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Abstract— Because of the critical role they play in Earth
observation (EO) workflows, radiative transfer models (RTM)
must undergo thorough validation campaigns that will help
guarantee that their output is representative of the physical
reality. In this study, we test the ability of the Eradiate RTM
to simulate the reflectance of a manufactured target given
SI-traceable measurements of its shape and optical properties.
To address issues identified in similar prior work, we select a
material with reflective features that can be accurately modeled
using a straightforward data-driven approach. We produce an
artificial target design that is easy to manufacture with good
precision. The material and artifact are characterized optically
using an SI-traceable 3-D goniospectrophotometer, and the arti-
fact is characterized geometrically in an SI-traceable facility. The
geometry of the artificial target and the optical properties of the
material are used to build a numerical experiment with Eradiate
that simulates the optical characterization of the artificial target.
The simulation includes the propagation of uncertainties on the
input parameters. We compare the simulated and measured data
and analyze the performance of this method using three different
metrics. Our findings demonstrate consistent performance across
all considered illumination and sensor pointing configurations.
Simulations deviate from measurements by less than 2%, and
more than 80% of measured and simulated data points agree.

Index Terms— Accuracy, bidirectional reflectance factor
(BRF), data-driven model, model validation, Monte Carlo (MC)
methods, radiative transfer (RT), ray tracing, SI traceability,
uncertainty.

I. INTRODUCTION

REMOTE sensing is a key component of Earth observation
(EO), itself instrumental in many scientific and tech-

nical activities. Images recorded by radiometric instruments
mounted onboard vehicles or at fixed locations on Earth are
used to understand the dynamic of the Earth system and inform
policy and management decisions.
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The simulation of radiative transfer (RT) in the Earth
system is one of the core components of the modern remote
sensing workflow. RT models (RTMs) are used for a wide
variety of tasks, such as mission preparation, the appli-
cation of atmospheric correction to remote sensing data
products, the interpretation of satellite data through climate
variable retrieval, or the vicarious calibration of satellite-borne
radiometric instruments. In such cases, an RTM becomes a
contributor to the final remote sensing product and contributes
to its uncertainty budget.

To minimize the uncertainty introduced by RT modeling in
a given process, assessing how accurately the RTM represents
the physical reality is critical. Validation exercises consist of
comparing simulated data to reference measurements, e.g.,
reference satellite images. In principle, both the reference
measurement and the input used to produce a simulated exper-
iment should be SI-traceable, i.e., comparable, in an unbroken
chain of calibrations, with a reference used in the practical
realization of an SI unit. This ensures the repeatability of
the measurements with other SI-traceable instruments: if the
RTM is validated against an SI-traceable reference, its output
can be compared with the output of any similar SI-traceable
measurement device.

One major issue is that the desired reference is sometimes
not calibrated against an SI-traceable reference. For instance,
many satellites do not have an onboard post-launch calibration
system and are calibrated against an RTM, as part of a
vicarious calibration process. Finding appropriate validation
data is therefore a major challenge, which is however hoped to
be addressed in the coming years by SI-traceable missions [1].
Another major issue is that the high complexity of the exper-
iments simulated by remote sensing-oriented RTMs makes
the gathering of SI-traceable input challenging: setting up
fully SI-traceable validation campaigns against actual satellite
images is currently hardly possible.

RTM performance assessment therefore has to go through
different routes. One of them is intercomparison, a typical
example of which is the radiation transfer model intercom-
parison (RAMI) benchmark series [2], [3], [4], [5], launched
in 1999. The RAMI exercises define a set of standard scenes
that are used to intercompare RTMs and identify a consensus
on what the correct output should be—for the specific scenes
considered. This approach can incorporate a lot of modeling
complexity and does not require reference data.
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Although a fully SI-traceable validation against satellite
images is currently not possible, a simplified setup can be
considered to assess how accurately an RTM represents the
physical reality, but also to reveal the sources of inaccuracy in
the model. In that context, validating components of an RTM
against measured data obtained in a controlled environment,
such as a laboratory, is of particular interest. This is the
approach taken by two studies on which this work builds.
Govaerts and Verstraete [6] designed an experiment in which
they compared the radiometric records obtained by measuring
the reflectance of an artificial target in a goniospectrophotome-
ter with the equivalent signal simulated by the Raytran RTM.
This approach was then extended by Jaanson et al. [7] to
make the reference measurement and model input SI-traceable,
and propagate uncertainty in simulation results. In this study,
we extend further this approach, to significantly improve the
accuracy of the model by addressing the modeling issues
identified in previous work.

The major sources of numerical modeling uncertainty iden-
tified in those works pertained to choices made to model the
scattering of light by the material selected to manufacture
the artificial target: a parametric Torrance–Sparrow model was
used, and fit to in-lab optical measurements. Achieving a good
fit was very difficult and made the resulting material model
inaccurate. We, therefore, take a different approach in this
work and bring the following contributions toward the goal
of better-reproducing laboratory measurements with a RTM.

1) A new artificial target design focusing on manufac-
turing and characterization simplicity, with predictable
and strong reflective features outside the retro-reflective
direction.

2) An updated numerical simulation setup using an SI-
traceable, data-driven material optical reflection model
that limits numerical modeling uncertainty.

3) A set of complementary metrics with different features
that allow for a detailed analysis of the performance of
the method.

The computer graphics community has been very active
in the topic of designing material reflection models based
on measured data and comparing their output to laboratory
measurements (e.g., [8], [9], [10], [11], [12], [13]). Compared
to these studies, our work differs on the following points.

1) The goal of this study is to validate the results produced
by the full RT simulation chain, which includes the
material reflection model, the light source and sen-
sor models, and the RT equation (RTE) integration
algorithm.1

2) Our approach factors in the uncertainty on many sim-
ulation parameters and provides an estimate of the
uncertainty on the simulated radiometric records.

3) The output of the RTM is compared to SI-traceable data
with a detailed uncertainty budget. The metrics used for
comparison account for the availability of uncertainty in
both the measured and simulated data.

1As emphasized later, it should be noted that the setup considered in this
work focuses on surface scattering modeling and therefore excludes volume
scattering.

After presenting the general methodology (see
Section II-A), we introduce the simulation and optical
characterization tools used in this work (see Sections II-B
and II-C). We review the artificial target design and
manufacturing process (see Section II-D), the characterization
techniques and measurement methodologies (see Sections II-E
and II-F), and the numerical simulation protocol (see
Sections II-G and II-H). We conclude the material and
methods presentation with our comparison methodology
(see Section II-I). The result analysis features a specific
focus on the optical characterization of the material used
to manufacture the artificial target (see Section III-A), the
direct input to the data-driven material reflection model, then
turns to the comparison of artificial target measurement and
simulation results (see Section III-B).

II. MATERIAL AND METHODS

A. General Methodology

The fundamental goal of this study is to compare the
reflectance of an artifact measured by a goniospectrophotome-
ter to a simulation of that measurement by an RTM. This
simulation uses as an input a digital representation of the
artifacts geometric and optical properties, the light source, and
the sensor. All digital representations are based on models
parametrized by a number of scalar parameters.

Good metrological practices require accounting for uncer-
tainty when comparing measurements—regardless of whether
they are “actual” or simulated measurements. We therefore
attach uncertainty to the measured artifact reflectance and
propagate the uncertainty on parameters through the simula-
tion to estimate the uncertainty on the simulation output.

