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 A B S T R A C T

How do we find items within graphical user interfaces (GUIs)? Current understanding of this issue relies on 
studies using symbol matrices, natural scenes, and other non-GUI stimuli. To understand whether the effects 
discovered in those environments extend to mobile, desktop, and web interfaces, this paper reports on visual 
search performance and eye movements with 900 real-world GUIs. In an eye-tracking study, participants 
(𝑁 = 84) were given a cue (textual or image) describing a target to find within a GUI. The study found 
that the type of GUI, the absence/presence of the target, and cue type affected search time more than visual 
complexity did. We also compared visual search to free-viewing in GUIs, concluding that these two tasks are 
distinctly different. Synthesis of the results points to a Guess-Scan-Confirm pattern in visual search: in the first 
few fixations, gaze is frequently directed toward the top-left corner of the screen, a pattern possibly related 
to the top-left being a statistically likely location of the target or of information that could aid in finding it; 
attention then gets more selectively guided, in line with the GUI’s structure and the features of the target; 
and, finally, the user must confirm whether the target has been identified or, instead, that no target is visible. 
The VSGUI10K eye-tracking dataset (10,282 trials) is released for study and modeling of visual search.
1. Introduction

All graphical user interfaces (GUIs) have one thing in common from 
the user’s point of view: ability to interact with them relies critically on 
finding relevant items in the display area. To send an email or to edit 
a photo, one must find the pertinent icons, buttons, input fields, labels, 
and text containers. Failing in this elementary task or spending exces-
sive time on attempting it may have negative consequences for both 
usability and user experience (Liu et al., 2021; Todi et al., 2019; Ling 
and van Schaik, 2007). For this reason, understanding and modeling
visual search – finding targets among distractors – in GUIs has been a 
foundational topic for human–computer interaction (HCI) research for 
at least the last three decades (Kieras and Hornof, 2014; Fleetwood and 
Byrne, 2006; Byrne, 1993; Byrne et al., 1999; Yuan and Li, 2020; Bailly 
et al., 2014; Todi et al., 2019; Fisher et al., 1989).

Notwithstanding the sustained importance of finding items within 
GUIs, visual search over diverse everyday interfaces has received rela-
tively little empirical attention in recent HCI literature. The reports 
published on empirical studies of visual search with modern GUIs 
have focused on specific subtypes of interfaces or not considered eye-
tracking data (Jokinen et al., 2020; Bailly et al., 2014; Yuan and Li, 
2020; Liu et al., 2021; Byrne, 1993; Jokinen et al., 2017; Pfeuffer 
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and Li, 2018; Halverson and Hornof, 2004; Hornof, 2004; Teo et al., 
2012). In fact, much of our knowledge about visual search in HCI is 
based on findings in controlled studies from other disciplines, which 
tend to use fairly abstract stimuli, such as symbol matrices (Wolfe, 
2021, 2007). A typical study with symbol matrices overlays computer-
generated abstract shapes on unicolor backgrounds for tasks such as 
finding a letter ‘‘L’’ among ‘‘T’’s (Wolfe, 2021; Williams, 1967; Wolfe 
and Horowitz, 2004). It is not clear how well phenomena discovered 
in these abstract environments generalize to GUIs, which present great 
variety of visual form and generally lack experimental control. In this 
paper, we present novel empirical results speaking to that question by 
releasing a large-scale eye-tracking dataset from visual search within 
everyday GUIs, VSGUI10K, which richly details the eye movements 
and visual search times of 84 participants.

Why is it necessary to study visual search in GUIs specifically 
rather than extrapolate from symbol matrices or other search environ-
ments? On one hand, symbol matrices and GUIs share features that 
make generalizing findings from the former to the latter plausible (see 
Fig.  1). When compared to symbol matrices, GUIs too are ‘‘designed’’ 
environments, wherein the placement of each element follows con-
ventions for the visual hierarchy and delineation of objects (Wolfe, 
vailable online 1 March 2025
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Fig. 1. Comparison of symbol matrices, natural scenes, and GUIs as visual search environments. Most work related to visual search focuses on symbol matrices and natural scenes 
(A-B). Like symbol matrices, GUIs represent a highly designed environment (I) and feature clear delineation of items (III). Natural scenes and GUIs are both everyday stimuli 
(II), have distinct grouping of elements (e.g., menus and toolbars, IV), feature spatial organization (V), and use a wide range of visual expression mechanisms – colors etc. (VI). 
Properties IV–VI are regarded as especially important in relation to GUIs’ visual complexity (Miniukovich et al., 2018). The illustrative images here are (A) modified from those 
of Wolfe (2018) and the distractor ratio task (Shen et al., 2000; Myers et al., 2013); (B) reproduced from Flickr under public-domain terms (Creative Commons CC0 1.0) (Levine, 
2008; Carroll, 2009); and (C) from the UEyes dataset (Jiang et al., 2023).
1994; Miniukovich et al., 2018), alongside some degree of spatial 
organization, for instance, via vertical symmetry and the alignment of 
objects (Miniukovich et al., 2018). Early studies with symbol matrices 
tended to focus on ‘‘feature guidance’’, or how the characteristics of the 
target guide search (Wolfe, 2020). Such studies suggest that color and 
size are among the attributes that guide the deployment of attention 
in visual search (Wolfe and Horowitz, 2004) and that visual search 
generally takes longer when none of the targets are present (Chun and 
Wolfe, 1996) or when more items are shown (Palmer, 1995). There is 
evidence that these effects are relevant also in the HCI domain (Jokinen 
et al., 2020; Kieras and Hornof, 2014).

However, even with these similarities, we posit that studying visual 
search in GUIs specifically is critical for the same reason natural 
scenes are considered as a separate category in the visual search 
literature: these environments contain semantic structure that cannot 
be exploited through feature guidance alone; ‘‘scene guidance’’ must 
be deployed (Wolfe, 2020). Additionally, work conducted in symbol 
matrices often probes only a handful of independent variables. This 
renders it unclear how the results transfer to other contexts (Yuan and 
Li, 2020), whether GUIs or natural scenes.

Experimental design provides another reason for studying visual 
search in GUIs. Specifically we draw attention to the importance of 
understanding visual search in a naturalistic sample of GUIs. Controlled 
studies in environments that lack semantic structure may not reflect 
realistic GUI settings. Firstly, such an experimental design may ran-
domize the target’s location across all quadrants of the same GUI. This 
random placement of the target may interfere with scene guidance 
if the target ends up in an idiosyncratic position. Also, the typical 
repetition of the target across trials may lead to learning effects, leading 
to speedier searches in later trials. We can complement such studies 
via a naturalistic design wherein targets are allowed to vary as they 
naturally do, in conditions informed by sampling from a large set of 
everyday GUIs. A design of the latter kind provides the added practical 
benefit of offering practitioners the ability to predict search times over 
a wide variety of GUIs. This paper presents an experimental design that 
balances these considerations. We posit that a successful experimental 
2

design representing naturalistic conditions should balance: (1) keeping 
its stimuli close to those actually encountered by users and (2) intro-
ducing control only as necessary to balance the underlying distributions 
or make data collection feasible.

