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A B S T R A C T

The modelling of flora and fauna is vital for understanding and digitally representing our environment, yet their 
dynamic modelling in digital twins lags behind human-made inventions like manufacturing and the built 
environment. The interdisciplinary nature of this research complicates tracking advancements, and no 
comprehensive overview exists. This Systematic Literature Review (SLR), using the PRISMA method, addresses 
this gap by analysing studies on dynamic modelling of flora and fauna in digital twins and 3D city models. It 
covers descriptive metrics and qualitative aspects, identifying key research fields, directions, users, and de-
velopers. Additionally, this SLR details on digital twin data, modelling techniques, actuators, user experience 
with human-computer interaction, and ethical considerations. The findings highlight that the digital twin 
concept is being increasingly applied to the dynamical modelling of flora and fauna. Moreover, the broad 
relevance of this research is demonstrated across various fields including ecology, forestry, urban studies, and 
agriculture, where diverse methods and technologies are used, though progress remains uneven. Currently, 
precision agriculture is leading the way in automated, bidirectional synchronisation between digital twins and 
their physical counterparts. Complementing traditional modelling techniques with AI and machine learning 
where appropriate, expands modelling capabilities. Meanwhile, multimodal interfaces enhance the immersive 
user experience. Despite these advances, challenges persist in data availability, foundational knowledge, complex 
interaction modelling, standardisation and transferability, underscoring the need for continued research. Digital 
twins for the biotic environment show promise in supporting United Nations Sustainable Development Goals 2, 
11, 13, 14, and 15. This overview supports researchers and practitioners in developing digital twin applications 
which include flora and fauna.

1. Introduction

Simultaneously with technological development, the biotic envi-
ronment is undergoing drastic transformations today (Mottl et al., 2021; 
Nolan et al., 2018). The increase of the human population is a catalyst 
for the expansion of human settlements, accelerated urbanisation 
(McKinney, 2008; Seress and Liker, 2015; Theodorou, 2022) and rising 
agricultural demand (Kehoe et al., 2017). Further, pollution, over-
exploitation of biological resources (Shivanna, 2020), monocultural 
forestry (Liu et al., 2018a), and other human-made influences (Foley 
et al., 2005; Tscharntke et al., 2012) facilitate habitat loss, causing biotic 
homogenisation, loss of biodiversity (McKinney, 2008; Seress and Liker, 

2015; Theodorou, 2022), and disrupting ecosystem functioning 
(Theodorou, 2022). The urgency to efficiently address the 
human-induced negative changes impacting flora and fauna is 
acknowledged globally, as in the UN Sustainable Development Goals 
(United Nations, 2015) and in the European Green Deal (European 
Commission. Directorate General for Communication., 2021). To 
address these challenges, the conjunction of natural systems and tech-
nologies is gaining momentum, driven by unprecedented advancements 
in science and technology. This can be observed in agriculture (Purcell 
and Neubauer, 2023), urban green environments (Brkljačić et al., 2020; 
Galle et al., 2019) and nature overall in variegated manners (Arts et al., 
2015; Mohammed, 2016; Nugent, 2018). Nonetheless, the maturity and 
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inclusion of biotic elements in the digital sphere, for example (urban) 
vegetation, still lag behind those of human-made inventions, such as the 
manufacturing industry or the built environment (Shirowzhan et al., 
2020; Xu et al., 2021) and the previously outlined challenges to over-
come stay yet unresolved.

However, with the ongoing increase of data availability, computa-
tional power and development of digital tools, especially one concept, 
promising to tackle complex challenges and wicked problems, stands at 
the forefront of this technological break-through: the “Digital Twin”. 
Digital twins are innovative tools integrating multiple established and 
emerging technologies, bridging the gap between physical assets and 
their digital counterparts. They enable (real-time) monitoring, di-
agnostics and prognostics, realistic behaviour in simulations and a 
continuous bi-directional alignment between the digital and the phys-
ical counterparts (Grieves and Vickers, 2017; Kritzinger et al., 2018; 
Wright and Davidson, 2020). While some scholars use "digital model", 
and "digital twin" interchangeably, there are key distinctions between 
digital models, digital shadows, and digital twins. One of the primary 
differences lies in the data flow and synchronisation between the 
physical and digital counterparts, which can be either manual or auto-
matic (Kritzinger et al., 2018) (Fig. 1). For a more detailed definition of a 
digital twin and its differentiation from a digital model or a digital 
shadow, see Supplement S1.