We distinguish between 1) the simulation parameters inher-
ent to the measurement facility (e.g., sensor field of view,
light source divergence), known from the characterization of
the measurement device and referred to in the following as
facility parameters and 2) those related with the artifact (e.g.,
geometric and optical properties), measured for this study and
referred to in the following as artifact parameters.

Jaanson et al. [7] primarily attributed the differences
between their measured and simulated data to their material
modeling choice: the Torrance–Sparrow BRDF they imple-
mented to model material reflectance takes input parameters
that are difficult to retrieve experimentally and, therefore, are
obtained through a fit against experimental data. Achieving
good fit quality proved to be challenging and resulted in large
modeling uncertainties. To eliminate important sources of bias
and uncertainty, our protocol differs from that of Jaanson et al.

1) Target shape design is part of the study, and the man-
ufacturing process can be tailored for an accurate and
easy dimensional measurement.

2) Material choice is part of the study and can be oriented
to facilitate an accurate digital representation.

3) The material model consists of a data-driven BRDF
model instead of a fit material model.

The comparison protocol is based on three metrics and
accounts for uncertainty. Fig. 1 summarizes the general
methodology of the study.
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Fig. 1. General methodology applied in this study.

About Radiometric Quantities: Throughout this article,
two radiometric quantities are used: a) the bidirectional reflec-
tion distribution function (BRDF) and b) the bidirectional
reflectance factor (BRF).

We follow the definitions of Nicodemus et al. [14]: the
BRF is the BRDF normalized by the BRDF of a diffuse
(Lambertian), perfectly reflective surface. Consequently, the
two are related by

BRF D � � BRDF:

From this follows that relative uncertainties on a BRDF can
be transferred to the corresponding BRF.

The BRDF is used in parts of this article that discuss
optical measurements, while the BRF, more widely used in
the EO community, is used to discuss simulation results.
While both quantities can be qualitatively interpreted similarly,
distinguishing between the two is of prime importance when
performing quantitative comparisons.

In-Plane and Out-of-Plane Angular Domains: In the
following, frequent references to in-plane and out-of-plane
angular domains are made. In-plane designates the set of
directions that are contained in a plane generated by the
illumination direction and the local normal at the reflecting
surface; out-of-plane designates the rest of the hemisphere.

In practice, if the illumination direction is parametrized
by zenith and azimuth .�i ; �i /, the in-plane domain is

f.�; �/ j � D �i or �i C �g, and the out-of-plane domain is
f.�; �/ j � 6D �i nor �i C �g.

B. Eradiate RTM

Eradiate [15] is an open-source 3-D RTM designed to
support remote sensing applications. It focuses on delivering
highly accurate radiance estimates using Monte Carlo ray
tracing (MCRT) methods. It uses a modified version of the
Mitsuba 3 rendering system [16] as its radiometric kernel.
MCRT methods are becoming increasingly popular because of
their ability to solve efficiently highly dimensional problems
such as RTE integration. Eradiate can simulate both surface
and volume scattering processes. Eradiate is used in this study
to design the artificial target (see Section II-D, where Eradiate
is used to predict the theoretical optical behavior of candidate
designs), and it is the test subject in the RTM validation
process (see Section II-G).

A critical point of concern raised by previous validation
attempts [6], [7] is surface material modeling: these works
used a fit Torrance–Sparrow model [17], which had a limited
ability to accurately represent the reflective behavior of the
material the measured object was made of, and therefore
introduced significant uncertainty in the simulation. To address
this issue, we use a data-driven model to represent the mate-
rial BRDF. The choice of a simple parametrization for this
model is motivated by the characteristics of the SI-traceable
goniospectrophotometer used for optical measurements and
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the need to perform RT simulations without access to material
data during the artificial target design activity.

A more detailed overview of Eradiate is provided in
Appendix A.

C. Goniospectrophotometer

BRDF measurements are performed using a 3-D goniospec-
trophotometer set at Aalto University. The instrument is
operated in relative mode, and it is traceable to the abso-
lute goniospectrophotometer in Aalto [18] via a calibrated
reflectance standard. The goniospectrophotometer is capable
of out-of-plane measurements, and it accommodates horizontal
samples. Measuring a sample horizontally is useful for volatile
samples, such as sand and liquids. The instrument has been
used to determine the BRDF of desert sand [19], and it
has been used for determining out-of-plane BTDF of various
transmissive diffuser samples [20]. The facility and its use
for BRDF and BTDF measurements are described in detail in
prior work [20], [21], and we provide here a brief description
of the instrument for out-of-plane BRDF measurements of an
artificial reflectance standard.

Setup: The setup (see Fig. 2) includes a set of three
motorized arms: one arm controls the incident zenith angle of
the (1) illumination, and the two remaining arms control the
viewing (2) zenith and (3) azimuth angles for sampling the
BRDF in any point of the hemisphere above the sample under
test, except for angles shadowed by the detector �5� around
the detector head. Samples are accommodated in a horizontally
aligned sample (4) holder that can be adjusted laterally by
a micrometer for accommodating variable thickness samples.
The beam at the sample is controlled by (5) the illumination
optics, which include a collimator, a polarizer, an optical filter
for laser harmonics, a beam expander, steering optics, and an
iris. The scattered signal is collected by a 10.8 mm diameter
off-axis (6) parabolic mirror, which sets the solid angle of
the system. The detected scattering is forwarded by fiber
coupling to a silicon detector housed under the instrument.
The detected signal is processed and stored by a script written
in LabVIEW’s G dataflow language [22] and executed on a
PC.

D. Artifact Design and Manufacturing

Following basic principles established during previous val-
idation efforts [6], [7], the artificial target used in this
study was designed to exhibit strong shadowing-masking
effects that can only be simulated accurately with a 3-D
RTM. We also required a distinctive reflective signature in
the angular domain, with several reflective lobes accessible
to the measurement facility, so that even a sparse coverage of
the measurement space would allow capturing critical features
that are useful for validation.

To achieve that, the final shape of the artifact was designed
with the aid of iterative RT simulations: this way, we could
ensure that the final design would feature a reflective pat-
tern that would meet our requirements. At each iteration,
we simulated with Eradiate (see Section II-G for details on
the simulation setup) the reflective signature of a candidate

Fig. 2. Schematic of the 3-D goniospectrophotometer in its configuration
for BRDF measurements. The sample (4) is illuminated by the light source
(5) controlled by a robotic arm (1), and the scattered light is collected by the
sensor optics (6), controlled by two arms (2, 3).

Fig. 3. Exploded view of the final design, created with the OpenSCAD
modeler [23].

shape under simplified but “reasonable” assumptions. If the
reflective pattern matched the requirements, the design was
accepted; otherwise, a new candidate shape was proposed and
simulated.

In the previous paragraph, “reasonable” means that man-
ufacturing an object with geometrical and optical properties
close to the assumptions was achievable, and, consequently,
that the manufactured artifact would exhibit a reflective pattern
similar to that of the theoretical design. The final design,
shown in Fig. 3, has a theoretical reflective pattern that features
a main retro-reflective lobe, as well as multiple secondary
peaks due to shadowing-masking effects (see Fig. 4).

The artifact was manufactured using aluminum alloy coated
by plasma electrolytic oxidation (PEO) based on the final
design model (see Fig. 5). Interested readers are referred to
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Fig. 4. Simulated BRF of the final design for various illumination configurations. In addition to the main retro-reflective lobe, visible for all configurations,
a set of secondary peaks also moves with the illumination direction. The goniospectrophotometer used for this study cannot acquire measurements in the
retro-reflective direction; therefore, the experimental plan focuses on capturing the secondary peaks.