While experimental designs sensitive to such factors are increasingly 
common, they prevail mainly in ‘‘free-viewing’’ studies in the domain 
of visual attention (Shen and Zhao, 2014; Jiang et al., 2023; Leiva et al., 
2020; O’Donovan et al., 2014; Borkin et al., 2016). In free-viewing 
tasks, users are asked to ‘‘just look at’’ the GUI for the prescribed 
amount of time. It is not obvious how empirical findings from free-
viewing should be interpreted in the context of visual search. Indeed, it 
is well-known in vision research that the way gaze is deployed depends 
critically on the user’s task (Wolfe, 2021). A distinct characteristic of 
visual search tasks is that a specific target should be found, and the 
way this is represented in the mind guides search (Wolfe, 2020). In 
a free-viewing task, though, no such aim is specified. At the same 
time, the two task types may show similarities. For example, one 
phenomenon commonly seen in free-viewing of GUIs is a bias wherein 
the upper-left corner of the display receives a disproportionate number 
of fixations (Leiva et al., 2020; Jiang et al., 2023). A similar concen-
tration of fixations toward the upper-left is visible in less open-ended 
tasks, such as browsing of search-engine result pages (Hotchkiss, 2014; 
Nielsen, 2006). Better assessing such findings’ relevance for visual 
search of GUIs requires moving beyond free-viewing, to understand the 
distinct tasks’ similarities and differences.

In summary, this paper presents four main contributions:

• We test and quantify the effect of several factors on visual search 
in more ecologically valid circumstances than, to the best of our 
knowledge, the existing literature contains.

• We compare how visual search compares to free-viewing in GUIs, 
which so far has been a more popular task in studying behavior 
in these environments.

• We synthesize our results as a Guess-Scan-Confirm pattern that 
takes place during visual search.

• We release a novel eye-tracking dataset: VSGUI10K covers more 
than 10,000 visual search trials from 900 real-world webpage, 
mobile, and desktop interfaces shown to 84 participants.
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2. Related work and research questions

2.1. Visual search with symbol matrices and natural scenes

Most work in visual search involving laboratory studies use symbol 
matrices where the stimuli contain shapes overlaid on often unicolor 
backgrounds. Attention to natural scenes began growing since differ-
ences in the respective environments’ characteristics left it unclear 
whether findings from symbol matrices transfer directly to them (Wolfe 
et al., 2011b; Wolfe, 1994). Several well-known findings have emerged 
from this work. Originally noted with symbol matrices, two important 
observations are that the target’s absence is slower to detect than its 
presence (Chun and Wolfe, 1996) and that visual search time gener-
ally increases with ‘‘set size’’, the number of discrete elements in the 
stimulus (Palmer, 1995). The way in which the target is shown to the 
participant before the visual search trial is important also: image cues 
are better at guiding search than textual ones (Wolfe et al., 2004). 
Additionally, previous work considering finding elements of a specified 
shape, size, color, and quantity suggests that if the target is described in 
textual form, stating its color leads to better visual search performance, 
followed by its size and shape (Williams, 1967).

Notably, the visual search literature reports on a wide range of stud-
ies of the mechanisms by which targets guide search. Classic theories 
of visual search such as the Feature Integration Theory (Treisman and 
Gelade, 1980) and Guided Search (Wolfe, 2021) posit that, because 
of humans’ limited capacity for object recognition, items in a visual 
field need to be selectively chosen for processing to identify whether 
they are the target. In these environments, feature guidance is an 
important mechanism, with a certain set of features, like color, motion, 
orientation, and size, efficiently guiding search; a review is provided 
by Wolfe and Horowitz (2004). Whereas guidance via top-down and 
bottom-up attributes prevails in studies with laboratory stimuli, natural 
scenes, containing objects that may exhibit hierarchical structure, ben-
efit from additional search mechanisms (Henderson, 2005; Henderson 
and Ferreira, 2004). In one view, scenes have particular semantic 
meanings and syntax, just as grammar does (Henderson and Ferreira, 
2004). This structure can be exploited for solving the search problem, 
for instance, if the target is a lamp, looking at tables is beneficial. 
Accordingly, natural scenes benefit from scene guidance (Biederman 
et al., 1973), wherein fixation locations are selected without regard for 
whether targeted features are visible (Wolfe, 2020). People tend to look 
at meaningful regions of images, like humans (Buswell, 1935; Yarbus, 
1967), and evidence of relatively inefficient search when the target 
items are placed in idiosyncratic locations (Biederman et al., 1982) 
implies that scene guidance contributes to search of natural scenes.
3

2.2. Visual search in GUIs

Research conducted with GUIs has yielded findings similar to those 
with symbol matrices. One example is the growth of search time with 
absence of the target and the number of items displayed (Grahame 
et al., 2004; Trapp and Wienrich, 2018). In GUI settings, as in natural 
scenes, analyses pertaining to item count hinge on the definition of ‘‘set 
size’’, which may not be obvious. Therefore, several clutter metrics have 
been developed in place of count to describe crowdedness of visual 
displays (Rosenholtz et al., 2007; Miniukovich and De Angeli, 2015). 
A group of other metrics connected with visual complexity has been 
suggested to aid further in assessing usability of interfaces (Miniukovich 
and De Angeli, 2015). Research with GUIs has also produced evidence 
of textual elements being more difficult to find than images (Yuan and 
Li, 2020). This has practical implications, as a parallel can be drawn 
between looking for simple visual features and icon search: seeking of 
these GUI elements is often based on recalling basic visual features from 
memory (Kieras and Hornof, 2014). Furthermore, characteristics of the 
target aid in search, as varied colors and rectangular borders in the 
context of app icons illustrate (Liu et al., 2021), alongside differences 
from surrounding elements (Trapp and Wienrich, 2018).

Contributions in modeling visual search for predictive purposes is 
prevalent in HCI. Many of these models use observations from other 
contexts (Kieras and Hornof, 2014; Jokinen et al., 2020; Byrne, 1993; 
Halverson and Hornof, 2011). It is noteworthy too that, meanwhile, the 
field’s empirical work on visual search is largely focused on specific GUI 
types or scenarios, such as menus (Bailly et al., 2014), icons (Liu et al., 
2021; Byrne, 1993), keyboards (Jokinen et al., 2017), grids (Pfeuf-
fer and Li, 2018), lists/groups (Halverson and Hornof, 2004; Hornof, 
2004), webpages (Jokinen et al., 2020; Teo et al., 2012), and the 
aforementioned icons (Kieras and Hornof, 2014; Liu et al., 2021; Trapp 
and Wienrich, 2018). Among recent efforts sharing our aims are a 
large-scale study of visual search performance with GUIs (Yuan and 
Li, 2020) for the purposes of predicting visual search time using deep 
learning. However, that work focused on search times collected via 
crowdsourcing, without corresponding eye-tracking data; it was limited 
to webpages; and all trials had the target present. In contrast, several 
open-availability datasets, spanning multiple GUI types, exist, but these 
mostly come from free-viewing tasks, not visual search (Jiang et al., 
2023; Kümmerer et al., 2024), see Table  1 for reference.