Originating in the context of industrial design and manufacturing 
(Grieves and Vickers, 2017), digital twin applications have transcended 
industrial confines. Digital twins are now a focus of significant research 
(Botín-Sanabria et al., 2022) and increasingly applied in fields involving 
flora and fauna, such as cities (Lehtola et al., 2022), forestry (Hejtmánek 
et al., 2022), agriculture (Pylianidis et al., 2021), livestock-farming (Jo 
et al., 2018; Neethirajan and Kemp, 2021), ecology (Trantas et al., 2023) 
and biodiversity (Sharef et al., 2022). The scales in which digital twins 
are applied in this context range from local (Taubert et al., 2024) 
through European-wide (Khan et al., 2024b) to global, aiming at sup-
porting e.g. the Earth’s green transition (Bauer et al., 2021). Digital 
twins are said to hold potential for nothing less than to disrupt the status 
quo of ecology as a part of its digital transformation (De Koning et al., 
2023).

1.1. Aim of this systematic literature review

While numerous (systematic literature) reviews and overviews exist 
on related topics e.g. (urban) digital twins (Deng et al., 2021; Ivanov 
et al., 2020; Ketzler et al., 2020; Lei et al., 2023; Qian et al., 2022; Shahat 
et al., 2021) and digital twins in agriculture (Purcell and Neubauer, 
2023), no comprehensive overview addresses how flora and fauna are 
modelled in digital twins. This overview is particularly important, as the 
dynamic modelling of flora and fauna intersects various fields and 
therefore provides a centralised resource that consolidates the state of 
the art and facilitates a deeper understanding of the topic across 
different domains. Consequently, this Systematic Literature Review 
(SLR) aims to fill that gap and support researchers and practitioners in 
developing digital twin applications that include flora and fauna.

In contrast to field-specific reviews on digital twins, such as those 
focusing on e.g. intensive aquaculture (Føre et al., 2024) or livestock 
farming (Neethirajan and Kemp, 2021), or a framework for data-driven 
digital twins in ecology (Khan et al., 2024a), this review adopts a 
broader perspective. It takes a horizontal, cross-sectoral perspective on 
flora and fauna modelling in digital twins, avoiding segregation e.g. by 
species, practice, or domain. This approach allows to highlight the 
diverse fields where flora and fauna models are employed in digital 
twins and how needs and approaches differ across applications. Such 
cross-sectoral awareness is particularly valuable for transdisciplinary 
knowledge pollination and the design of reusable and transferable flora 
and fauna models. Moreover, it allows to address e.g. standardisation 
and technical challenges more holistically.

The field of digital twins is heterogeneous encompassing multiple 
theoretical and conceptual frameworks as well as manifold research 
approaches. As the meaning of the term digital twin varies greatly across 
research fields, for this SLR a digital twin was defined as a digital rep-
resentation (digital counterpart) of a physical counterpart, encompass-
ing variable modelling methods, e.g. 3D and mathematical models and 
simulations, as well as information updates that can influence both 
counterparts directly or indirectly. Notably, real-time data is not always 
indispensable for dynamic modelling of flora and fauna in digital twins, 
allowing flexible updating frequencies.

The initial aim of this review was to compile and analyse existing 
knowledge on dynamic modelling (see Supplement S1) of flora and 
fauna in urban digital twins (UDT). As a result of the three-dimensional 
nature of urban planning, UDTs are often accessed and interacted with 
through 3D city model interfaces. Therefore, and due to the novelty of 
the term “digital twin” in the urban context (Ferré-Bigorra et al., 2022; 
Shahat et al., 2021), we anticipated that urban digital twins could be, 
besides the term “digital twin”, also be discovered with the search 
phrase “3D City Model”. However, preliminary examinations revealed 
scant research specifically addressing this nexus. As the implications of 
urban areas on flora and fauna go beyond city borders (Caldarelli et al., 
2023), and as there is potential for knowledge transfer from other do-
mains, the review’s scope was expanded to keep matching articles on 
dynamic modelling of flora and fauna regardless of discipline. Conse-
quently, the focus shifted from city-wide digital twins to dynamic 
modelling in all disciplines, prompting a complete revision of the 
research process.