Fig. 5. Manufactured artifact photographs. (a) (Left) Parts prior to PEO coating. (b) (Right) Full assembly, after PEO coating, in the protective box.

Appendix B for a more detailed description of the artifact
design and manufacturing processes.

E. Dimensional Measurements

Two alternatives were considered for measuring the mechan-
ical dimensions of the samples.

1) A contact coordinate measuring machine (CMM), where
a physical tip is used to determine the position of the
surfaces at predefined points. The results produced with
this method can be affected by surface asperities; also
it is not suited to measuring samples that have a lot of
features, such as those in this work, so would take a
very long time to undertake the measurements required.

2) A vision CMM, which uses an optical sensor and
detects the optical surface, is the same process as when
measured by the goniospectrophotometer. This provides
a more accurate result and is better suited to samples
with many features.

Considering the trade-offs associated with each alternative,
a vision CMM was used (Mitutoyo Quick Vision Hyper CNC
Vision), calibrated using an SI-traceable calibration chart. The
parts to be measured were placed on the work table of the
instrument. All dimensional measurements were made with
respect to an identified corner of the sample.

The following measurements were made on the individual
parts, after coating.

1) Mean diameter (with a metric for their circularity) and
location of all the holes with respect to a specified corner
of the sample.

2) Flatness and thickness variation of the top hole plate.
3) Flatness variation of both surfaces of the 5 mm thick

block.
The samples were then assembled using a 3-D-printed jig

to ensure that the components were correctly aligned during
assembly and to avoid anything touching the main faces.
A low-viscosity two-part epoxy adhesive (Loctite HY4070)
was used to secure the parts together, a weight was applied to
minimize the glue thickness and any angular errors between
the surfaces. Post-assembly, the following dimensional mea-
surements were then made using the same measurement
system as before.

1) Spacing between the top of the top plate and the top of
the 5 mm block, measured through the holes.

The actual hole positions, sizes, and dimensions were used
to build an accurate 3-D model of the target, so that the actual
sample geometry can be simulated, giving the best-modeled
response for the sample. The measurements are summarized in
Table I. The estimated instrumental measurement uncertainty
in the diameters and distances was typically less than 7 �m.2

A witness sample of coated aluminum was mechanically
sectioned and optically polished so that a measurement of the
coating thickness could be obtained, this was found to be 55�
5 �m.

The samples were shipped in a custom box that supported
the sample only by the extreme edges of the main face and

2The uncertainties reported in Table I are a statistical variation in the values
measured which aggregate all sources of uncertainty, not only the instrumental
contribution estimated at 7 �m.



4701922 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

TABLE I
DIMENSIONAL MEASUREMENT SUMMARY.

UNCERTAINTY (k D 1) IS REPORTED

clamped it in place; in this way, the main surfaces would not
be contacted and possibly contaminated during storage/transit
and handling.

F. Optical Measurements

For measurement, the sample under test was mounted in a
custom jig that supported the sample by the extreme edges
of the rear main face, allowing the edges of the top face to
be pressed against the reference plane of the measurement
goniospectrophotometer. The jig enabled the sample to be
clamped from behind, without the back of the sample being
directly contacted. The coating BRDF was measured from the
back of the sample and the BRDF of the pattern from the
front. The measurement beam was centered on the sample in
both cases.

A routine measurement of a test sample begins by aligning
its illumination side surface to the optical center of the instru-
ment by adjusting the sample holder micrometer. The correct
level is found by aligning the surface with a self-leveling
auxiliary laser that is pointed at the optical center with a
horizontal beam. For aligning the instrument, mirrors are used
to check the level of parallelism of back reflection at relevant
instrument components. Each measurement is preceded by a
reference material measurement to calibrate the BRDF scale.
The reference material is measured for its in-plane BRDF at
an incident zenith angle of 0� and a viewing zenith angle of
15�. Several viewing azimuth angle values are also evaluated
for averaging purposes.

The illuminating motorized arm can move the incident
zenith angle from �90� to 90� in-plane, above the sample.
The incident azimuth angle is set by a manual rotational
stage. The illumination is shadowed in a �5� cone around
the detector arm: therefore, the instrument cannot measure
retro-reflection. Illumination is produced by a combination of a
supercontinuum laser and a laser-line tunable filter, which pro-
vides a variable bandwidth to the illumination optics. During
the measurements, a 4 nm bandwidth was used. Illumination
power can be varied in the supercontinuum laser source to
suit the reflectance of various types of samples, with an
average power of 300 mW in the visible wavelength range. All
measurements presented hereafter were performed at 500 nm.
The illuminating beam size is set in the iris, which had a
10:8 mm diameter for the measurements, covering a total of
12 holes during artifact measurement.

The BRDF is sampled by the viewing zenith angle arm,
in combination with the viewing azimuth angle arm, which
samples the entire hemisphere by scanning samples in a
viewing zenith angle range of �90� to 90�, and in a viewing
azimuth angle range of 0� to 180�. The detector arm is
equipped with a 10:8 mm diameter off-axis parabolic mirror
which translates to a solid angle of �0:0022 sr using a distance
of 204:7 mm. This corresponds to an angular resolution of
2:89�. Finally, the reflected signal is provided to a silicon
detector by fiber coupling and amplified by a transimpedance
amplifier in a dynamic range from 102 to 109.

The LabVIEW script controlling BRDF sampling has a
scan speed of roughly 2.7 points per minute (i.e., 162/h). The
scan speed is dominated by the averaging process that takes
nine samples at each geometry. The averaging process reduces
measurement noise from various sources, such as noise in the
supercontinuum laser stability and fluctuations in the electron-
ics as a function of time. The BRDF sampling script uses
a state machine that programmatically sets the wavelength,
incident zenith angle, viewing azimuth angle, and viewing
zenith angle, in order: it samples 2-D slices of the hemisphere
when varying the viewing azimuth angle while maintaining a
static wavelength and incident angle. In the following, for a
given sensor, azimuth value �sen, positive zenith values map
to �sen, and negative values map to �sen C 180�.

1) Uncertainty Budget: Lanevski et al. [21] have esti-
mated the uncertainty budget for the measurement of the
reflectance of a flat sample with the 3-D goniospectropho-
tometer. We derive here from that work a new uncertainty
budget specific to the tested artifact (see Table II). We report
the uncertainty of various sources, as well as the resulting
uncertainty on the measured reflectance. Standard uncer-
tainties that directly contribute to BRDF uncertainties, such
as measurement noise, have been combined quadratically
with uncertainties related to the reference sample’s BRDF.
As a result, BRDF uncertainties for the artifact feature addi-
tional components in comparison to nonrelative measurement
instruments.

The most significant contributor to the uncertainty budget
arises from instrument stability. We evaluated it by calculating
the average standard deviation in BRDF values for the artifact
across various geometries and wavelengths. BRDF values
were taken on different days, with the sample removed and
reinserted in the instrument. The evaluated instrument stability
had an uncertainty of 0.82%. Enhancements in instrument
stability can potentially be achieved through improvements in
the consistency of sample placement within the sample holder.
Ongoing efforts are underway to develop techniques for more
precise control of the sample’s incident azimuth angle.

