are predicted to enhance effi-
cient encoding of quantum information9 and bring advantageous
metrological properties10,22–27. These predictions further motivate the
interest in an experimental characterization of the static and dynami-
cal properties of second-order DPTs.

Critical phenomena are commonly studied in many-body
systems in the thermodynamic limit, where the number of con-
stituents asymptotically diverges. However, quantum phase transi-
tions can also take place in finite-component systems, where the
thermodynamic limit corresponds to a rescaling of the system
parameters28–31. A preeminent role in the study of finite-component
first-order DPTs has been played by nonlinear quantum-optical
oscillators7,8,14,18. These single-photon-driven Kerr resonators, how-
ever, cannot display second-order DPTs because theHamiltonian term
describing the drive is not invariant under the action of any symmetry
group1.

Consequently, to experimentally study the properties of both
first- and second-order DPTs in such finite-component systems, it is
necessary to engineer the drives anddissipative processes to ensure an
underlying symmetry of the system. The parametrically-driven oscil-
lators fulfill this symmetry requirement. These resonators have been
the subject of extensive research, exploring their properties in both
classical21,32,33 and quantum configurations13,34–38, as well as effective
models connecting the two12,20. Notably, the two-photon driven-dis-
sipative Kerr resonators are used to, e.g., create, stabilize, and
manipulate photonic Schrödinger cat states in superconducting
circuits39,40, whichhavebeen proposed as fundamental components of
quantum computing devices41. This shows that superconducting
circuits42 offer the necessary level of control to engineer such

processes43–45, while also allowing the parameter rescaling required to
witness finite-component phase transitions.

In this work, we use a two-photon driven superconducting Kerr
resonator and conduct a thorough experimental analysis of both its
first- and second-order DPTs. As a first step, we scale the system
towards the thermodynamic limit and analyze its steady-state prop-
erties.We show squeezing below vacuum at the second-order DPT and
observe the coexistence of multiple metastable states in the vicinity of
the first-order DPT. Then, we focus on the dynamical properties
associated with both transitions by probing the system dynamics
through time-resolved measurements. We analyze the data with novel
theoretical tools, based on quantum trajectories and Liouvillian spec-
tral theory, and extract the characteristic timescales. From this analy-
sis, we characterize the metastable states and quantify the critical
slowing down of the two DPTs.

Results
Device and model
The device, shown in Fig. 1d, is a superconducting cavity made non-
linear by terminating one end to ground via a superconducting
quantum interference device (SQUID). A two-photon, i.e., parametric,
drive is applied to the cavity by modulating the magnetic flux through
the SQUID at nearly twice the resonance frequency of the cavity46–48.
The emitted signal is collected through a feedline coupled to the other
end of the cavity, then filtered and amplified with a total gain G before
being measured. Both signal quadratures are acquired using time-
resolved heterodyne detection. This system is modeled by the
Hamiltonian

Ĥ=_=Δâyâ+
U
2
âyâyââ+

G
2

âyây + ââ
� �

, ð1Þ

Fig. 1 | Sketch of the theory of dissipative phase transitions and of the
experimental set-up. a Illustration of dissipative phase transitions (DPTs)
according to Ref. 1 Sweeping a the pump-resonator detuning Δ, the photons in the
resonator hâyâi (blue curve) changes discontinuously (first-order DPT), or con-
tinuously with non-continuous derivative (second-order DPT). The blue dashed
lines indicate themetastable states associated with hysteresis across the first-order
DPT, and the purple rectangle marks the hysteresis region. b The Liouvillian gaps
λSSB in green (λ1st in orange) associated with the second-order (first-order) DPT.
cThroughout thedetuning sweep hâi =0 (blue curve).However, after second-order
transition, the states ρ±α shown in light blue and green, become metastable, with
switching rate λSSB. The dashed lines indicate themetastable states associated with
hysteresis across the first-order DPT. d Phase-space-like representation of the
system across the DPTs. The top, middle, and bottom rows respectively represent
the steady state (blue), the metastable state associated with λ1st (hollow blue), and

the metastable states associated with λSSB. The arrows within each panel indicate
the decay of an initial state towards the steady state. The green arrows represent
the decay of a non-symmetric state at a rate λSSB. The orange arrows are associated
with the metastable state of the first-order DPT, decaying at a rate λ1st. e Schematic
illustrating the device and the experimental setup. The device is a hanger-type λ/4
coplanar waveguide resonator. The right side of the feedline is used to collect the
emitted signal via heterodyne detection, whereas the left side is only used for
spectroscopy measurements to extract the device parameters and is otherwise
terminated by 50Ω (see Supplementary Note 2). The other side of the cavity is
terminated to ground via a SQUID. A magnetic field is applied through the SQUID,
tuning both the resonance frequency and the Kerr nonlinearity. A second wave-
guide, inductively coupled to the SQUID, is used to supply a coherent pump tone
around twice the resonant frequency of the cavity (ωp≃ 2ωr). The pump results in a
two-photon drive for the cavity46,47.
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where â is the photon annihilation operator, Δ=ωr �
ωp