Given the advances in digital twins, and the lack of a concise over-
view, this review explores, analyses, and synthesises current research, 
highlighting achievements, identifying gaps, and proposing future di-
rections. It especially covers descriptive metrics and qualitative aspects, 
identifying key research fields, directions, users, developers, digital twin 
data, dynamic models, actuators, user experience, and ethical 
considerations.

While this review aims to provide a broad overview, it is worth 
noting that the chosen search terms did not specifically target agricul-
tural practices, such as precision farming or livestock modelling. 
Consequently, agricultural digital twins are not comprehensively 
addressed in this review.

Fig. 1. Conceptual comparison of Digital Model, Digital Shadow, and Digital 
Twin frameworks as described by Kritzinger et al. (2018) and Botín-Sanabria 
et al. (2022). Digital models provide static representations of systems with 
manual data flow and synchronisation (left image, dashed arrows). Digital 
shadows include unidirectional automatic data flow (middle image, dashed and 
solid arrows) from the physical counterpart to the digital counterpart. Digital 
twins incorporate bidirectional automatic data flow (right image, solid arrows), 
enabling dynamic interactions and feedback between the physical and digital 
counterparts. This conceptual comparison highlights the progression of 
modelling paradigms.
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2. Materials and methods

In this SLR, the PRISMA 2020 (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses) framework (Page et al., 2021) has 
been applied. The detailed review protocol for this study is available 
upon request.

2.1. Research questions

This SLR was conducted with the aim to answer the following 
research questions (RQ):

Research 
question

Question Addressed in chapter

RQ 1 When, where, for which purposes, in 
which fields, by whom and for whom 
are flora and fauna dynamically 
modelled in digital twins and 3D city 
models?

3.1 Context and 3.2 
Categorisation of Research 
Topics

RQ 2 What data collection methods are 
employed, which digital twin data 
are generated and used and how is 
the data managed?

3.3 Data

RQ 3 Which modelling techniques and 
methods are used for which 
purposes?

3.4 Models

RQ 4 How are flora and fauna represented, 
and what methods facilitate user- 
computer interaction?

3.6 User Experience

RQ 5 Which ethical reflections are 
considered?

3.7 Ethical Considerations

RQ 6 Which fields show research 
leadership and what are open 
challenges and future directions in 
the dynamic modelling of flora and 
fauna in digital twins?

All Chapters, especially 4. 
Discussion

2.2. Definition of keywords and search strings

The keyword strings used for the literature search consisted of two 
parts (Fig. 2). For the first part, the terms "digital twin" or "3D city 
model" were employed. The term “3D city model” appeared to be the 
most widely applied for the urban context, and commonly used for 

reviews by other scholars, such as (Biljecki et al., 2015). Reflecting the 
initial focus of this SLR, the search term “3D city model” was retained in 
the search strings because it effectively captured articles consistent with 
the definition of digital twins, even when the term “digital twin” itself 
was not used. The term “digital twin” recently emerged across multiple 
disciplines. Due to its novelty and manageable number of publications 
across various disciplines, the search term “digital twin” was chosen.

To cover the modelling of flora and fauna, the following search terms 
were selected after preparatory searches to figure out the most auspi-
cious results: “biodiversity”, “ecology”, “greenery”, “green area”, “green 
infrastructure”, “species”, “urban landscape”, “vegetation”, “wildlife”. 
The search terms “flora” and “fauna” were excluded as no applicable 
new articles were found during the preceding searches. The search for 
“green” was initially excluded, as the term is too vast.

2.3. Publication collection

The initial inclusion period for publications was set from 01.01.2015 
until May 18th, 2022. To further include topical records published by 
February 28th, 2023, the literature search was repeated on this date. The 
literature search for the publication collection was conducted on 
18.05.2022 and 28.02.2023 in three pertinent databases (Fig. 3): 

1. Web of Science (WoS, www.webofscience.com), the “Core Search” 
was used.

2. ScienceDirect/Scopus (www.scopus.com). The scope “Article title, 
Abstract, Keywords” was used for the searches.

3. Google Scholar. Search results were downloaded with the software 
“Publish and Perish”, as described in (Harzing, 2010). All Google 
Scholar search results which exceeded 250 publications were ranked 
by relevance and only the first 250 were included.