The uncertainty in BRDF due to wavelength was determined
by multiplying the standard uncertainty in wavelength by the
maximum observed slope in BRDF as a function of wave-
length at each geometry. The artifact shows small variations
in BRDF with respect to wavelength, which can be attributed
to its spectrally flat material properties. Consequently, the
artifact had a relative uncertainty of 0.02% in BRDF due to
wavelength.
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TABLE II
UNCERTAINTY BUDGET FOR ARTIFACT REFLECTANCE MEASUREMENTS

To evaluate the effect of sample placement on the BRDF,
considering both the incident beam size and the detector
field of view, a 14:4 mm beam spot was scanned across the
artifact surface in 1:2 mm increments over seven iterations.
The standard deviation of BRDF values at different surface
positions was calculated for a specific viewing zenith angle.
The resulting BRDF variations, as a function of sample surface
position, ranged from 0.05% to 0.46%. The uncertainty due
to beam size and sample placement was determined as the
average variation in BRDF across the sample surface, resulting
in a relative uncertainty of 0:20 %.

The standard uncertainty associated with setting the inci-
dent and viewing angles was previously determined by
Lanevski et al. [21] and is primarily based on the alignment of
the optical axes. It is crucial that all optical axes converge at a
single point in space, which should align with the incident sur-
face of the sample. To obtain the relative uncertainty in BRDF
as a function of incident and viewing angles, we multiplied the
standard uncertainty in the respective angles by the maximum
observed slope in BRDF corresponding to the incident zenith
angle, viewing zenith angle, and viewing azimuth angle. Due
to the array of holes in the artifact surface, the reflective
characteristics of the sample exhibit a strong dependence on
the geometric parameters. Therefore, the relative uncertainty
in BRDF as a function of angles had a major contribution to
the uncertainty table, with uncertainties ranging from 0.21%
to 0.38% for the incident zenith angle, 0.10% to 0.52% for
the viewing zenith angle, and 0.20% to 0.58% for the viewing
azimuth angle.

2) Material Measurements: The material BRDF measure-
ment was performed using a regularly gridded measurement
space. The illumination azimuth was restricted to 0� based on
the assumption that the material is isotropic (see Section II-D
and Appendix B-B). The other angular dimensions were
sampled to balance between dataset density and the feasibility
of the measurement campaign, also accounting for the fact that
the material’s reflectivity is assumed to be close to Lambertian
(see Table III). The uncertainty budget associated with this
measurement campaign is described by Lanevski et al. [21].

TABLE III
MATERIAL OPTICAL MEASUREMENT SPACE

TABLE IV
ARTIFACT OPTICAL MEASUREMENT SPACE. SEE ALSO FIG. 6

3) Artifact Measurements: The artifact reflectance measure-
ment space was defined to capture as well as possible the
reflective features detected during the design phase. Since the
reflective pattern varies against the illumination configuration
(see Fig. 4), a different set of sensor angles is required for each
illumination. In practice, the sensor zenith coverage remains
unchanged (�sen 2 .�80;�75; : : : ; 80/�), and the azimuth �sen
values are adapted to follow the most prominent reflective
peaks (see Table IV and Fig. 6). The uncertainty budget
associated with this measurement campaign is summarized in
Table II.

G. Numerical Simulations

All simulations done during the design and characterization
phases were performed using the Eradiate RTM, with a path-
tracing algorithm.
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Fig. 6. Artifact measurement space. Contours are the same as on Fig. 4. Each white marker corresponds to a measurement data point. Data points are
selected to capture characteristic features in each configuration, under the constraint of iso-azimuth plane sweeps.

During the design phase, the goal was to compute the BRF
of the artifact model. Therefore, ideal, perfectly directional
illumination and sensors were used. The sensor’s field of
view was restricted to a footprint similar to that of the
goniospectrophotometer’s sensor. The material was assumed
Lambertian and spectrally uniform, with a reflectance equal
to 0.5.

For the characterization phase, a more realistic setup was
used.

1) The illumination was simulated using a divergent beam
with textured emission to account for the Gaussian beam
profile of the actual illuminator.

2) The sensor was simulated by a directional sensor using
a cross section target (diameter 10:8 mm) reproducing
the field of view of the actual radiometer mounted on
the measurement facility.

3) The material was modeled using a quasi-diffuse data-
driven reflection model.

Our quasi-diffuse BRDF model represents a uniform and
isotropic3 Material whose BRDF depends on the incoming
and outgoing zenith angles �i and �o, and the azimuth angle
difference �d D �o � �i between the incoming and outgoing
directions. The implementation relies on a table holding BRDF
values tabulated against the cosine incoming (resp. outgoing)
zenith angle �i (resp. �o) and �d . This parametrization
optimizes lookup performance. Sampling relies on a basic
cosine-hemisphere distribution, which makes it inefficient for
materials featuring strong reflective lobes.4

Each reflectance simulation run follows the steps outlined
below, similar to typical laboratory and field reflectance mea-
surement protocols, for each illumination direction !ill and
sensor direction !sen.

1) Generate an artifact model.
2) Simulate the radiance Lart.!ill;!sen/ reflected by the

artifact model and recorded by the sensor.

3Uniform is to be understood as having optical properties that are invariant
against spatial coordinates. Isotropic is to be understood as having optical
properties invariant by rotation of the material around the local normal
direction.

4Hence the name quasi-diffuse.

3) Simulate a reference radiance record L ref.!ill;!sen/
using a Lambertian surface with reflectance �ref D 1.

The reflectance is then given by

R.!ill;!sen/ D
Lart.!ill;!sen/
L ref.!ill;!sen/

: (1)

The quantity R defined in (1) is not identified as one of the
reflectance quantities defined by Nicodemus et al. [14] on
purpose.

In an ideal setup with directional illumination and sensor,
which corresponds to the numerical experiments performed
during the design step, the radiance reflected by the nonab-
sorbing Lambertian surface is a perfect proxy of the incident
radiance, i.e., the radiance Le emitted by the illuminant

L ref.!ill;!sen/ D
�ref

�

Z

2�
L i .!i / d�i

D
1
�

Z

2�
Le �.!i � !ill/ d�i

D
Le cos �ill

�
where � is Dirac’s delta distribution, and d�i D cos �i d!i .5

In that case, the reflectance is therefore [coming back to (1)]

RBRF.!ill;!sen/ D �
Lart.!ill;!sen/

Le cos �ill

and is the BRF as defined by Nicodemus et al. [14].
In the more realistic setup used for the optical characteriza-

tion of the artificial target and the corresponding simulations,
(1) yields a hemispherical–conical reflectance factor (HCRF)
as defined by Nicodemus et al. [14]. The closer the illumina-
tion and sensor get to the ideal directional case, the better the
HCRF approximates the BRF.

It is worth noting that although this HCRF is certainly
a good approximation of the actual BRF thanks to the low
illumination and sensor beam divergence, it is not required that
they match perfectly for the purpose of fulfilling our objective:

5It should be noted that we distinguish the incoming and outgoing directions
(!i , !o), local to the scattering frame and used to describe the scattering
properties of surfaces, and the illumination and sensor directions (!ill, !sen),
which describe the physical setup of the actual or simulated experimental
facility (also sometimes called scene parameters).



LEROY et al.: SI-TRACEABLE PROTOCOL FOR THE VALIDATION OF RTM-BASED REFLECTANCE SIMULATION 4701922

what really matters is that the experimental methodology is
reproduced as accurately as possible numerically.

All artifact models are generated using the volume Boolean
operation features of the PyVista [24] mesh processing library.
Its Python interface allows for seamless integration in an
Eradiate-centric workflow.