2 is the pump-
to-cavity detuning, and G is the two-photon drive field amplitude. In
this study, we useΔ as the control parameter across the transition [see
ζ in Fig. 1a–c]. Since the system interacts with the feedline, fluxline, and
other uncontrolled bath degrees of freedom, its evolution is modeled
via the Lindblad master equation

∂ρ
∂t

= � Lρ= � i
_
½Ĥ,ρ�+ κðnth + 1ÞD½â�ρ

+ κnthD½ây�ρ+ κϕD½âyâ�ρ + κ2D½â2�ρ,
ð2Þ

where L is the Liouvillian superoperator, whose spectrum is key in
characterizing DPTs1,2. The dissipators are defined as
D½Â�ρ= ÂρÂy � fÂy

Â,ρg=2, and the rates κ, κϕ, and κ2 are associated
with the total photon loss, dephasing, and two-photon loss, respec-
tively. Finally, nth is the thermal photon number. Throughout the
experiment, the resonator frequency is fixed at ωr/2π = 4.3497GHz,
corresponding to a Kerr nonlinearity of U/2π = −7 kHz, and κ/2π = 77
kHz. The other parameters of the experiment are theoretically
estimated to be κϕ/2π = 4.4 kHz, κ2/2π = 78Hz, and nth = 0.055. As
described in Methods, the value of G is measured and then refined
through a theoretical estimation. The methods used for determining
these parameters are described in Supplementary Note 5.

Steady-state properties and phase diagram
We begin our study by characterizing the system steady-state ρss,
formally defined by ∂tρss = 0. To this end, we initialize the system in the
vacuum state, then switch on the two-photon drive G at frequencyωp,
and start acquiring the signal quadratures at frequency ωp/2 after a
waiting time τwait. Knowing the output gain G and the total loss rate κ,
we rescale the signal quadratures measured at room temperature to
obtain the field quadratures I and Q of the cavity, convoluted with the
noise of the amplification chain. The amplifier noise is then removed
when calculating the expectation value of the intracavity field
moments (hâykâli) (seeMethods andSupplementaryNote 2). In Fig. 2a,
nss = hâyâiss is reported as a function of Δ and input power, both tun-
able ondemand.We stress that the requiredwait time τwait to reach the
steady state can be orders of magnitude longer than the typical
photon-lifetime 1/κ ~ 2μs (Supplementary Fig. 1), a clear indication of

critical slowing down49. From Fig. 2a, we distinguish three regimes: (i)
at large negative detuning, the system is in the vacuum state; (ii) the
system transitions from the vacuum state to a bright state without
discontinuity. This happens at Δ ≈ −G (see “Methods”); (iii) at large
positive detuning, nss falls abruptly from the high population phase to
the vacuum46.

To better characterize these regimes, we perform a rescaling of
the parameters: G= ~GL and Δ= ~ΔL (see “Methods” and refs. 1,50). The
rescaling parameter is defined such that L = 1 corresponds to an esti-
mated pump amplitude of G = 65.5 kHz. In the experiment, the
rescaling is achieved by increasing the two-photon drive amplitude
and correspondingly spanning a larger region of detuning. In Fig. 2b,
we compare the curves of the re-scaled steady state intracavity
population ~nss =nss=L for the same ~G and rangeof ~Δ, while increasing L.
The solid lines in the figure are the theoretical curves obtained by
numerical simulation of the model in Eq. (2) and show an excellent
agreement with the experimental data. As L increases, the emergence
of a continuousbut non-differentiable change in thephotonnumber at
negative detuning, and a discontinuous jump at positive detuning can
be observed. A zoom on each of these regions is respectively shown in
Figs. 2c and 3a. These abrupt changes are the fingerprints of second-
and first-order DPTs, respectively, as also depicted in Fig. 1a. To better
characterize the second-order transition, in Fig. 3b, c we show the first-
and second derivative of the photon number with respect to detuning.
Despite a continuous change in the photon number, the second order
derivative increaseswith L indicating that a second-order discontinuity
is emerging at ~Δ=2π ’ �0:07MHz. This value of the critical detuning
is consistent with the value of Δ at which nss = 0 according to Eq. (6).

The histograms of the measured I and Q quadratures—i.e., the
Husimi functions of the steady state convoluted with the noise of the
amplifier—are plotted Fig. 2d for the three regimes mentioned above
and near the critical points. As the detuning increases across the
second-order DPT, the vacuum separates into two coherent-like states
with opposite phases. Itwill be demonstratedbelow that at the second-
order critical point, the vacuum is, in fact, squeezed. On the other
hand, at the first-order critical point, two coherent-like states with a
large photon number coexist with a vacuum-like state. In Supple-
mentary Fig. 2, we also show the theoretical Wigner function based on
thefitted experimental parameters,which confirms this interpretation.