2.3. Selective attention and GUIs

Tasks wherein participants are allowed to look at GUIs without a 
specific goal, that is, engage in free-viewing, are often used to probe 
which regions of an image catch the eye. In HCI, free-viewing has 
been studied especially in the context of webpages (Shen and Zhao, 
2014; Jiang et al., 2023), mobile devices (Leiva et al., 2020; Jiang 
Table 1
GUI-related visual search and free-viewing datasets.
 Reference Task Environment GUIs Participants Trials  
 VSGUI10K Visual search Mobile UI 900 84 10,282 
 (ours) Desktop UI  
 Webpage  
 UEyes Free-viewing Mobile UI 1980 62 20,088 
 Jiang et al. (2023) Desktop UI  
 Webpage  
 Poster  
 Leiva et al. (2020) Free-viewing Mobile UI 193 30 ∼4600  
 Shen and Zhao (2014) Free-viewing Website 149 11 N/A  
 Bailly et al. (2014) Visual search Linear menu 9 22 39,564 
 Jokinen et al. (2020) Visual search Consumer interface 3 20 24,514 
 OS interface  
 Website  
 Yuan and Li (2020) Visual search Website N/A 1887 28,581 
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Table 2
The variables examined for correlations with search times. Controlled variables (in-
dicated with *) were adjusted in the laboratory study, while the rest were allowed 
to vary per the naturalistic sample’s composition. References to color variability (CV), 
clutter (CL), and grid quality (G) follow the practice of Miniukovich and De Angeli 
(2015). The ‘‘levels’’ are those present in the VSGUI10K dataset; naturalistic variables 
were computed via the Aalto Interface Metrics server (Oulasvirta et al., 2018).
 Variable Levels in data 
 Absence of the target* Present  
 Absent  
 Target cue* Image  
 Text + color  
 Text  
 GUI category* Mobile UI  
 Desktop UI  
 Webpage  
 PNG file size (CV1) 16 kB–2 MB  
 Distinct RGB values (CV2) 177–47,285  
 Distinct RGB values per dynamic cluster (CV3) 6.0–35.82  
 Static clusters (CV4) 32–16,978  
 Dynamic clusters (CV5) 1–2275  
 Contour density (CL1) 0.0–0.12  
 Subband entropy (CL2) 0.67–4.68  
 Feature congestion (CL3) 1.42–9.75  
 JEPG file size (CL4) 14 kB–436 kB 
 Number of visual GUI blocks (G1) 1–127  
 Number of alignment points (G2) 4–178  
 Number of block sizes (G3) 1–40  
 GUI coverage (G4) 0.0–0.71  
 Number of vertical block sizes (G5) 1–23  
 Figure-ground contrast 0.3–0.97  
 Contour congestion 0.23–0.9  

et al., 2023), posters (O’Donovan et al., 2014; Jiang et al., 2023) and 
information visualizations (Borkin et al., 2016). Among the patterns 
found in free-viewing are a persistent upper-left bias in eye move-
ments (Jiang et al., 2023; Leiva et al., 2020) and that people tend to 
look at text and images (Leiva et al., 2020). In addition to empirical 
work, computational modeling of saliency has been popular to predict 
which areas of a stimulus draw attention (Itti et al., 1998; Kümmerer 
et al., 2015; Cornia et al., 2018; Fosco et al., 2020). Distribution of 
attention in the context of GUIs has received some attention also in 
studies of browsing, where the tasks range from ‘‘open-ended’’ ones 
without specific goals to directed search. These studies have identified 
users’ tendency to explore search-engine result pages (SERPs) and other 
pages in patterns that resemble the letter ‘‘F’’ (Nielsen, 2006; Pernice, 
2019; Buscher et al., 2009) or a triangle (Hotchkiss et al., 2005; 
Hotchkiss, 2014). In addition to producing such well-known findings, 
previous work has focused on examining how users allocate attention 
to specific elements on the screen — for instance, their tendency 
of ignoring advertisement banners (Resnick and Albert, 2014, 2016). 
Finally, previous work offers design guidelines based on perception of 
elements on the display, for instance, tendency to use and seek structure 
or biases based on expectations and goals (Johnson, 2014).

2.4. Research questions

We examine the structure and special characteristics of visual search 
in GUIs through the following research questions:

1. How do relevant factors from previous work in symbol matrices 
(absence of the target, target cue, set size) and GUIs (GUI cate-
gory, visual complexity) impact search times? Table  2 outlines 
our main independent variables drawn from these categories.

2. What similarities and differences arise in eye-tracking data of 
free-viewing and visual search tasks?
4

3. Method

We conducted an eye-tracking study to mimic various everyday 
visual search tasks in GUI settings. As the design space for these tasks 
is large, we make the following design choices to produce a sample 
that closely resembles the environments for which we set out to apply 
the results: We randomly sampled GUIs in three categories (webpages, 
desktop UIs, and mobile UIs) from the UEyes dataset (Jiang et al., 
2023), representing a wide range of everyday-use interface screenshots 
collected manually or from existing datasets such as Visual Complexity 
and Aesthetics (Miniukovich and Marchese, 2020) and Rico (Deka 
et al., 2017). Also, we varied whether the target is present or absent 
and the way in which it is presented to the participant (in image or 
textual form). The study itself was conducted in a laboratory setting in 
order to collect high-quality eye-tracking data and to avoid nuisance 
factors. Each target was shown to the participant in a visual format, 
in line with conventions in other visual search experiments (Jokinen 
et al., 2020; Yuan and Li, 2020).

The collected VSGUI10K dataset, with eye-tracking data for 10,282 
visual search tasks from 900 GUIs, represents a broad variety of stimuli 
in comparison to the publicly available datasets prepared with similar 
aims (see Table  1 for comparison). Attesting to the breadth of our 
dataset, Jokinen et al. (2020) considered only three GUIs, with 24,514 
trials, while Yuan and Li (2020) covered 28,581 trials without any eye-
tracking data and Brumby and Zhuang (2015) worked from 39,564 
trials with just menus. We make the dataset available in conjunction 
with our experiment’s pre-registration.1

3.1. Participants

In total, 84 people were recruited, through mailing lists, social 
media, word of mouth, and on-campus advertisements. The participants 
described themselves as follows:

• Gender: 40 self-identified as women, 42 as men, and three as 
non-binary. Multiple options were allowed.

• Age: 71 were aged 18–30, nine 31–50, and four over 50.
• Occupation: 51 reported that full-time student described them 
best, with the next most common statuses being full-time em-
ployment (23) and working part-time (21). Two participants had 
no paid employment, three marked that they were part-time 
students, five noted some other occupational status and one pre-
ferred not to answer. Multiple options were allowed.

• Computer usage: All participants reported using desktop (or 
laptop) computers and mobile devices at least weekly.

• Vision: The participants had normal or corrected-to-normal vi-
sion, and 59 reported wearing glasses/contact lenses or using 
other vision-correction.

Participants received 15e in compensation for the experiment, 
which lasted approximately 60 min. The study was conducted in 
accordance with local procedures for ethics approval.

3.2. Materials

We obtained the stimuli from the UEyes dataset (Jiang et al., 2023), 
which contains screenshots from desktop interfaces, mobile ones, web-
pages, and posters. The difference between the UEyes data and ours is 
that the former were collected in free-viewing tasks wherein the user 
was instructed only to look at GUIs, instead of searching for specific 
elements. In addition, we excluded posters and selected 300 screenshots 
each from the remaining three categories for 900 GUIs in total, to 

1 Link to VSGUI10K dataset and pre-registration: https://osf.io/hmg9b/. 
The dataset is described in supplementary materials.

https://osf.io/hmg9b/
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gather a broad sample for which data collection would still be feasible. 
Targets for the visual search tasks were selected by hand with Label 
Studio (Tkachenko et al., 2020–2022), with 1–6 targets being extracted 
for each image. Each target was chosen on the basis of pre-specified 
criteria, which only a few targets might fulfill in some cases. The 
targets, rectangular unique elements on the screen, each belonged to 
one of the following categories: input field, icon, menu item, widget, 
button, image, and title/subtitle. Most targets contained text.