2.4. Publication selection

After identifying the relevant literature from three databases, du-
plicates were culled. Subsequently, the publications were reviewed 
independently by two reviewers for eligibility in three phases: by title, 
by abstract, and by full text (Fig. 3). The following inclusion and eligi-
bility criteria were used: 

1. Language: Studies where title, abstract and full text are in English 
were included.

2. Document types: Videos and webpages were excluded; all other 
document types were included.

3. Topic: Publications were included if they discuss the dynamic 
modelling of flora and/or fauna within or for future integration into 
digital twins or 3D city models. For studies identified with either 
term “digital twin” and/or “3D city model” inclusion was contingent 
on the study aligning with the definition of a digital twin outlined in 
Section 1.1: A digital model of a physical counterpart that is capable 
of incorporating updates (at flexible frequencies) in the virtual 
counterparts and influencing the physical counterpart either directly 
or indirectly.

4. Scope: Publications from all disciplines were eligible for inclusion.

2.5. Data analysis

For the analysis of the included articles atlas.ti web software (htt 
ps://atlasti.com) and Excel sheets were used. Three types of analyses 
were carried out to address the research questions: 

1. Articles were assigned to mutually exclusive categories based on 
their content e.g. 3.1.1 Time of publication and 3.2 Categorisation of 
Research Fields.

2. Content lists of topics relevant to the research question were 
compiled and systematically categorised based on all included 

Fig. 2. Combinations of used search terms for the publication collection for the 
systematic literature review.
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articles. Each article could belong to multiple categories, such as 
"Data" see 3.3.1 and "Models", see 3.4, allowing for comprehensive 
coverage.

3. Qualitative themes emerging from articles were identified e.g. 3.3.4 
Challenges in Data Quality and Availability were added to the con-
tent lists of relevant topics. The systematic compilation and catego-
risation were therefore reiterated.

This review is descriptive in nature and does not include statistical 
methods, such as meta-analysis. This is due to the heterogeneity of the 
included studies in terms of their scope, methodologies, and reported 

outcomes and the lack of quantitative data presented.

3. Results

Out of the total number of 6 039 publications found through the key 
word search, only 38 publications were eligible for the final inclusion. 
The included literature was published as journal publications, confer-
ence proceedings, congress publications, books, book chapters, master 
thesis or academic dissertation.

Fig. 3. PRISMA flow diagram (adapted from Page et al. 2021) illustrating the phases of the systematic literature review. It includes the numbers of publications 
retrieved from the Scopus (S), Web of Science (WoS) and Google Scholar (GS) databases during two data collection time frames (t1 and t2), and subsequently 
screened and either excluded (right) or included (bottom) in the literature review. Dates of the data collection time frames shown at the bottom of the graph.
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3.1. Context

3.1.1. Time of publication
The number of publications matching the research topic started 

increasing from 2019 onwards, with a drastic increase of articles con-
taining the search term digital twin (Fig. 4). “Digital twin” (n = 32) is 
considerably more commonly used in the researched context than “3D 
city model” (n = 6). The publications retrieved using the term “3D city 
model” for this SLR conform to the definition of digital twins. Therefore, 
subsequent references will solely employ the term “digital twin” for 
improved readability, except when the context necessitates the differ-
entiation between digital twin and 3D city model.

3.1.2. Spatial distribution of studies by first author affiliation
The largest shares among countries of first author affiliation location 

were China and Russia (n = 5, 13,1 %; Fig. 5).

3.1.3. Developers and users from diverse fields and sectors
The development of digital twins and dynamic 3D-models of flora 

and fauna is researched by experts from various fields (Shu et al., 2022). 
The main domains in the selected publications are biology (Shu et al., 
2022), agriculture (Majore, 2022; Mishra and Sharma, 2023), agronomy 
(Skobelev et al., 2020a, 2022a), landscape architecture (Luka and Guo, 
2021), urban planning and design (Shu et al., 2022), engineering 
(Fernández-Alvarado et al., 2021), geoinformatics, computer science, 
computer graphics (gaming and animation) (Shu et al., 2022), arbori-
culture, forestry (key forest stakeholders) (Buonocore et al., 2022; Shu 
et al., 2022), citizen science and education (Harrington et al., 2021).