Fig. 2 | Characterizationof the steady state. aPhasediagramshowing the number
of photons in the resonator as a function of the detuning Δ and input power,
obtained by heterodyne detection of the emitted field. The three phases are indi-
cated by: (i) square marker (the vacuum at negative detuning); (ii) hexagonmarker
(the bright phase); (iii) pentagon marker (the vacuum at positive detuning). The
passage between these phases is accompanied by a second- [(i)→(ii), circle marker]
and first-order DPTs [(ii)→(iii), triangle marker]. b Rescaled number of photons
~nss =nss=L as a function of the rescaled detuning ~Δ=Δ=L and rescaled drive G= ~GL
for increasing scaling parameter L, with ~G=65:5 KHz (see also text andMethods for
details). Circles indicate the experimental data, and solid lines are obtained from

the numerical simulation of Eq. (2). The emergent discontinuities at negative and
positive detuning with increasing L signal the presence of a second- and first-order
DPT in the thermodynamic limit, respectively. cHigher-resolution characterization
of the abrupt change in ~nss across the first-order DPT. The error bars correspond to
the standard deviation over 4 experiments.dHusimi-Q function estimated through
heterodyne detection. The markers correspond to those in (a), and the values of ~Δ
corresponds to the vertical dotted gray lines in (b). e Histogram of the measured
phaseΦ for L = 1.41. f Bimodality coefficient (i.e., Binder cumulant) B(Φ), defined in
themain text, as a function of rescaled detuning ~Δ for increasing scaling parameter
L. Crossing of the cumulant corresponds to the critical points.
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We introduce here a new procedure to characterize criticality,
rooted in the theory of quantum trajectories and DPTs (see Supple-
mentary Note 6)51. The critical nature of the system can also be
observed by considering the “conjugate” parameter of the photon
number, i.e., the system’s phaseΦðtÞ= argðIðtÞ+ iQðtÞÞ. The probability
distribution p(Φ) is reconstructed from the histogram of I(t) and Q(t).
Figure 2e showshistograms ofΦ as a function of the rescaled detuning
for a fixed value L. While Φ is uniformly distributed in the vacuum
phase, it displays two narrow peaks in the bright phase, corresponding
to the coherent-like states in Fig. 2d. We report the bimodality coeffi-
cient (binder cumulant52) BðΦÞ � m2

2=m4 in Fig. 2f, where the jth
moments are mj =

R π
�π pðΦÞΦj dΦ with p(Φ) being the probability

distribution of Φ. This coefficient is a statistical measure used in the
study of phase transitions and critical phenomena. It provides infor-
mation about the probability distribution of an order parameter,
capturing the “degree of order.” Binder cumulants become indepen-
dent of the lattice size around the transition (for large enough L), and
the crossing of the cumulants provides an accurate determination of
the critical point. This quantity, originally used for the study of
paramagnetic-to-ferromagnetic second-order transitions has recently
been proposed as a tool to study DPTs51,53. In the present case, the
transitions are captured by a change from B(Φ) = 5/9 (flat distribution)
to B(Φ)≃ 1 (bimodality) that is smooth at the second-order and abrupt
at the first-order critical points, thus reinforcing the evidence forDPTs.

We now examine the steady-state properties near the second-
order transition inmoredetail. At the critical point of the second-order
DPT, the steady state is squeezed below the vacuum. We define the
squeezing level S in decibels as themaximumof S= � 10 logðΔx2

ϕ=0:5Þ,
where Δx2ϕ � hx̂2ϕi � hx̂ϕi2 is the variance of the quadrature
x̂ϕ = ðâe�iϕ + âyeiϕÞ=

ffiffiffi
2

p
, spanning all possible ϕ. We note that for

Δx2ϕ<0:5, the state is squeezed below the vacuum and S is positive.
Figure 3d shows the squeezing level as a function of the detuning. At
large negative detuning S equals zero (Δx2

ϕ =0:5) because the steady
state is the vacuum. The maximum of squeezing level is above zero

(squeezing below vacuum). The position of this maximum closely
aligns with the second-order critical point, i.e., the maximum of the
second derivative of the photon number, as shown in Fig. 3a–c. The
noise removal procedure followed to calculate the squeezing level is
detailed in Methods and Supplementary Note 2.