3.3. The task

A visual search task comprised four displays (as Fig.  2 shows):

1. Target description: The target is displayed in the middle of the 
screen. A participant indicates preparedness to proceed with the 
task by pressing the spacebar. The description takes the form of 
one of three ‘‘levels’’, denoted as Image, Text+Color, or Text.

2. Fixation cross: A black cross appears in the middle of the 
screen. The participant fixates on the cross for 1 s, to standardize 
where each of the visual search trials starts.

3. Visual search: The GUI screenshot is shown, and the participant 
performs the visual search task. Pressing the spacebar signals 
search completion. The maximum time for each trial is 30 s.

4. Validation: The outline of the GUI screenshot is displayed. In 
the lower-right corner of the screen, a rectangle with the text 
‘‘Target absent’’ is shown. The participant is instructed to look 
at the location where the target was detected or, in its absence, 
look toward the lower-right corner. The participant is asked to 
gaze at the location for 3 s.

3.4. Experiment design

Our study followed a 3 × 3 × 2 within-subjects design. Participants 
were exposed to different levels of the three controlled variables: (1) 
GUI type (Webpage, Mobile UI, and Desktop UI), (2) target description 
(Image, Text, and Text+Color), and (3) absence/presence of the target. 
The GUIs were sampled from everyday GUIs in the UEyes dataset (Jiang 
et al., 2023). Additionally, our analysis below considers a set of inde-
pendent variables related to the characteristics of the GUI — namely, 
metrics for visual complexity (see Table  2). The GUI images were 
organized into blocks of 18 visual search tasks each, which a pilot 
study demonstrated to yield a reasonable duration for each block. The 
blocks contained a mix of screenshots, from multiple GUI categories. A 
participant completed as many blocks as possible in the time allocated 
for the experiment (60 min). On average, participants were able to 
complete approximately seven blocks in that time. Each image received 
on average 11.42 trials.
5

The visual search tasks for the entire experiment were selected such 
that two targets were sampled for each screenshot (if available), and six 
instances of each target/screenshot pair were included in the overall 
sample. We set the target to be absent in approximately 10% of the 
trials. A Text or Text+Color description was provided in 50% of the 
trials (25% of samples in the full dataset specified text for the target, 
and a further 25% included a description of the background color in 
addition). The cue in the rest of the trials was an image. The visual 
search tasks’ order was randomized prior to collection of data. We 
made sure that the images were repeated at a low frequency, to avoid 
learning effects. In total, our dataset contains 10,282 visual search tasks 
(Figure 1 in supplementary materials give details on the composition 
of the trials). These visual search tasks were divided into blocks that 
contained 18 images each, preserving the randomized order. The code 
used in generating the stimuli and randomizing their order is publicly 
available alongside the dataset.

3.5. Apparatus

We conducted the experiment with a Gazepoint GP3 HD eye-tracker 
with a 150 Hz sampling rate and no head mount (Gazepoint, 2021). 
The GUI screenshots were shown on a monitor with 1920 × 1200 px 
resolution, at 94.3 ppi (HP Z24n 24-inch). Participants were instructed 
to sit 50–65 cm from the monitor. We used the integrated Gazepoint 
Control software for calibrating the eye-tracker, while Gazepoint Anal-
ysis was used to show stimuli and record data. The facilitator monitored 
the eye-tracking data for the duration of the experiment, and the eye-
tracker was re-calibrated if drift was observed. The GUI screenshots 
were shown such that webpage ones spanned 75% of screen height 
(approximately 24◦). Mobile UI stimuli were scaled to appear the same 
size as they would from their natural viewing distance corresponding 
to a visual angle of 19◦ or about 61% of screen height. Desktop UI ones 
were scaled to span 75% of the screen height at maximum.

3.6. Procedure

Before the experiment started, the participants were familiarized 
with it and signed an informed-consent form. They were allowed to 
adjust the positioning of the monitor and table to match their cus-
tomary desktop usage patterns. Also, participants were able to adjust 
their distance from the screen (within the 50–65 cm range). These 
adjustments addressed the calibration that the eye-tracker required for 
guaranteeing high-quality data. The experiment began with the eye-
tracker’s nine-point calibration via Gazepoint Control and testing by 
means of the calibration test screen. The calibration process iterated un-
til at least eight accurately registered calibration points were acquired, 
and additionally the eye-tracker was calibrated mid-experiment if drift 
was observed. After calibration, the participant received a practice 
Fig. 2. A visual search trial. The target is the first thing shown to the participant (pane A), followed by a fixation cross to set the starting point of each search (pane B). Search 
is performed for a given GUI screenshot (pane C), and a separate screen is used to indicate where the participant detected the target via fixation at that location (pane D).
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block of task. The practice block was designed to ensure participants’ 
understanding of the experiment procedures and task requirements.

Each participant was allotted a one-hour session to complete as 
many blocks as possible, with self-managed breaks between the blocks. 
In every task (comprising the four screens shown in Fig.  2), the par-
ticipant was asked to fixate on the centrally positioned cross in the 
second step for a span of 1–2 s and, in the fourth step, on the location 
of the target found for 3–4 s, for making sure of the calibration’s 
accuracy and verifying the result of localizing the target. Thereby, we 
separated validation of whether the target was found from the search. 
This method of validating where the participant had detected the target 
was chosen to avoid confounding the visual search results with the 
reaction times that clicking involves and due to limitations of the eye-
tracking software. A metronome was active throughout the experiment 
to aid participants in gazing the screen for the specified durations. Each 
participant answered questions related to demographic details after the 
last block of GUI images was shown.

3.7. Data analysis

Next, we briefly describe how we processed the data, segmented the 
GUI screenshots (for set-size), and estimated coverage used in analyses.
Data processing. We used the fixation data provided by Gazepoint’s 
custom fixation filtering (FPOGX and FPOGY, for ‘‘fixation point of 
gaze’’) in further analyses. All analysis used (only) the fixation data 
from the visual search screen (pane C in Fig.  2), except where we 
indicate otherwise; fixation data from the validation screen constitute 
an exception, in light of the need to examine the number of successful 
trials. All fixations were deemed valid by Gazepoint’s validity metric 
(FPOGV). Upon collection of all the data, fixation points were detected 
as missing from the visual search screen for 80 images, and we ran 
these trials with new participants to avoid learning effects. Total search 
time was calculated in two ways: (1) as the trial’s duration and (2) 
as the sum of fixation durations (via FPOGD). Our reporting uses the 
results from metric 1 (the interpretation of the results is similar for sum-
total fixation duration). In total, 61 trials exceeded 30 s, but were not 
removed from the dataset. We de-biased the eye-tracking data through 
the logs from the fixation-cross step (pane B in Fig.  2), where these 
were available for the trial, by subtracting the error along the x- and
y-axis from the fixation coordinates. While we examined errors made 
during the searches (i.e., mistakes in localizing the target), we have not 
removed any trials from the dataset (see Figure 12 in supplementary 
materials). Approximately 90% of the trials where within a minimum 
normalized distance of 0.2 from the target in the validation step. There 
were 51 duplicate trials, for which the second instance was removed. 
In total, the dataset encompasses 10,282 visual search trials.
Segmentation. Elements within each GUI were segmented as described 
by Jiang et al. (2023). When segmenting the interfaces, the elements 
were classed into three categories: image, text, and face. To accomplish 
this, an extended UIED model (Xie et al., 2020) was used, initially 
designed for the identification of images and text within GUIs. For 
calculating set sizes, we counted all image and text elements within 
a GUI. Examples of segmentations are provided alongside the dataset.
Foveal area. We estimated the area of the participant’s foveation on 
the GUI assuming that they sat 50 cm from the screen and that the 
monitor operated at 94 ppi. Thus, the foveal area’s radius was assumed 
to be around 32 px. We then approximated overlapping foveal areas, 
using the Python Shapely package (Gillies et al., 2007–2024).