The selected publications targeted three stakeholder categories: 

1. Academic research, including research groups from the domains listed 
in Section 3.1.3, advancing the development and application of 
digital twins.

2. Collaboration with other professionals, e.g. researchers, (small scale) 
farmers (Johannsen et al., 2021; Klippel et al., 2021; Skobelev et al., 
2020a; Zake and Majore, 2022), (political) decision makers (Cirulis 
et al., 2022; Fernández-Alvarado et al., 2021) and legislators (Mishra 
and Sharma, 2023) e.g. city authorities (García-Granja et al., 2020; 
Johannsen et al., 2021), (landscape) architects, engineers and urban 
planners (Fernández-Alvarado et al., 2021), with the intention of 
creating e.g. decision support tools or affecting (personal) behaviour 
(Johannsen et al., 2021).

3. Engagement with a broader audience, i.e. stakeholders not directly 
involved or contributing to the development of the digital tools, such 
as the general public (Klippel et al., 2021), citizens and consumers 

(Johannsen et al., 2021), users and learners (Harrington et al., 2021), 
participants (Cirulis et al., 2022) and non-experts (Harrington et al., 
2021).

3.2. Categorisation of research topics

The dynamic modelling of flora is covered comparably extensively in 
34 publications, whereas the publications retrieved through the search 
process related to fauna modelling appears underrepresented with only 
four publications. Notably, fauna integration is absent in publications 
found with the search term 3D city model. A systematic categorisation of 
the reviewed literature delineates specific domains where dynamic 
modelling of flora and fauna is employed within digital twins and 3D 
city models (Fig. 6).

Six publications were found under the search string “3D city model” 
(Fernández-Alvarado et al., 2021; García-Granja et al., 2020; Kastuari 
et al., 2020; Tanhuanpää, 2016; Vo et al., 2019; W. Zhang et al., 2022) 
and the remaining 32 with “digital twin”. None of those mentioned both 
search terms within the same publication.

3.2.1. Flora
The publications treating the dynamic modelling of flora have been 

structured into six categories aligning with their purposes:
Tree and Forest Modelling: Individual trees, tree groups and trees in 

forests are the most occurring plants that have been dynamically 
modelled. The purposes and aims cover the reconstruction of tree skel-
etons for forest scenario renderings (Wang et al., 2022), the automatic 
generation and representation of dynamic trees based on physical and 
biological traits of the respective species (Gobeawan et al., 2021, 2019, 
2018) and the immersive representation and projections of forest 
landscapes for the communication of climate change effects (Klippel 
et al., 2021). Additionally, dynamic models are used for single tree 
characteristic and/or forest monitoring, management, maintenance and 
ecosystem service estimation (Buonocore et al., 2022; Guo et al., 2022; 
Mongus et al., 2021; Pusztai, 2021; Tanhuanpää, 2016; Wang et al., 
2022) as well as the risk assessment including threat assessment through 
tree growth (Mongus et al., 2021), simulation of forest fire to estimate 
burning times (Sanchez-Guzman et al., 2022) and for the implementa-
tion of early warning mechanisms (Buonocore et al., 2022). Luka and 
Guo (2021) discuss the roots of trees, whereas most articles focus on 
above-ground modelling.

Natural Environment and Ecosystems for Preservation Research, Virtual 
Interaction and Education: Dynamic models of flora have been developed 
for wetland ecosystems (Lu et al., 2023), bog ecosystems and peatlands 
(Cirulis et al., 2022), vegetation coverage (Zhao et al., 2022) and a 
virtual arboretum (Harrington et al., 2021). The purposes of these dy-
namic models are the monitoring of urban expansion and vegetation 
coverage (Zhao et al., 2022), the interconnection and mapping of the 
real and the virtual world (Lu et al., 2023), to foster knowledge 
dissemination, discussion and for education activities (Harrington et al., 
2021). The game-engine based representation of wetland ecosystems 
(Lu et al., 2023), bogs ecosystems and peatlands (Cirulis et al., 2022) as 
well as a virtual arboretum (Harrington et al., 2021) had a high 
emphasis on a (photo-) realistic representation of the environment and 
e.g. the seasonal dynamic change (Lu et al., 2023). Furthermore they are 
designed for the user to interact with the 3D virtual environment in 
immersive ways in real time (Cirulis et al., 2022; Harrington et al., 2021; 
Lu et al., 2023).