Dynamical properties of the second-order transition
Having characterized the steady state critical properties, we now focus
on the dynamical properties. A distinctive feature of second-order
DPTs is spontaneous symmetry breaking (SSB) (see Fig. 1a–c). The Eq.
(2) is invariant under the transformation â ! �â. This weak Z2
symmetry54–56 imposes constraints on steady state of the system (see
Methods). Namely, when collecting the signal, for each measured
quadrature (I, Q), it must be equally probable to measure ( −I, −Q). As
such, the presence of a Z2 symmetry ensures that hâi=0. This implies
that, although a single measure of I and Q can be different from zero,
their averageovermanymeasurementsmust cancel out. SSB isdefined
as the presence of states ρ±

SSB that, despite being stationary, do not
respect the previous condition1,57. These states can only emerge in the
thermodynamic limit L→∞, or for classical analogswhere thenumberof
excitations can be taken to be infinite21,58. At finite values of L, however,
the emergence of SSB is signaled by critical slowing down: ρ±

SSB are not
stationary, but they decay towards ρss at a rate λSSB≪ 1/κ1, as sketched
in Fig. 1c. For the two-photon driven Kerr resonator model, ρ±

SSB ’
∣±αi ±αh ∣ and ρss = ðρ+

SSB + ρ
�
SSBÞ=2, where ∣αi is a coherent state13.

Theoretically, this rate corresponds to one of the Liouvillian eigenva-
lues (see “Methods” and Supplementary Note 5).

The continuous measurement traces shown in Fig. 4a display
jumps between the states ρ±

SSB. Notice how the observed rate of phase
jumps is significantly larger than the typical photon lifetime 1/κ ~2 μs
and further decreases with increasing value of L (see Supplemen-
tary Fig. 5).

In order to quantify the critical slowing down, we have derived a
method to extract λSSB from the steady-state auto-correlation function.
As proven in the Methods and Supplementary Note 6, in the limit in
which critical slowing down takes place, one has

CssðtÞ= limτ,T!1
1
T

Z τ +T

τ

Iðτ0ÞIðt + τ0Þ
I2ðτ0Þ

dτ0 ’ exp �λSSBt
� � ð3Þ

where I(τ) is the measured quadrature at time τ, integrated over a
measurement time. A quadrature obtained from a singlemeasurement
trace is shown in Fig. 4a. In the experiment, given the discrete nature of
the signal, Css(t) is calculated by averaging over multiple times τ the
product of I(τ) and I(t + τ). We plot the autocorrelation functions and
their fit according to Eq. (3) in Fig. 4b. From this, we finally obtain λSSB,
shown in Fig. 4c, as a function of the rescaled detuning ~Δ and for
various L.

Remarkably, in our measurements, λSSB spans five orders of
magnitude. By fitting theminimum of λSSB and plotting it as a function
of L (see inset of Fig. 4c), we clearly see an exponential behavior,
characteristic of finite-component phase transitions, indicating the
presence of a true SSB in the thermodynamic limit L→∞. The numerical
simulations for λSSB closely resemble the experimental data. It is worth
emphasizing that the Liouvillian eigenvalues associated with the DPTs
strongly depend on the model parameters. This is shown in Supple-
mentary Fig. 3. Therefore, the validity of themodel in Eq. (2) and of the
chosen parameters is confirmed.

Finally, notice that λSSB is associated to a bit-flip error rate in Kerr
and dissipative cat qubits40,57,59,60. As our results demonstrate, λSSB can
be reduced by changing the detuning. Moreover, we see that λSSB(Δ,
L) ∝ eα(Δ)L, where α(Δ) strongly depends on Δ, as also shown in refs.
9,61,62. This is also highlighted in greater details in the Supplementary
Fig. 5. These observations demonstrate how criticality could be
exploited for quantum information processing63.

Fig. 3 | Squeezing at the second-order DPT. Rescaled photon number (a), its first
(b), and second derivatives (c) calculated from the experimental data as a function
of detuning. d The squeezing level S= � 10 logðΔx2ϕ=0:5Þ evaluated across the
second-order DPT. Notice that the maximum is in the vicinity of the critical point
indicated by the maximum of the second derivative of the photon number in (c).
The vertical dotted line indicates the expected maximum of the squeezing para-
meter obtained by numerical simulation of the steady state. The colored shaded
region in (c) and the error bars in a represent the standard deviation calculated
from 100 bootstrapped dataset of the measured data (see “Method for details).
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Dynamical properties of the first-order transition
Similarly to the second-order DPT, criticality can only occur in the
thermodynamic limit. In the caseoffinite L, however, the emergenceof
DPT results again in critical slowing down associated this time with a
rate λ1st. In particular, the photon number at a given time t follows1

nðtÞ ’ nss + δn e�λ1stt , ð4Þ

where δn depends on the initial state. Following this definition, we
identify three regimes, summarized in Fig. 5b, in the proximity of the

critical point Δc of the first-order DPT: (i) Δ <Δc shown in Fig. 5a; (ii)
Δ≃Δc in Fig. 5d; and (iii) Δ >Δc in Fig. 5c.