H. Uncertainty Propagation

In the characterization step, the uncertainty on input parame-
ters is propagated to allow for metrologically correct validation
of simulation results. For that purpose, the simulation work-
bench wraps scene assembly and Eradiate runs in a workflow
based on the punpy library [25]. Punpy propagates uncer-
tainties on input quantities through any Python function,
evaluating the uncertainty on the output. It implements a law of
propagation of uncertainties-based method, as well as Monte
Carlo (MC) sampling. The highly dimensional input space we
are dealing with makes an MC method the natural choice:
evaluating the Jacobian of the measurement function would
be very costly.

The measurement function takes as the input a state vector
containing all simulation parameters. This includes.

1) Artifact model generation parameters, namely hole posi-
tions and diameters (432 parameters).

2) Artifact positioning (three parameters).
3) Material BRDF data points (132 parameters).
4) Illumination beam divergence (one parameter) and angu-

lar positioning (two parameters).
5) Sensor angular positioning (two parameters) and

beamwidth (one parameter).
In total, the state vector has 573 dimensions.

The measurement function aggregates the artifact model
generation and RT computation steps. The path tracing
algorithm used implements next event estimation, a common
variance reduction technique consisting of accumulating emit-
ter contributions at each node of the path generated during the
radiative random walk. For a given illumination configuration
and target model, all sensor configurations are evaluated at
once thanks to Eradiate’s automated multisensor sequencing:
the measurement function, therefore, returns all requested
sensor configurations at once.

Fig. 7 provides a summarized overview of the simulation
chain. The simulation chain outputs the variance of the gen-
erated dataset as the uncertainty (k D 1). This is a notable
difference from previous work [7], where the uncertainty
(k D 2) was used: in principle, comparing the present
uncertainty estimates with prior values is not possible. For
comparability, we estimate the uncertainty (k D 2) by doubling
the standard uncertainty. This estimate, although only valid
for normally distributed random variables, provides acceptable
orders of magnitude for comparison with prior work.

I. Comparison Method

The main metric monitored to check for agreement between
the simulations and measurements is the relative difference
1R? between the simulated and measured reflectance values

Fig. 7. Schematic of the uncertainty quantification application used in this
study. The entire toolchain is written in Python.

Rsim and Rmes, using the measurement as the reference

1R? D
Rsim � Rmes

Rmes
(2)

where the dependencies to the illumination and sensor angles
are omitted for brevity. A common practice in the remote
sensing community is to categorize data points based on the
value 1R?: for instance, a simulated data point will be said
to “match well” the corresponding experimental data point
if j1R?j < 2 %. This straightforward comparison method
has the disadvantage of defining a criterion independent of
the uncertainty or the order of magnitude of the compared
quantities, yielding false positives or negatives when the
uncertainties on the simulated and measured data are different
or when Rmes and Rsim have a low order of magnitude.

To address these issues, we suggest a comparison method
based on the t-score

t 0 D
Rsim � Rmesq
� 2

sim C � 2
mes

(3)

where �sim (resp. �mes) is the uncertainty (k D 1) associated
with the simulated (resp. measured) data. The cut-off criterion
is defined by

��t 0
�� < � (4)

i.e.,

��1R?
�� D

����
Rsim � Rmes

Rmes

���� < �

q
� 2

sim C � 2
mes

Rmes
: (5)

For simplicity, we will denote �c the combined simulation and
measurement uncertainty

�c D
q
� 2

sim C � 2
mes: (6)

In practice, this metric compares the distance between the
mean values of the measured and simulated data samples
with the combined uncertainties. The � factor defines the
coverage factor associated with the considered uncertainties:
with � D 1, (5) becomes

��1R?
�� <

q
� 2

sim C � 2
mes

Rmes
D

�c

Rmes
(7)
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Fig. 8. Samples (population of 105) of two normally distributed random variables (reference, orange, index 1; and test, blue, index 2) for various standard
deviation and mean values, and corresponding t-score t 0 and level of agreement n0. The t-score reflects the distance between sample means relative to the
combined uncertainties of both samples, while the level of agreement reflects the amount of overlap between the test sample distribution and the reference
within combined uncertainties.

Fig. 9. Level of agreement against the distance between mean values
and standard deviation ratios for two normally distributed random variables.
Depending on the standard deviation ratio, the statistical similarity quantified
by t 0 results in different values of n0. The slope of the n0 versus t 0 relationship
in the t 0 2 T1; 3U range is strongly dependent on the standard deviation ratio,
which, in practice, results in the level of agreement metric being less subtle
than the t-score in that range.

and uses the standard uncertainty; with � D 2, it becomes

��1R?
�� <

p
.2�sim/2 C .2�mes/2

Rmes
D

2�c

Rmes
(8)

effectively doubling the standard uncertainty, which is equiv-
alent to a coverage of k D 2, assuming that the uncertainty
follows a normal distribution. For the purpose of making our
analysis comparable to the results of Jaanson et al. [7], we set
� D 2 and consider the double-standard uncertainty 2�sim
and 2�mes.

It should be noted that t 0 does not appear as a metric in
Jaanson et al.’s work; instead, a level of agreement (denoted
n0 in the following) is used, and defined as the fraction
of simulated data points that agree with their corresponding
measured data points within the combined uncertainty of
simulated and measured data (k D 2). In other words

n0 D fraction of samples for which
��Rsim;i � Rmes

�� <
p
.2�sim/2 C .2�mes/2| {z }

D2�c

where Rsim;i is the simulated reflectance for sample i .
Since our simulation workbench only outputs the mean

and standard uncertainty of the MC uncertainty propagation
process, we cannot compute n0 directly. However, assuming
that all variables follow a normal distribution, we can estimate
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Fig. 10. Material BRF measurement dataset (l D 500 nm) faceted against the illumination zenith dimension. The white dots represent the measurement
space. A data point is missing from all measurements in the retro-reflective direction, which cannot be visited by the goniospectrophotometer.

Fig. 11. Material BRF measurement dataset (l D 500 nm), principal
plane view. By convention, the 180� half-hemisphere is remapped to the 0�
half-hemisphere with negative zenith angle values. Error bars report the
standard uncertainty (k D 1).

n0 from the t-score t 0 and the standard deviation ratio �sim=�mes
using a simple MC process. We do this using two normally dis-
tributed random variables (see Fig. 8). Although the extreme
trends for t 0 and n0 are similar, the level of agreement metric
might fail to report a visible disagreement between the two
data series [e.g., Fig. 8 for .1R=�c; �2=�1/ D .1; 0:48/]. More
generally, the t-score provides a more progressive assessment
of the statistical similarity of both data series in the range
t 0 2 T0; 2U than the level of agreement, regardless of the relative
values of the uncertainties on both data series (see Fig. 9).
For this reason, we advocate the use of the t-score to assess
the performance of the method. Nevertheless, we tabulate

the relationship n0.1R=�c; �sim=�mes/ to estimate the level of
agreement between our simulated and experimental datasets.
This ensures comparability with prior work.

We therefore monitor three quantities in the analysis.
1) The relative difference 1R?.
2) The t-score t 0.
3) The level of agreement n0.

These three metrics provide several views on the agreement
between simulated and measured data, each achieving different
trade-offs.