3.8. The multilevel models

We used multilevel models to investigate which variables explain 
search times. Three such models were fitted to consider variables that 
(1) were controlled in the experiment design, (2) related to visual 
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complexity, and (3) were significant in models 1–2 and hypothesized to 
interact with absence of the target (also, the supplementary materials 
present models constructed for alternative independent and depen-
dent variables, see Figures 13–20). Multilevel models, or mixed-effects 
models, were chosen since they can factor in the data’s hierarchical 
relations, which involve measurements of individual search times (level 
1) nested across the various stimuli (level 2) and further nested for dis-
tinct participants (level 3). Our multilevel modeling included random 
effects for stimulus and participant ID, accounting for the variability in 
search time that may be attributed to these higher-level groupings.

For model fitting, the lmer function from R’s lme4 package (Bates 
et al., 2015) was used. Hypothesis tests for the fixed effects in our 
model were conducted via the Satterthwaite degrees-of-freedom
method as implemented in the lmerTest package (Kuznetsova et al., 
2017). The sjPlot package was used in visualizations and analy-
sis (Lüdecke, 2023). We also provide Standardized Beta Coefficients, 
serving for estimation of effect sizes, using the following thresholds: 
𝛽 ≤ 0.29: small, 0.29 < 𝛽 ≤ 0.49: medium, and 𝛽 > 0.49: large (Cohen, 
1988; Nieminen, 2022). Our use of multilevel models considers the 
within-group multicollinearity via the random part of the model. In 
examining effects, we employed comparisons of estimated marginal 
means, which, analogously to ANOVA, is not strictly considered post 
hoc testing. The modeling code has been released in conjunction with 
this publication. The individual models are described in turn below.
The controlled-variable model. Since our experiment followed a
3 × 3 × 2 design, the controlled-variable model takes three independent 
variables: category, cue, and absence.
The visual-complexity model. To evaluate the impact of individual
screenshot characteristics on search times, we used automated GUI 
evaluation metrics, computing them by using the Aalto Interface Met-
rics (AIM) server (Oulasvirta et al., 2018). We took an approach similar 
to Miniukovich and De Angeli (2015), wherein the metrics are catego-
rized into those pertaining to (1) visual clutter, (2) color variability, (3) 
contour congestion, (4) figure–ground contrast, and (5) layout quality. 
Of these classes, metrics for visual clutter (CL), color variability (CV), 
and layout quality (G) are multi-item ones, which were combined via 
factor analysis following the prior method (Miniukovich and De Angeli, 
2015). Specifically, the factanal function of R was used for factor 
analysis and computation of factor scores, with number of factors 
evaluated using the n_factors function from the parameters
library (Lüdecke et al., 2020).
The interaction model. Proceeding from the models related to controlled 
variables and visual complexity, we identified those coefficients and 
corresponding independent variables that had a significant 𝑝-value. To 
describe interactions with absence of the target, we constructed a third 
model, with contributions from analyses that considered factors 1, 3, 
and 4, figure-ground contrast, contour congestion, category and cue as 
independent variables, where each was tested against the assumption 
that it interacted with absence of the target. We also considered a ver-
sion of the interaction model that takes into account set size instead of 
the visual complexity metrics (see ‘‘Segmentation’’ for its computation), 
to render comparisons with previous results involving symbol matrices 
and natural scenes easier (see supplementary materials).

4. Results

4.1. Fitted linear mixed-effects models

As is detailed in Section 3.8, our analysis builds on three separate 
models, considering different independent variables, associated with 
(1) controlled variables in the experiment design, (2) visual complexity, 
and (3) interactions with absence of the target. This division functions 
to simplify the interpretation of our models.
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Fig. 3. Fixed effects for the controlled-variable model when search time is the dependent variable. Random effects are considered for each image and participant ID. The figure 
provides absolute (pane A) and standardized (pane B) estimates both. Significance levels for the coefficients are indicated thus: ∗∗∗= 𝑝 < 0.001, ∗∗= 𝑝 < 0.01, ∗= 𝑝 < 0.05. Webpage 
stimuli serve as the baseline for GUI category, and images are the reference among cues. Increases in search time with respect to the baseline are indicated in red and decreases 
in blue.
Fig. 4. Saccade directions during search, by GUI category. Scanning of GUIs tends to follow their longitudinal axis.
The controlled-variable model. Absence of the target, as well as present-
ing its cue in textual format over an image increase search times. Also, 
search is faster in desktop and mobile UIs than in webpages (see Fig. 
3 for fitted coefficients). Specifically, search time increased by 6.97 s 
(𝑆𝐷 = 0.15) with absence of any target. This is the largest effect in 
the data (1.45 with 𝑆𝐷 = 0.03). Providing descriptions of the target in 
purely textual form led to more protracted searching than image-based 
ones — search time rose by 1.45 s (𝑆𝐷 = 0.09) and 1.41 s (𝑆𝐷 = 0.09) 
for the Text and Text+Color condition, respectively. These coefficients 
indicate medium effect sizes (0.30 and 0.29 both with 𝑆𝐷 = 0.02
for Text and Text+Color, respectively). Relative to webpages, searches 
with desktop and mobile interfaces, respectively, were 0.78 s (𝑆𝐷 =
0.16) and 2.23 s (𝑆𝐷 = 0.16) faster, showing small to medium-sized 
effects (−0.16 with 𝑆𝐷 = 0.03 for the former, −0.47 with 𝑆𝐷 = 0.03
for the latter). Partly, this effect can be attributed to the interfaces’ size; 
in general, webpages have the largest search area, followed by desktop 
and then mobile UIs (see Figure 2 in supplementary materials). The 
marginal and conditional R2 values for this model are 0.235 and 0.420.