In (i), the data obtained from a single measurement trace remain
in the vacuum for a long time before randomly jumping to the bright
phase (red curve). Once the bright phase is reached, the system never
jumps back to the vacuum. Averaging over many measurement traces
(the green curve) results in n(t) following Eq. (4). We conclude that the
steady stateρss is thebright phase,while the vacuum ismetastablewith
lifetime 1/λ1st. In (ii), the measured quadrature along a measurement
trace shows that the state jumps between the bright and the vacuum

Fig. 5 | Analysis of the first-order DPT. a–d For L = 1.41, metastability around the
critical detuning Δc/2π ≈0.13MHz where the first-order transition takes place. Δc

corresponds to the detuning for which the first-derivative of nss with respect to
detuning is maximal. b The photon number n both in the steady state (circles) and
in the metastable regimes (squares and triangles) as a function of detuning. The
photon number in the metastable regimes has been obtained by initializing the
system at Δ <Δc (Δ >Δc) in the vacuum (in the high-population) phase and waiting
for a time 1/κ. a For Δ <Δc, the system is initialized in the vacuum, and it evolves
towards the bright phase. The red curve is themeasured photon number in a single
measurement trace, while the green curve is the average over 1000 measurement
traces, and isfittedbyEq. (4) (black line). cAs in (a), but forΔ >Δc, where the system
is initialized in the bright phase (see Supplementary Note 3). d Phase coexistence

takes place in proximity of the critical point Δ≃Δc. Once the system has reached
the steady state, the signal of a single measurement trace displays random jumps
between the vacuum and the bright phase. From left to right, Δ increases and the
relative weights of the two phases change, as it can be observed in the Husimi
functions. Note that at the time t =0, the system has already reached the steady
state. e Liouvillian gap λ1st extrapolated using Eq. (4) from data similar to those in
(a–c). As in Fig. 4, markers indicate the experimental data, obtained by fitting the
decay from either the vacuum or the bright phase towards the steady state, while
the solid lines are the results of the numerical diagonalization of the Liouvillian in
Eq. (2). The error bars correspond to the standard deviation over 4 experiments.
The inset shows theminimumof λ1st as a function of the rescaling parameter L. The
black line shows the fit of the function λ1st / expðαLÞ to the data.

Fig. 4 | Analysis of the second-order DPT. a A segment of the measured quad-
rature. As a function of time, we plot I(t) for L = 1.41 at various rescaled detunings
~Δ=Δ=L, indicated by the marker in each panel. Random jumps between two
opposite values of the quadrature occur as time passes. These correspond to the
switches between the states ρ+

SSB and ρ�
SSB, as described in the main text. Using the

entire collected signal, we recover a bimodal Husimi function shown on the right.
b The autocorrelation function Css(t) (see Eq. (3) and “Methods”), obtained from a
singlemeasurement trace as those shown in panel a. The markers at the end of the
curves represent the values of ~Δ, and the colors indicate the scaling parameter
(L = 1.29: purple, L = 1.41: red). The Liouvillian gap can be extracted from fitting

these curves using Eq. (3). The fits are represented by the black lines. c The fitted
Liouvillian gap λSSB as a function of ~Δ for different scaling parameters L, such that
G= ~GL with ~G=65:5 kHz. Points are the experimental data, while the solid lines
describe the theoretical prediction obtained by diagonalizing the Liouvillian in Eq.
(2). This task could be efficiently performed up to L = 1.29. After this value, simu-
lations to optimize the parameters values become unreasonably long. The error
bars correspond to the standard deviation over 4 experiments. The inset shows the
minimumof λSSB as a functionof the rescalingparameter L. Theblack line shows the
fit of the function λSSB / expðαLÞ to the data.
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phase. The relative time they spend in eachof these phases determines
the composition of ρss. This is also evident from the Husimi functions
that reflect the phase coexistence between the vacuum and the bright
phase. This region of coexistence shrinks as the thermodynamic limit
is approached (not shown). Finally, in (iii) the data display a jump
between the bright phase and vacuum (red curve). Averaging over
many measurement traces (orange curve) results in an exponential
decay from δn≃ n(t =0) to the vacuum following Eq. (4). In this regime,
ρss is the vacuum, and λ1st describes the decay of the bright meta-
stable phase.

We plot the Liouvillian gap λ1st in Fig. 5e, demonstrating the
emergence of critical slowing down associated with the first-order
DPT as we approach the thermodynamic limit. Notice that both data
extrapolated in the regions (1) and (3) match at the critical point,
confirming the theoretical prediction of ref. 1 (see also the zoom on
the region in Supplementary Fig. 6). Furthermore, as shown in the
inset, we also observe an exponential dependence for the minimum
of λ1st with respect to the scaling parameter L. The numerical simu-
lations for λ1st align well with the experimental data. We also note
that, while in the previous simulations shown in Figs. 2 and 4, κ2
played only amarginal role, it now determines the dependence of λ1st
with respect to Δ. This is shown in greater detail in the Supplemen-
tary Fig. 7.