Finally, a global performance indicator relevant for com-
parison with prior work is the relative root-mean-square error
(RMSE), defined as

� D

vuut 1
N

N�1X

iD0

�
Rsim;i � Rmes

Rmes

�2

: (9)

III. ANALYSIS

A. Material Measurements

Material measurements are performed using the 3-D
goniospectrophotometer, following the aforementioned mate-
rial measurement plan (see Section II-F). All measured data
are associated with a corresponding standard uncertainty
(k D 1) based on the material reflectance uncertainty budget
(see Section II-F). This uncertainty is used as an input of the
uncertainty propagation step. In addition to global views on
the dataset in polar coordinates and the principal plane (see
Figs. 10 and 11), we provide the full dataset in a dedicated
appendix (see Appendix C).
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Fig. 12. Artifact BRF measurement dataset (l D 500 nm) faceted against the illumination zenith dimension. The white dots represent the measurement
space. As in Fig. 10, the retro-reflective direction cannot be visited. Comparison with Fig. 6 reveals that the reflective features are positioned where expected.

In nadir and close-to-nadir illumination pointing config-
urations (�ill 2 f0; 15g�), the material has near-Lambertian
reflectivity with a reflectance of approximately 0.6; at higher
illumination zenith angle values, it significantly departs from
the Lambertian behavior and exhibits a forward reflective
behavior. In all configurations, a retro-reflective peak (see
Fig. 11), inaccessible to the goniospectrophotometer, is also
present; however, it cannot be measured, due to aforemen-
tioned instrument limitations (see Section II-F).

The data-driven BRDF model requires full coverage of the
angular space (.�i ; �d ; �o/ 2 T0; �=2U � T0; �U � T0; �=2U)
with dense data (no missing data are allowed). We there-
fore have to assign data values at locations where data are
missing. For �sen > 80� and �ill > 60�, the data are
extrapolated by assigning the value of the nearest neighbor-
ing point. For the retro-reflective point, linear interpolation
is performed, leading to underestimating the retro-reflective
BRDF value by an undefined amount. Although actively
mitigated by the material selection, the impact of those
missing data on simulation results is certainly tangible;
however, the large number of degrees of freedom and unde-
fined value bounds make quantifying the added uncertainty
difficult.

B. Artifact Optical Measurements and Simulation Results

Artifact BRF measurements follow the aforementioned
experimental plan (see Section II-F). In addition to a polar
view on the experimental data (see Fig. 12) and azimuth plane
slice views for comparison of the simulated and measured
data (see Fig. 13), we provide the full datasets in a dedicated
appendix (see Appendix C). A set of azimuth plane slice views
on the relative difference 1R? (see Fig. 14) also shows how
the t-score metric behaves for this dataset.

The simulated and measured reflectance datasets exhibit
features similar to those predicted during the design process
(see Section II-D) and show consistent qualitative agreement
among all sensor azimuth angle values. We observe that
the t-score often degrades at high sensor zenith angle
values, i.e., for �sen > 60� (e.g., Figs. 13 and 14 for
.�ill; �sen/ 2 f.0�; 0�/; .15�; 105�/; .30�; 0�/; .30�; 120�/; : : :g).

TABLE V
DATA CATEGORIZATION DEPENDING ON CONSIDERED METRIC

The simulation tends to slightly overestimate the reflectance
at high negative zenith angle values and to underestimate it at
high positive zenith angle values, including in configurations
where symmetry is expected. This asymmetry reflects that
of the measured data (see Appendix, Fig. 19), amplified
at high sensor zenith angles. In other words, the t-score
increases because the simulated data, which has the expected
symmetries, departs from the measured data, in which the
symmetry is broken. This is possibly attributable to alignment
issues [26]. These systematic deviations at grazing angles
are not included in the uncertainty budget, which is likely
undervalued.

To facilitate the analysis, we categorize data points in
three categories, depending on metric values (see summary
in Table V):

1) “Good” Agreement: for 1R?, the threshold is set to 2 %,
a typical requirement for accurate radiometric sensors in
the visible range at the time of writing; in the context
of this study, this order of magnitude translates to a
threshold of 1 for t 0 with the illumination and sensor
pointing around the nadir; similar to Jaanson et al. [7],
the target value defined for the level of agreement is
95 %.

2) “Acceptable” Agreement: for 1R?, the threshold for a
“good” agreement is arbitrarily doubled and set to 4 %;
we associate a threshold of 2 for t 0, which corresponds
exactly to a threshold of 50 % for n0 (see Figs. 8 and 9).

3) “Poor” Agreement: this corresponds to j1R?j > 4 %,
jt 0j > 2 or n0 < 50 %.

The global polar view on all metrics (see Fig. 15) shows
that the relative deviation metric tends to reject slightly
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Fig. 13. Comparison of BRF simulation results against the measured dataset. Each plot has a thumbnail attached that specifies the illumination geometry
and sensor azimuth angle. The simulated (resp. measured) data are attached to its standard deviation (resp. uncertainty), represented by the lighter shading
(resp. horizontal error bars), corresponding to coverage k D 1, as well as the double, represented by the darker shading (resp. error bar tips), corresponding
to coverage k D 2. Qualitative agreement is considered “good” if k D 1 error markers overlap, and “acceptable” if k D 2 error markers overlap.

more easily data points at high zenith angles than the others
because it disregards the increased uncertainty budget in these

configurations, but otherwise scatters data points
between the “good” and “acceptable” categories
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Fig. 14. t-score analysis for all considered geometries (in-plane view). Points display the relative difference between simulated and measured data, and
shades show the t-score threshold for � D 1 (darker, “good” agreement) and � D 2 (lighter, “acceptable” agreement).

similar to the t-score. On the other hand, the level of
agreement metric rejects the same data points as the
t-score but assigns less easily a data point to the “good”
category than the t-score.

The impression of a good qualitative agreement between
simulated and experimental data are confirmed by the global
per-category aggregates (see Fig. 16): on average, less than
10 % data points show “poor” agreement, and they are
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Fig. 15. Global polar view on method metrics. Markers are colored based on the metric evaluated for the corresponding geometric setup. The shading
corresponds to the category to which the data point is assigned: “good” (green), “acceptable” (yellow), and “poor” (red). (a) (Top) Relative difference. (b)
(Middle) t-score. (c) (Bottom) Level of agreement.

generally associated with configurations with high view-
ing zenith angle (see above for an interpretation). It is
worth noting that improving the uncertainty budget to
account for that systematic drift would improve the method
performance with respect to the level of agreement and
t-score metrics, but not with respect to the relative
difference.

Finally, global statistical aggregates on metrics (see Fig. 17)
allow us to quantify the method performance. The mean
relative deviation is between 1:30 % and 2:42 % on average
for each azimuth plane, with a global mean below 2 %. The
level of agreement is between 76 % and 90 % on average for
each azimuth plane, with a consistent behavior in-plane and
out-of-plane.

TABLE VI
COMPARISON OF PERFORMANCE METRICS WITH PRIOR WORK

We can compare the global level of agreement and relative
RMSE to prior work [7] (see Table VI): both metrics are sig-
nificantly improved for in-plane and out-of-plane geometries,
and also globally.
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Fig. 16. Global metric reports. For each sensor azimuth and illumination zenith angle (ordinate axis), bars display the number of points associated with each
category: “good” (green), “acceptable” (yellow) or “poor” (red). Bar labels indicate the corresponding fraction, in percent, of the total number of data points.
(a) (Left): Relative difference. (b) (Middle): t-score. (c) (Right): Level of agreement.