Target absence exerts a significant influence on search times. The 
longer searches accompanying absence can be attributed in part to 
covering the GUIs more exhaustively in trials where the target is 
absent (i.e., to a larger estimated total foveation area; see Fig.  5). 
That is, users tend to foveate on more of the GUI when the target 
is absent. Additionally, coverage is higher for mobile UIs than the 
other two categories; given the faster search with mobile GUIs, this is 
probably linked to the size of the space: mobile UIs are smaller and 
hence support quicker scanning. Additionally, saccade directions for 
mobile UIs exhibit a vertical-scanning pattern, suggesting that mobile 
UIs can be relatively efficiently searched by working one’s way along 
the length dimension. However, search in desktop UIs and webpages 
shows a tendency to scan widthwise. That is, with website and desktop 
UIs, which typically have a landscape orientation, scanning occurs via 
horizontal eye movements (see Fig.  4, panes B and C).
The visual-complexity model. For the independent variables of the visual 
complexity model, two separate factor analyses were conducted to 
determine loadings, one for visual clutter and color variability and the 
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Table 3
Factor loadings resulting from the factor analysis performed for visual complexity 
metrics. Following the literature’s lead (Miniukovich and De Angeli, 2015), we 
evaluated the metrics in two factor analyses: for (1) color variability (CL) and 
visual clutter (VL) and (2) grid quality (G). Factor loadings higher than 0.7 are 
gray-highlighted.

Metric
Loading Factor 1 Factor 2 Factor 3 Factor 4

PNG file size (CV1) 0.332 0.239 0.733 –
Distinct RGB values (CV2) 0.060 0.908 0.387 –
Distinct RGB values per 0.039 0.234 0.804 –
dynamic cluster (CV3)
Static clusters (CV4) 0.398 0.565 0.144 –
Dynamic clusters (CV5) 0.041 0.970 0.228 –
Contour density (CL1) 0.884 0.123 0.206 –
Subband entropy (CL2) 0.872 0.249 0.248 –
Feature congestion (CL3) 0.985 0.005 0.017 –
JEPG file size (CL4) 0.498 0.486 0.051 –
Number of visual GUI blocks (G1) – – – 0.890
Number of alignment points (G2) – – – 0.998
Number of block sizes (G3) – – – 0.916
GUI coverage (G4) – – – 0.194
Number of vertical block sizes (G5) – – – 0.781

other for layout quality. Loadings resulting from the factor analysis 
are characterized in . Similar to work by Miniukovich and De Angeli 
(2015), the first analysis revealed three factors (labeled 1–3 in the 
table). One of these has higher loadings for visual-clutter metrics 
(Factor 1 in ), the other two for color variability. In the factor analysis 
focusing on layout quality, one factor emerged. On account of this 
analysis, we proceeded to use factors 1–4, plus contour congestion and 
figure–ground contrast, when fitting the visual-complexity model, and 
compute factor scores for each.

In comparison to the controlled-variable model, the visual-
complexity model captures generally smaller effects (see Fig.  7). Con-
tour congestion and factors 1 (visual clutter), 3 (color variability), 
and 4 (grid quality) contribute significantly in a statistical sense to 
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Fig. 5. Coverage of the foveated area in searches. Coverage was greater with mobile UIs and when the target was absent. GUI examples with fixations from the VSGUI10K corpus 
are shown in the top two rows assuming viewing distance of 50 cm.

Fig. 6. Examples of GUIs from VSGUI10K corresponding to specific metric or factor-score values. Also shown is the given metric’s distribution in the GUI corpus.
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Fig. 7. Fixed effects for the visual-complexity model when search time is the dependent variable. Random effects are considered for each image and participant ID. The two 
panes provide absolute and standardized estimates both. Factor names reflect the highest loadings. The significance levels for the coefficients are denoted thus: ∗∗∗= 𝑝 < 0.001, 
∗∗= 𝑝 < 0.01, ∗= 𝑝 < 0.05. Increases in search time are indicated in red and non-significant coefficients in gray.
explaining search times, while figure–ground contrast and Factor 2 
(another color variability metric) do not. Search time rises with contour 
congestion, though the effect is small (0.11 with 𝑆𝐷 = 0.02). Factor 
1’s highest loadings (>0.7) are on contour density, subband entropy, 
and feature congestion, all related to interface clutter. Therefore, the 
fitted coefficient for Factor 1 suggests that search time grows as clutter 
does, with a small effect size. With Factor 3, in contrast, the highest 
loading (>0.7) is on PNG file size and number of distinct RGB values 
per dynamic cluster, suggesting that search time increases with these 
figures. That said, the effect is very small (0.04 with 𝑆𝐷 = 0.02). 
Finally, the fitted coefficient for Factor 4, connected with grid quality, 
points to a small effect (0.07 with 𝑆𝐷 = 0.02) in which searches take 
longer as the grid gets more complex. The values for R2 imply poorer fit 
for the visual-complexity model than the controlled-variable one, with 
a 0.053 marginal and a 0.308 conditional R2 value.
The interaction model. Absence of the assigned target has been shown 
to affect search times significantly (Chun and Wolfe, 1996). That 
observation is echoed in the fitted controlled-variable model (see Fig. 
3). Therefore, we investigated any interactions between the target’s 
absence and the other variables. Fig.  9 shows the fitted coefficients 
for the interaction model. The figure excludes those variables that 
were not significant in the controlled-variable and visual-complexity 
models. Note also that the categorical variables in our analysis take 
the following reference levels: Webpage for the GUI-category variable 
and Images for cues. The fitted coefficients of the interaction model 
largely follow the trends visible under the controlled-variable and 
visual-complexity models. Recognizing the complexity of interpreting 
interaction effects within a multilevel model, we illustrate the results 
via the overview in Fig.  8. Results are plotted for the coefficients from 
the interaction model, with webpage stimuli and Image cues as the 
references for categorical variables. To aid in comparing our results to 
previous findings, we also fitted an interaction model that takes not 
complexity metrics but set size as the independent variable (see Figure 
17 in supplementary materials). Furthermore, that material provides a 
generalized linear mixed-effects model with gamma-family distribution 
(log link) that addresses the same variables alongside residual plots. 
The discussion below flags any deviations between the linear and 
generalized modeling.

In our data, the coefficients for mobile UIs, cue types, factors 1 
and 4, and contour congestion remain significant when the target is 
present. Search times in the desktop-UI condition do not significantly 
differ from those for webpages when the target is present. In mobile 
UIs, search is faster by 1.00 s (𝑆𝐷 = 0.19), with a small effect size 
(−0.21 with 𝑆𝐷 = 0.04). Presenting the cue as an image leads to better 
search times than presenting it in a text-featuring format when the 
target is present: search is 1.38 s slower (𝑆𝐷 = 0.09) and 1.28 s slower 
(𝑆𝐷 = 0.09) for the Text+Color and Text condition, respectively, in 
small to medium-sized effects (0.29 with 𝑆𝐷 = 0.02 and 0.27 with 
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𝑆𝐷 = 0.02). Factor 4, encompassing the grid-quality metrics, shows a 
small effect (0.05 with 𝑆𝐷 = 0.01) corresponding to a 0.25 s increase 
in search time (𝑆𝐷 = 0.06) with higher-complexity grids. When the 
target is present, search time rises by 2.59 s (𝑆𝐷 = 0.68) with a unit 
increase in contour congestion; the effect size here is small (0.06 with 
𝑆𝐷 = 0.02). Factor 1, putting the highest loadings on visual-clutter 
metrics, likewise shows a small effect, wherein search times grow by 
0.42 s (𝑆𝐷 = 0.08). The effect size is 0.09 with 𝑆𝐷 = 0.02. Additionally, 
Factor 3 no longer offers a significant coefficient. To illustrate the units 
of these factors, which may be otherwise difficult to interpret, we refer 
to Fig.  6. Analysis with set sizes (Figure 17 supplementary materials) 
suggests that the effect of including more items is small when the target 
is present (0.06 with 𝑆𝐷 = 0.02), with a cost of 0.02 s per item.