As the critical region is characterized bymetastable states, whose
lifetime is of the order 1/λ1st, a hysteretic behavior in Δ is expected.
Note that, although λSSB is small in the hysteretic region, it plays no role
in the determination of hysteresis, as we discuss below. As sketched in
Fig. 6a, the detuning is ramped between Δmin and Δmax, both outside
the hysteresis range, according to Δ"ðtÞ=Δmin +D t, with D = ðΔmax �
ΔminÞ=T and Δ#ðtÞ=Δmax � D t, where T is the sweep time. Hysteresis is
immediately visible when comparing Fig. 6c, d. For a quantitative
description of the effects of hysteresis, we calculate the loop area [see
Fig. 6b] defined as

AðTÞ=
R T
0 dt n"ðtÞ � n#ðtÞ

h i

T
: ð5Þ

where n↑(t) [n↓(t)] is the average intracavity population at time t along
a sweep. As shown in Fig. 6e, by fitting the data by a power law, we find
that A(T)∝ Tx.

Increasing T allows the system to jump to the steady state with a
higher probability, resulting in a smaller loop area. Additionally, λ1st
becomes smaller with increasing parameter L, causing the system to
remain in themetastable state for longer, thus resulting in a larger loop
area. This proves that the hysteresis is indeed linked to λ1st.

Finally, we do not observe hysteresis in the region where
∣λSSB∣≪ ∣λ1st∣, nor do we observe two different rates of A(T) that would
suggest both eigenvalues are playing a role. We conclude that, as
expected, only λ1st concurs with the hysteretic behavior, while λSSB
plays no role. Our analysis confirms the theoretical prediction50 and
aligns with other experimental verifications7.

Discussion
We have observed signatures of both first- and second-order dis-
sipative phase transitions in a single superconducting Kerr resonator
under a parametric drive. This was demonstrated through a study of
both the static and dynamic properties of these finite-component
DPTs, as we rescaled the system parameters towards the thermo-
dynamic limit. The scaling was implemented by increasing the drive
amplitude and correspondingly spanning a larger range of detuning.
We measured the timescales characterizing the critical slowing down
of bothDPTs anddeveloped an efficientmethod using autocorrelation
measurements to extract these timescales. We framed and interpreted
our results within the formalism of the Liouvillian theory.

The observation of squeezing below vacuum suggests that, at least
in a specific operating region, the environment is sufficiently cold for
the behavior of the resonator to not be dominated by thermal effects.
This, combined with the agreement between our data and the predic-
tions fromour full quantummodel, indicates that quantum fluctuations
and quantum dissipative processes could play a role in the observed
transitions64,65. However, since the device operates in a regime of weak
nonlinearity (U≪ κ), the observed jumping events have clear classical
analogs32,66,67, and similar trends could be captured by a semiclassical
model where various noise effects compete68. Consequently, while we
cannot entirely rule out a classical explanation for the observed phe-
nomena, our results showed excellent agreement with simulations
based on Liouvillian theory. Our work thus proves the effectiveness of
the Liouvillian theory in providing a general framework for discussing
DPTs. It also highlights the need for studies of DPTs within quantum
frameworks and different operating regimes to better understand the
potential role of quantum processes in driving these transitions.

Although our manuscript primarily delves into the realm of fun-
damental physics in open systems, the control of the critical dynamics

Fig. 6 | Analysis of the hysteresis due to the first-order DPT. a Schematic of the
measurement protocol to obtain the hysteresis area. The up-sweep is
Δ"ðtÞ=Δmin +D t, for D= ðΔmax � ΔminÞ=T . Similarly, the down-sweep is
Δ#ðtÞ=Δmax � D t. Details of the measurement can be found in the Supplementary.
b The area of hysteresis defined in Eq. (5) for T = 3.5 ms, D/2π = 1000MHz s−1 and
L = 1.41. c Phase diagram of the photon number for an up-sweep with D/
2π = 1000MHz s−1. d As in (c), but for a down-sweep. In both (c and d) the white
dotted line indicates the same portion of the phase diagram. e As a function of T,
the hysteresis area for various L. The black lines have been obtained by fitting the
data with the power-law A(T)∝ Tx. Δmax=2π =4MHz and Δmin=2π = � 0:21MHz.
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of a finite-component solid-state device paves the way for the tech-
nological application of critical phenomena. In particular, it serves as
proof of concept towards the use of criticality and cat states for noise-
biased bosonic codes9, and it lays the foundation for the realization of
dissipative critical quantum sensors10.

Methods
Fabrication and setup
The device is made of a 150 nm thick aluminum layer deposited by
e-beam evaporation on a 525 μm thick silicon substrate. The
coplanar waveguides are fabricated by photolithography followed
by wet etching. The 6.42mm long CPW resonator is grounded
through two Al/AlOx/Al Josephson junctions of area 0.56 μm2,
forming a SQUID.