Fig. 17. Mean metric performance for each sensor azimuth and illumination zenith angle. Bar labels indicate the corresponding value. (a) (Left): Relative
difference. Dashed lines show the mean value for all in-plane and out-of-plane configurations. (b) (Right): Level of agreement. As a reference, the global
value reported by Jaanson et al. [7] is displayed for both the in-plane and out-of-plane configurations.

IV. CONCLUSION AND OUTLOOK

Implementing an unbiased MCRT algorithm is nowadays
a routine task: techniques for producing accurate representa-
tions of light propagation in natural environments are now
easily accessible scientific knowledge. The theoretically per-
fect accuracy of unbiased MCRT methods dismisses the
MC-induced variance in simulation results as a contribution
to simulation uncertainty because converging to the correct
result only requires a higher sample count. Consequently, the
major source of bias and uncertainty one should be concerned
with lies in surface and volume scattering modeling—do our
models faithfully represent how light is reflected on surfaces
or scattered by volumes?—as well as in the quality of the input
data used for scene setup.

Our proposed validation approach builds on prior work by
Govaerts and Verstraete [6] and Jaanson et al. [7], acknowl-
edging the fact that the most important issue to address is the
quality of surface modeling. With the goal of demonstrating
the possibility of reproducing laboratory reflectance measure-
ments using an RTM with high accuracy, based on SI-traceable
data, we updated the prior methodology to address identified
issues. Thanks to our data-driven reflection model, as well
as careful material selection and target design, the agree-
ment between simulated and measured data is significantly
improved, with a global level of agreement of 86 % (versus
60 % in prior work) and a global relative RMSE of 0.023
(versus 0.45 in prior work), and our method exhibits consistent
performance independently of the viewing geometry. The
t-score-based metric we suggest also provides an improved
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measure of the statistical similarity between simulated and
experimental data and better detects systematic modeling bias.
The SI-traceability of the measured data makes it possible
to link simulation results to a standard reference and ensures
comparability with other validation campaigns.

In addition, this study shows that the Eradiate RTM can, for
the simulated setup, produce simulated reflectance values that
match SI-traceable laboratory measurements with a relative
bias of 2 % or lower, provided that the uncertainty on input
parameters and measurements are low enough.

Improving further this accuracy requires reducing the uncer-
tainty on both the input data and the reference results, notably
by improving the alignment procedure.

The surface scattering model can also be improved: the
data-driven model used in this study relies on a linear inter-
polator and hemisphere-cosine sampling routine and could be
improved by making reasonable assumptions on the material
(e.g., extrapolating missing data based on a carefully chosen
microfacet model). It could also be replaced with a more
advanced data-driven model optimizing both modeling accu-
racy and database size. Among the many approaches that
have been proposed, we found Dupuy and Jakob [27] data-
driven model to be an interesting alternative because 1) its
adaptive parametrization results in excellent accuracy over the
full incoming and outgoing hemispheres at a very low storage
cost, and 2) it can be sampled efficiently in the context of
MCRT. Additionally, it can model anisotropic materials. This
approach, however, requires a specific experimental protocol,
and only a few SI-traceable facilities (e.g., IO-CSIC’s GEFE
facility [28], [29]) are equipped to implement it.

Finally, and importantly, the protocol we propose validates
only the components of the RTM used in that specific context
(here, the specific sensor, illumination, and material models,
as well as the path tracing algorithm). In particular, only
the surface scattering part of the RT simulation problem is
addressed here: while this is of great value, it only addresses
a part of the challenges encountered in RT modeling in the
context of EO, where atmospheric modeling is of equal impor-
tance. Different validation exercises are required to validate
other components of RTMs, some of which can be derived
from this protocol, and others have to be entirely different.

APPENDIX A
ERADIATE RTM

This appendix provides a summary of essential facts about
the Eradiate RTM that are relevant to this work and scattered
in this article, but also more general information about the
model, more relevant to its general range of applications.

Eradiate [15] is a 3-D RTM designed to support cali-
bration/validation (cal/val) activities in the field of EO. The
primary objective underlying its development is to match
the radiometric accuracy levels foreseen for the most ambi-
tious satellite missions foreseen in the next decade (e.g.,
TRUTHS [30]). Eradiate is also an open-source project, dis-
tributed under the GNU Lesser General Public License.

Internally, Eradiate is a two-layer system consisting of
pre- and post-processing facilities, written in the Python pro-
gramming language, and a radiometric kernel based on the

Mitsuba 3 rendering system [16] that provides cutting-edge
technology for the implementation of MCRT methods. The
MC method used in this study is a classic path tracer that
performs a random walk in the scene starting from the sensor.
It implements well-known variance reduction techniques: mul-
tiple importance sampling, Russian roulette, and next-event
estimation (see e.g., [31] for details). Eradiate also provides an
interface to Mitsuba’s volumetric path tracer, which supports
the simulation of volumetric scattering in participating media
and is essential to the inclusion of atmospheric effects in
EO-related simulations.

Taking advantage of the plugin architecture of Mitsuba,
Eradiate offers various theoretical and realistic sensors and
emitters that can be easily swapped depending on the appli-
cation. In the design phase of this study, perfectly directional
light sources and sensors are used to produce an idealized
version of the experimental setup, allowing to effectively
simulate the actual BRDF of the artifact over the entire
outgoing hemisphere. In the experiment simulation phase,
a more realistic light source is used to account for the beam
profile, and sensors are placed to match the nominal position
of experimental radiometric records.

Eradiate also provides interfaces for a variety of geometric
primitives, both analytical and data-driven. In this work, the
geometry of the target is incorporated into the simulation as a
triangulated mesh. Eradiate provides an interface for the OBJ
and PLY formats, the latter being recommended for its better
specification and more compact binary data storage.

Eradiate offers a range of EO-oriented and more generic
surface scattering models. This work uses two of them: a
diffuse, i.e., Lambertian model, for the design phase; and a
data-driven quasi-diffuse model. The diffuse model represents
a surface that scatters light isotopically, independently of the
incoming direction. This model is only theoretical and natural
or artificial surfaces generally do not exhibit such reflective
behavior, although some can come close. The sampling routine
for this model is a cosine-hemisphere.

The quasi-diffuse model provides an interface to a BRDF
value table indexed by the incoming and outgoing zenith
angles, as well as the relative azimuth angle between the
incoming and outgoing directions. It therefore assumes that
the material is isotropic, i.e., that its reflective properties have
a rotational invariance with respect to the local surface normal.
This model uses the same cosine-hemisphere sampling method
as the diffuse model, which makes it inefficient if the material
has strong reflective lobes. The zenith angle coordinates are
spaced evenly in the cosine space, which improves lookup
performance. Between table values, the model uses linear
interpolation. The accuracy of this reflection model is therefore
excellent for data points that require no interpolation but will
degrade between table values if the BRDF has steep variations
with insufficient angular coverage. For this reason, material
selection was done with the strong requirement of being as
close as possible to Lambertian, to minimize the inaccuracy
introduced using the quasi-diffuse reflection model.

Eradiate can operate in two modes: a monochromatic
mode, and a CKD mode. In the monochromatic mode, used
in this work, the RTE is solved for a single wavelength.
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Computational results are stored and aggregated along the
spectral dimension without modifications. The CKD mode
implements a correlated k-distribution method [32] that trades
accuracy for performance, effectively allowing to solving the
RTE over spectral bands with a sequence of monochromatic
simulations combined using a spectral quadrature rule. The
CKD mode is used when atmospheric molecular absorption
has to be taken into account.