Absence of the target again shows a large effect size (1.52 with 
𝑆𝐷 = 0.07). In the linear model, some interactions with the target’s 
absence prove significant. When the target is absent, search of desktop 
UIs is 1.03 s faster than webpage search (𝑆𝐷 = 0.40), with a small effect 
size (−0.22 with 𝑆𝐷 = 0.08), while search of mobile ones is 1.83 s faster 
(𝑆𝐷 = 0.48), with a medium effect size (−0.38 with 𝑆𝐷 = 0.10). The 
pattern for target cue looks different when the target is absent. With a 
Text cue, search is slower by 2.14 s (𝑆𝐷 = 0.32), in a large effect (size 
0.45 with 𝑆𝐷 = 0.07), while for a Text+Color cue there is no significant 
difference. Factor 4 too has an effect: when the target is absent, search 
time is projected to increase by 0.99 s (𝑆𝐷 = 0.17), with a small to 
medium effect size (0.20 with 𝑆𝐷 = 0.03). Additionally, every unit 
increase in contour congestion yields a 4.91 s (𝑆𝐷 = 1.62) increase in 
search times, although the effect is small (0.12 with 𝑆𝐷 = 0.04). Factor 
1 shows a small effect (0.10 with 𝑆𝐷 = 0.04) when the target is absent, 
as search times increase by 0.48 s (𝑆𝐷 = 0.20). As for set size, the cost 
of including another item when the target is absent is 0.04 s (see Figure 
17 in supplementary materials). The effect size here is small (0.11 with 
𝑆𝐷 = 0.02). It should be noted, however, that the interaction effects 
show a different pattern when the generalized model is applied, so one 
should interpret them with caution (see Figure 16 in supplementary 
materials). That is, while the main effect wherein the target’s absence 
makes search slower persists, whether that absence exacerbates these 
effects requires further examination.

4.2. Comparison to free-viewing

Eye movements early in each trial led disproportionately toward 
the upper-left quadrant of the screen, with this bias being visible 
across all GUI types (see Fig.  10, panes A–D). The distribution of 
saccade directions (see Figure 26 in supplementary materials) supports 
positing the existence of such a tendency: the first fixations tended 
to move upward and leftward from the starting point at the screen’s 
center. Our results suggest that the upper-left bias over the first few 
fixations is not sensitive to the target’s location — irrespective of its 
position, the early fixations tend to be biased toward the upper left. 
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Fig. 8. Search times predicted by the fitted interaction model. Search was fastest in mobile UIs, followed by desktop and webpage interfaces. Image cues too produced faster 
searching. Also, contour congestion, clutter, and grid quality affected search times.
Fig. 9. Fixed effects for the interaction model when search time is the dependent variable. Random effects are considered for each image and participant ID. In the figure, 
showing absolute (pane A) and standardized (pane B) estimates, the factors are named in line with the highest loadings. Significance levels for the coefficients are indicated thus: 
∗∗∗= 𝑝 < 0.001, ∗∗= 𝑝 < 0.01, ∗= 𝑝 < 0.05. Note that webpages serve as the baseline for GUI category, and images are the reference among cues for the categorical variables. 
Increases in search time with respect to the baseline are indicated in red, decreases in blue and non-significant coefficients in gray.
As expected, later fixations cluster more in the positions of the targets, 
their distribution, presented in Fig.  10, panes E–H. Stepping back to 
compare the distribution of fixations within VSGUI10K to that from 
the UEyes dataset (Jiang et al., 2023), we found upper-left bias visible 
across all categories (see Fig.  10, Q–T), with this bias persisting in 
the free-viewing task after the early fixations. While the concentration 
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of the first fixations in our study’s target-absent trials likewise points 
to an upper-left bias, this dissipated as participants’ search progressed 
(see Fig.  10, panes M–P). The directionality of the saccades echoes this 
pattern: in this condition too, the first few tended to be directed toward 
the upper-left corner. Later search, in aggregate, covered the search 
area fairly evenly.
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Fig. 10. Upper-left bias in distributions of fixations. An upper-left bias of fixations was present early in the trial, but this effect wanes later in the search. In the free-viewing 
setting examined by Jiang et al. (2023) the bias persisted.
5. Three stages of visual search

Contingent on our results, we posit that visual search in GUIs 
conforms to a three-stage pattern. In this parallel to a view from Just 
and Carpenter (1976), each stage has its own goal and principle of 
visual guidance:

1. Guess: The first few fixations take the gaze toward the top-left 
guided more by expectations than by the design.

2. Scan: Selective fixation on target candidates starts, guided
jointly by the (GUI) scene’s and target’s features, and the gaze 
moves toward the target.

3. Confirm: The target is identified as correct.

5.1. Guess

The process begins with an opportunistic stage that is independent 
of the GUI’s design: Guess (stage 1 in Fig.  11 and first deciles in 
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Fig.  12) commences upon exposure to the GUI and accounts for the 
earliest fixations. Our results indicate that behavior in this stage shows 
a tendency to glance mainly at the upper-left quadrant of the screen. 
Studies with free-viewing and SERPs have revealed a similar bias (Leiva 
et al., 2020; Jiang et al., 2023; Nielsen, 2006; Hotchkiss et al., 2005; 
Hotchkiss, 2014), which is visible also in some laboratory experiments 
using symbols and natural objects as display items.

We surmise that this tendency is a result of limited information 
about the current GUI: upper-left is a good guess for the location 
of the target, or information about it, based on prior exposure to 
GUIs. Previous work provides parallels to this view, suggesting that 
this bias is either a part of a deliberate search strategy or a result of 
learned oculomotor patterns, like, reading from left to right (Chen and 
Zelinsky, 2006; Zelinsky, 1996). Leiva et al. (2020) link the bias to 
designers placing information that helps orient the user – for instance, 
logos, instructions, and headers – toward the display’s upper left. Upon 
repeated exposure, users may form an expectation as to the location of 
this information. We would contend that the upper-left bias is likely 
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Fig. 11. Our results suggest that visual search in GUIs follows a pattern of Guess—Scan—Confirm, wherein directing the first fixations toward the upper left (1) is followed by a 
search of the GUI (2) and finally identification of the target location (3). The heatmaps here exclude the first two fixations (since trials always started at the center of the screen), 
and only trials with more than seven fixations are shown to include at least one fixation in each step (the supplementary material’s visualizations include an alternative way of 
segmenting fixation paths). GUI and target examples from the VSGUI10K corpus also shown.
rooted in a combination of these influences: the user allocates initial 
attention to the top-left since this is both a good guess for the location 
of the target and an area suitable for gathering clues for navigating 
the GUI. Though users do not expect to find every item in the top-
left (Roth et al., 2010), sampling the upper-left corner first is rational, 
because it allows quickly obtaining information from the region that 
is likely to contain, if not the target, at least many of the GUI’s key 
elements. The term ‘‘bias’’ does not denote irrational behavior; rather, 
it reflects sensitivity to the statistical distribution of GUI elements. The 
pattern of bias is more pronounced in longer trials (as Fig.  12 shows). 
One explanation for this observation is that contextual cues are more 
necessary when searching is bound to take longer, while the solution 
in easier tasks is more obvious.