The junctions were fabricated by e-beam lithography and depos-
ited using double-evaporation technique inside a Plassys MEB550SL
system. The participation ratio γ of the SQUID nonlinear Josephson
inductance over the bare cavity inductance is γ = 3.13 × 10−2. The fin-
ished device is bonded using Al wire to a custom printed circuit board,
which is screwed to a copper mount anchored at the mixing chamber
stage of a dilution refrigerator with base temperature of 10mK. Two
high-permeability magnetic shields protect the sample against exter-
nal magnetic fields.

During the measurement, a NbTi coil placed underneath the
sample provides a constant DC flux bias of F =ϕext/ϕ0 =π/6. Under this
static field, the resonance frequency and Kerr nonlinearity are of ωr/
2π = 4.3497GHz and U/2π = −7 kHz. The internal and external photon
loss rate, originating from the coupling to the feedline and other
spurious baths are respectively of κext/2π = 60 kHz and κint/2π = 17 kHz.
All of these parameters are extracted by fitting the measured scatter-
ing coefficients using input-output relations.

A detailed description of the device, the fabrication process, the
experimental setup, and the pulse sequenceused in themeasurements
can be found in Supplementary Notes.

Parameters estimation
In addition to themeasuredparameters, we need to quantify the pump
amplitudeG, the dissipative rates κ2 and κϕ, and the number of thermal
photons nth to model our system. κ2 is a two-photon dissipation rate,
arising through the same processes that convert the incoming pump
tone into the two-photon drive69. κϕ is the dephasing rate mainly due
to the flux noise. To estimate these parameters, we explore the para-
meter space though a simulated annealing algorithm, and then search
for the parameters that better fit the experimental data for photon
number, λ1st, and λSSB. Details on this procedure can be found in
Supplementary Note 6.

When estimating G, its initial guess has been obtained by mea-
suring the steady state photon number nss as a function of the
detuningΔ. In themean-field approximation, the stable solution fornss
is given by

nss =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G2W � UK � 2Δκ2

� �2q
� κ2K � 2ΔU

2W
, ð6Þ

whereW = κ2
2 +U

2 and K = κϕ + κ. This formula simplifies to

nss =
Δ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣G∣2 � ðκ + κϕÞ2

q

jUj
ð7Þ

when κ2 = 0. We experimentally and theoretically find that such an
approximation is valid far from the transitionpoints. In a regimewhere
κϕ≪ κ, G can thus be easily estimated by extrapolating nss(Δ) to the
x-intercept [nss(Δ) = 0], even without knowing the Kerr nonlinearity.
Wefind that the value ofGobtained via annealing simulation iswithin a
few % of the initial guess.

Acquisition of the signal
In the experiment, we measure Im and Qm, demodulated at half of the
pump frequency, of the emitted field using time-resolved heterodyne
detection. Each acquired point is the integrated signal over a time
interval τint varying from 2 to 50μs, depending on the necessary time
resolution. Given the timescale of the process and the desired accu-
racy, the data of a single measurement trace is constructed by con-
catenating 103 to 107 quadraturemeasurements obtained sequentially.
Knowing the output gain G and the total loss rate κ, we rescale the
measured signal quadratures Im andQm to obtain the field quadratures
I and Q of the cavity, convoluted with the noise of the
amplification chain.

Having obtained the I and Q data, we can reconstruct the physics
of other observables from the higher-order moments without the
amplifier noise, as detailed in Supplementary Note 2. From a theore-
tical perspective, this procedure is equivalent to constructing the
probability p(I, Q) from the measured quadratures, and then com-
puting the moments of this distribution. For instance, we estimate a
generic ĥIi= RR dI dQpðI,QÞ I. Notice that, as the measurement acqui-
sition time is finite, the estimation of p(I, Q) may be inaccurate in
regimes characterized by rapid fluctuations.

Statistical error bars are obtainedby taking the standarddeviation
over four repetitions of the experiment, with the exception of Fig. 3,
where the error bars are obtained using a resampling technique, i.-
e., bootstrappingwith replacement. In this case, the standarddeviation
is calculated from 100 bootstrapped datasets of the measured
data. Systematic errors in the measurement mainly arise from
frequency shifts, which are especially evident when measuring the
photon number at the transition point. Other sources of systematic
errors include the estimation of the gain (which, however, we find in
good agreement with the theoretical results) and fluctuations in the
pump power.