APPENDIX B
ARTIFACT DESIGN AND MANUFACTURING

This section introduces the artifact design and manufactur-
ing process in depth and expands the summary provided in
Section II-D.

A. Artifact Design

Previous validation efforts [6], [7] used an artificial target
made of sanded aluminum with a lattice of cubic features,
exhibiting strong shadowing-masking effects, which require
the ability to account for 3-D radiative effects. In the present
case, the design process focused on producing an object
featuring a reflective signature with multiple lobes in vari-
ous directions. In particular, reflective lobes located outside
the retro-reflective direction were required: while surface
retro-reflection is typical of many natural surfaces, it was not
accessible to the measurement facility used in this study.

The following main constraints were applied during shape
design.

1) Object Size: The sample is to be mounted in
the aforementioned optical measurement facility (see
Section II-C). This results in a size constraint of
50 � 50 � 10 mm.

2) Geometric Feature Size: Geometric features must be
large enough to allow for accurate and cost-efficient
manufacturing and dimensional measurement, and small
enough to ensure representativity given the facility’s
beam size and sensor field of view so that pointing
accuracy does not have a critical impact on measurement
uncertainty.

3) Reference Measurements Plane: The sample front face is
mounted against restraints that define the measurements
plane and coincide with the goniospectrophotometer
rotation axes. The top surface of the artifact has to be
flat, so it has a consistent distance to the measuring
instrument.

The artificial target design process was iterative and based
on RT simulations performed with Eradiate. At each iteration,
a digital model was built, and its BRDF was computed using
simplified modeling assumptions.

1) Lambertian material with (spatially and spectrally) uni-
form reflectance equal to 0.5.

2) Opaque material.
3) Uniform, perfectly directional lighting.
4) Perfectly directional sensor with a footprint matching

exactly the upper surface of the digital model.

A set of plates pierced with circular holes organized in a
square lattice emerged as a valid design fulfilling the require-
ments and satisfying the constraints. The final design consists
of a 50 � 50 � 1 mm top plate, spaced nominally 2 mm above
a solid and flat 5 mm-thick block. The top plate is pierced with
a 12 � 12 array of circular holes (nominal diameter 2:6 mm)
with nominal center-to-center spacing 3:6 mm (see Fig. 3).
The corresponding BRDF features a main retro-reflective lobe,
as well as multiple secondary peaks due to shadowing-masking
effects (see Fig. 4).

B. Artifact Manufacturing

The anodized aluminum that the grooved target used in
previous work [6], [7] was made of featured highly directional,
hard-to-characterize reflective features. This introduced signif-
icant modeling uncertainty; while this could be addressed with
advanced material characterization and modeling techniques,
e.g., by clustering measurement points around reflective lobes
using an adaptive sampling method [27], the SI-traceable
measurement facility available for this study did not implement
such approaches. This is the main reason why target design
was performed under a Lambertian material assumption.

To get as close as possible to design assumptions, the
following constraints were applied for material selection.

1) Opacity: The selected material shall have minimal
internal light diffusion so that it can be considered
opaque at the length scales relevant to the study.
A semi-transparent material would be more complex to
model and introduce additional uncertainty in simulation
results.

2) Lambertian Reflectance: The selected material shall
have a reflectance as close as possible to Lambertian,
i.e., with 4-D invariances and depolarizing properties.

3) Gray Spectrum: The selected material shall have a
spectrally flat response, in the mid-gray tone range, close
to the 0.5 value used for the design process.

4) Easy Machining: The selected material shall allow for
cost-effective and precise fabrication of the final design.

Conventional matt white reflectance standard materials
include pressed PTFE and ceramic tiles, the former is known to
exhibit significant translucence [33] and the latter only comes
in fixed sizes and is hard to machine.

Two materials were assessed for their possible use.
1) Pyroceram 9606, a polycrystalline glass ceramic mate-

rial from Corning Inc., used for thermal conductivity
and diffusivity reference materials [34], was considered.
It is composed of mixed phases of oxides of silicon,
aluminum, magnesium, and titanium, with some residual
glassy phase, increasing opacity. It is a hard, refractory
material, which can be machined to complex geometries.

2) Building on the idea of a processed aluminum substrate,
a PEO coating on aluminum was tested. This process
is becoming more widely used for producing very
hard-wearing, corrosion-resistant coatings on light metal
substrates, similar to anodizing, but using higher volt-
ages and current densities to generate discharges at the
surface that build up a denser oxide coating. A number
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Fig. 18. Full material optical measurement dataset (l D 500 nm) faceted against the illumination zenith dimension. This figure complements Figs. 10 and 11.
Each plot shows BRF records for a sensor azimuth value and, when relevant, the corresponding symmetrical configuration, assuming that the material is
isotropic. Horizontal error bars report the standard uncertainty (k D 1); the vertical tips report the double (equivalent to k D 2). Configurations that are
expected to be symmetrical agree qualitatively within the uncertainty (k D 2) in general, with a few exceptions. A systematic drift against the sensor azimuth
leads the baseline (blue) to be below the symmetric (orange) for negative zenith values, and above for positive values. The sensitivity of this drift to the zenith
angle makes alignment issues a plausible explanation. Another possible explanation is that the material would not be perfectly isotropic.

of trial samples were obtained from Manchester Univer-
sity using slightly different process conditions [35], and
their spectral BRDF was assessed for their suitability,
with the best response found for a coating that was
around 50� 10 �m thick.

The Pyroceram was found to have some anisotropic
reflectance, which might be due to the cutting process,
resulting in fine directional surface texture or from inherent
anisotropic microstructure, whereas once the PEO coating was
thick enough (approx. 50 �m), the response was found to be
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Fig. 19. Full artificial target optical measurement dataset (l D 500 nm) faceted against the illumination zenith dimension. This figure complements
Figs. 12 and 13. Each plot shows BRF records for a sensor azimuth value and, when relevant, the corresponding symmetrical configuration based on
symmetries identified in the design phase (see Fig. 4). Horizontal error bars report the standard uncertainty (k D 1); the vertical tips report the double
(equivalent to k D 2). Configurations that are expected to be symmetrical agree qualitatively within the uncertainty (k D 2) in general in the �sen 2 T�60�; 60�U
range, with a few exceptions. A systematic drift against the sensor azimuth leads the baseline (blue) to be above the symmetric (orange) for negative zenith
values, and below for positive values. The drift is amplified at high zenith angles (�sen > 60�) and leads to high differences. As for material measurements,
a plausible explanation for this sensor zenith-dependent drift is instrument alignment issues.

Fig. 20. Full numerical simulation dataset (l D 500 nm) faceted against the illumination zenith dimension. This figure complements Fig. 13. Each plot
shows BRF records for a sensor azimuth value and, when relevant, the corresponding symmetrical configuration based on symmetries identified in the design
phase (see Fig. 4). Horizontal error bars report the standard uncertainty (k D 1); the vertical tips report the double (equivalent to k D 2). Configurations that
are expected to be symmetrical all agree within the uncertainty (k D 2).

quite close to Lambertian and isotropic. Precision machining
of aluminum being a lot simpler than ceramic enabled greater
freedom in the design parameters (e.g., hole size and density).

The test artifacts were made from 6086 aluminum alloy in
three parts: a 1 mm thick top plate featuring a 12 � 12 array of
nominally 2:4 mm diameter holes, nominally spaced 3:6 mm