5.2. Scan

Once some information about the given GUI has been sampled, the 
second stage (stage 2 in Fig.  11 and middle deciles in Fig.  12) begins. 
In this stage, Scan, the user’s gaze moves nearer the target item as 
candidate items get scanned. Our data show that, on average, modern 
GUIs are well-designed, in that their design guides the scanning stage 
well. While our results point to a tendency for increases in contour 
congestion, visual clutter, and grid complexity to slow the search, 
these effects are generally small. A separate analysis where set size 
was considered an independent variable led to a magnitude of growth 
in search times that was similar to those with the visual complexity 
metrics. With our GUI corpus, we observed that the cost of displaying 
a new element (adding a distractor) is just 20 ms (when the target 
is present). In comparison, with symbol matrices the effect of set size 
12
has been reported to range from near 0 ms/item in ‘‘feature’’ searches, 
wherein the characteristics of the target can contribute effectively 
to guiding the search, to 20–40 ms/item in ‘‘conjunction’’ searches, 
in which this is not possible (Wolfe et al., 2010, 2004). There is 
evidence that natural scenes support highly efficient searching, with 
search times increasing by a mere 3–10 ms/new item (Wolfe et al., 
2011a). In contrast, when every candidate must be fixated upon, the 
increment nears 125–250 ms/item (Wolfe et al., 2010), approaching 
the average duration of one fixation. Evidence provided by Trapp and 
Wienrich (2018) supports this view, suggesting that the set-size effect’s 
magnitude lies in the 6–75 ms/item range with GUIs. We also see 
evidence that users need only foveate on a relatively small portion 
of the GUI to solve their task. On the other hand, there is room to 
improve. Were display design perfect in the sense that targets are so 
easy to find that addition of items does not matter, the slope would be 
closer to zero (Wolfe et al., 2010); this has indeed been observed in 
some cases examined with symbol matrices, when certain features of 
the target guide search very well. Finally, we observed that image cues 
yield quicker searches than textual ones, a phenomenon consistent with 
observations with symbol matrices (Wolfe et al., 2004).

5.3. Confirm

In the last stage (stage 3 in Fig.  11 and last deciles in Fig.  12), 
users make sure their selection is correct. We denote this as the Con-
firm stage. In our data, the quadrant containing the target tends to 
attract more fixations quite late in searches. This implies that certain 
confirmation behavior takes place near the target location.
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Fig. 12. Longer trials display a more pronounced Guess stage in search. Trials divided 
between those shorter than and at least 13 fixations (median). Similar plot shown for 
the axes and target locations separately in Figure 25 of supplementary materials.

6. Discussion

In 1994, Wolfe asked whether the rules of visual search articulated 
in studies with symbol matrices apply for natural scenes (Wolfe, 1994). 
Continuing in a similar vein, we have shed light on whether effects 
identified from symbol matrices and natural scenes apply in a wide 
range of everyday GUIs, by means of VSGUI10K – a dataset we 
collected for 10,000-plus visual search trials.

In summary, our results show overlap with those obtained in the 
other two environments: absence of the target is detrimental in terms 
of search time, and having an exact pictorial representation of the 
target makes search faster. However, the characteristics of the GUI 
as measured via visual-complexity metrics tend to have a fairly small 
impact on search times. We also noticed an upper-left bias in early 
search, similar to that present in free-viewing (Leiva et al., 2020; Jiang 
et al., 2023), but this effect fades over the search. The latter observation 
and our other results informed a synthesis of our findings into a three-
stage Guess-Scan-Confirm search pattern. The first fixations directed to 
top-left serve as a guess of target location, or of the type of GUI, which 
aids in later search, wherein the following fixations perform a target-
guided scan over the GUI. Finally, the last fixations confirm that the 
target was indeed located.

Absence of a target represents an interesting special case, with 
markedly higher search times. In fact, the target’s absence accounts 
for the largest effect across all our data. This supports the absent-
target–longer-search link reported in work with natural scenes and 
the limited prior studies with GUIs, wherein absence of the target led 
to search-time increases with a magnitude of several seconds (Neider 
and Zelinsky, 2008; Grahame et al., 2004). With symbol matrices too, 
absence of the target tends to produce higher search times in settings 
that demand, for example, serial deployment of attention or foveation 
for items; for instance, there might be no information available on 
any basic attribute, such as target color, that could guide efficient 
search (Wolfe et al., 2010). Our data suggest that the prolonged search-
ing stemmed from the users extending their gaze over a larger area 
of the GUI. When the target is absent, later fixations generally spread 
across the entire GUI. Furthermore, every item added to the set in the 
target-absent state increased search times by 40 ms more than when 
the target was present. Absence of the target also seems to interact 
differently with the target’s description type, although this effect is 
somewhat ambiguous and should be examined further in future work. 
Namely, a less pronounced difference in effect between image and text-
plus-color hints when the target is absent suggests that the latter gives 
the user a better sense of when to abandon the futile search, while a 
mere sense of the target text seems to be a less useful signal.
13
Practitioners can use our linear mixed-effects models to quantify 
changes in search times in various kinds of use scenarios. Real-world 
GUI design entails several tradeoffs. For instance, our results reveal 
a tension in balancing between an overly complex GUI and omitting 
useful items: if a highly simplified GUI lacks items that users are looking 
for, this proves detrimental to visual search, while the cost of additional 
items seems low from our data. Managing these tradeoffs is generally 
left to designer intuition, yet a multi-level regression model is one 
possible tool for quantifiable insight for optimizing GUIs when multiple 
factors are at play. Our model allows assessing the effects of pertinent 
guidelines by testing multiple scenarios. With it, one could ask what 
happens if, say, the target is absent, the user is assumed to have a 
precise pictorial impression of the target, and the setting is a mobile 
GUI containing 35 items. We see potential for the VSGUI10K dataset 
as a useful resource for computational modeling of visual search, with 
particular value for exploiting machine-learning techniques that require 
sizeable datasets, not generally produced through controlled studies.

6.1. Limitations and future work

While we release a rich dataset for future research in this area, some 
limitations should be taken into account in analyzing that dataset and 
in interpreting our findings. Firstly, the participants in the controlled 
study were mostly young and students. Future work should verify that 
the results generalize to more representative populations, including 
more variety in the age distribution. Also, participants performed visual 
search tasks for an hour, which may have created some fatigue, and 
the metronome running in the background to help them gauge dwell 
times might have been distracting. Additionally, a more realistic task 
instead of pattern-matching (e.g., relying on memory) should be used 
in future work to understand any confounds. We also showed mobile 
GUIs on a desktop monitor instead of a phone; that might affect search 
behavior. Since the targets were sampled from everyday real-world 
GUIs, their locations display some bias that should be noted in future 
work using our dataset (see supplementary materials). The presented 
multilevel models have some limitations: while they provide informa-
tive quantifications of effects, their linearity renders their prediction 
power limited. Future work could apply and extend VSGUI10K to 
study non-linear and machine-learning-based approaches to modeling 
visual search. Finally, future work should delve into the three-stage 
pattern articulated and quantify it, in particular to understand whether 
the observed upper-left bias is a result of habits, prior exposure to GUIs, 
deliberate search strategy or something else. 
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