Thermodynamic limit
The thermodynamic limit for the two-photon driven Kerr resonator
has been discussed in details in ref. 13 Considers a lattice of
L coupled two-photon resonators, described by the Hamiltonian
Ĥ =

P
jĤj +

P
i, j Ĥi, j , with Ĥj =Δâ

y
j âj +Uây

j â
y
j âj âj=2+Gðây

j â
y
j + âj âjÞ=2

and Ĥi, j = Jâ
y
i âj +h:c:. Re-writing the Hamiltonian using the Fourier

modes, keeping only the mode â0 = âk =0, and fixing the Kerr non-
linearity U as the unity of the model, results in

Ĥk =0 = ðΔ� 2JÞ L ây
0â0 +

U
2
ây
0â

y
0â0â0 +

GL
2

ây
0â

y
0 + â0â0

� �
: ð8Þ

This leads, up to a shift in the detuning, to a rescaling of the single
resonator Hamiltonian. Similarly, the photon loss term scales as κ→Lκ,
while κϕ and κ2 remain unchanged. Scaling the parameter L in the
single resonator thus mimic the scaling of the uniform k =0mode of a
lattice of L resonators towards the thermodynamic limit.

In the experiment, we re-scale Δ and G, but not κ. As the data
demonstrate, κ plays only a marginal role in determining the propri-
eties of the second-order DPT and of the bright phase. Indeed, Δ≫ κ at
the second-order critical point. However, κ plays a more significant
role in determining the critical point for the first-order DPT9.

Symmetry and Liouvillian eigenvalues
The equation of motion remains unchanged upon the transformation
â ! �â, thereby establishing the model’s invariance under the Z2
symmetry. The presence of this weak Z2 symmetry can be formalized
through the action of the parity operator Π̂= expfiπâyâg. Indeed, the
steady state is such that ρss = Π̂ρssΠ̂

54. In a phase-space representation,
this condition translates to ρss being symmetric upon apoint reflection
with respect to the origin, as one clearly sees in Fig. 4a
where ρss ’ ð∣αi αh ∣+ ∣� αi �αh ∣Þ=2.
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As a consequence of the symmetry, the Liouvillian, represented as
amatrix1, has a block-diagonal structure, with two independent blocks,
L1 and L2. By diagonalizing the Liouvillian, we obtain its eigenvalues λj
and eigenoperators ρj. In particular, the dynamics of any state can be
recast as

ρðtÞ=ρss +
X
j

cje
�λj tρj , ð9Þ

where the coefficients cj depend only on the initial state of the system.
Within this picture, we can directly assign a precise meaning to all

the states and rates discussed in thepaper.WhenwediagonalizeL1, we
find the eigenvalue λ0 = 0 associated with the steady-state ρss ≡ ρ0. We
then see that, in the critical region, a secondeigenvalue λ1st approaches
zero. Using Eq. (9), one can demonstrate that

nðtÞ=nss +
X
j

e�λj tδnj!t≫1=κnss + δn e�λ1stt , ð10Þ

where δn= c1stTr ðρ1stâ
yâÞ, ρ1st is the operator associated with λ1st.

This formula is Eq. (4), used to extrapolate the Liouvillian
eigenvalue associated with the critical slowing down due to the first-
order DPT.

The physics of SSB is theoretically described byL2. We call λSSB the
eigenvalue of L2 whose real part is closest to zero. An unambiguous
signature of critical slowing down and SSB is then given by the obser-
vation λSSB→0 as L is increased. λSSB describes the rate at which ρSSB ’
∣±αi ±αh ∣ evolves towards ρss. Experimentally, it corresponds to the
rate at which the system jumps between the states of opposite phase.

Autocorrelation function
A convenient way to extract λSSB in the bright phase [see Fig. 2b] is to
measure the system along a single quantum trajectory ∣ψnðtÞ

	
, repre-

senting a single realization of the heterodyne measurement. The
autocorrelation is defined as

Cnðτ, tÞ=
hψnðτÞjâjψnðτÞihψnðt + τÞjâjψnðt + τÞi

hai2ss












: ð11Þ

At each time τ, the system is in one of the states ∣±αi, and the rate at
which it jumps to the opposite state is λSSB. Averaging over several
measurement traces (ideally, infinitely many) taken at a long enough
time t≫ 1/κ and for τ≫ 1/κ, the steady state correlation function is then
defined as

CssðtÞ=
XN
n= 1

Cnðτ≫ 1=κ, tÞ
N

’ exp�λSSBt: ð12Þ

The last equality is proved in Supplementary Note 6, and it is rooted in
a quantum trajectories interpretation of the Liouvillian dynamics, and
of its symmetries. Given the ergodic nature of the system, Css(t) can
also be computed along a very long measurement trace ∣ψ1ðtÞ

	
. In this

case,

CssðtÞ=
1
T

Z T≫1=κ

0
dt0C1trajðτ + t0, tÞ ð13Þ

This procedure provides the advantage of isolating the timescale of
SSB. As such, this technique is a straightforward way to measure the
Liouvillian eigenvalue.

Data availability
The data used to produce the plots within this paper are available on
Zenodo https://doi.org/10.5281/zenodo.12658150. All other data are
available from the corresponding authors upon request.
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