Vegetation-related Micro-Climate and Aerobiological Expose Risk: Dy-
namic models in this category monitor seasonal variations in tree foliage 
to evaluate canopy transmissivity for microclimate modelling, focusing 
on solar radiation distribution (Hofierka et al., 2017), and on aero-
biological exposure risks (allergenic potential) emitted by green infra-
structure (Fernández-Alvarado et al., 2021).

Open-Field Agronomy: This category refers to agronomical practices 
in open fields where factors such as climate or soil are not controlled, 

Fig. 4. The number of publications included in the literature review (y-axis) is 
shown by the year of publication (x-axis) and categorised by the first search 
term that matched each publication (line color). The year 2023 is excluded 
from the diagram as it was not fully covered within the literature collection 
time frame.
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and crops are exposed to natural conditions. Modelled plants encompass 
grasslands (Purcell et al., 2022), a vineyard (Edemetti et al., 2022), 
organic potatoes (Majore, 2022), crops (Skobelev et al., 2022b), wheat 
(Skobelev et al., 2020a), winter-wheat (Skobelev et al., 2022a) and rice 
(Skobelev et al., 2021). The dynamic plant models and the simulations of 
their interactions with the environment, such as with soil or atmosphere, 
aim to improve the economic value, environmental sustainability, and 
build a basis for plant management and improved decision-making 
(Edemetti et al., 2022; Purcell et al., 2022; Skobelev et al., 2022b; 
2021; Van Evert et al., 2023). These models support plant monitoring, 
crop management, predictive maintenance, yield forecasting, land use 
optimisation, and efficient use of resource such as water, fertilizers and 
pesticides.

The development and use of digital twins in the field of agronomy are 
more common (Purcell and Neubauer, 2023; Sreedevi and Santosh 
Kumar, 2020) than reflected in this study. However, Skobelev et al. 
(2022a) note that the dominant share of these publications primarily 
focuses on digital twins of the infrastructure facilities, rather than the 
digital twins of plants, which is the focus of this review.

Controlled-Environment Agronomy: This category is referring to 
agronomical practices conducted in controlled environments such as 
greenhouses where e.g. climate, light and humidity are controlled to 
optimise growth conditions. Publications in this category discuss 
microclimate control systems and greenhouse crop simulation models 
(Moin-E-Ddin Rezvani et al., 2021), precision farming and virtual to-
mato crop use-cases (Knibbe et al., 2022). Both have the purpose to 
monitor, simulate, predict and regulate the greenhouse itself and the 
crops.

Vegetation Data Management, Information Management and Modelling: 

Publications in this category discuss 3D vegetation modelling methods 
and software, 3D-modelling standards and attribute indicators that are 
relevant for classifying vegetation (Zhang et al., 2022). More precisely, 
they discuss dynamic spatial data of trees derived from forest simula-
tions and stored though the Dynamizer in CityGML (Kastuari et al., 
2020) and the usage of semantic city models using the CityGML standard 
for the modelling, monitoring and validating of green façade and roof 
solutions (Vo et al., 2019). Moreover, parametric trees in Building In-
formation Models (BIM) (Luka and Guo, 2021) as well as the geographic 
positioning of trees and the integration of an interactive database into a 
building information model (García-Granja et al., 2020) are considered. 
Additionally, a Tree Information Model (TIM) as a data exchange plat-
form (Shu et al., 2022) is proposed.

3.2.2. Fauna
Dynamic models of fauna range from the social interactions and 

behavioural patterns of an abiomimetic robot fish with biological fish 
(Joordens et al., 2019), to continuous monitoring and assessment of 
environmental health with smart bat monitors (ultrasonic microphones) 
(Hudson-Smith et al., 2021), to social-ecological system of urban 
beekeeping to monitor e.g. the health of bee colonies and anomalies 
(Johannsen et al., 2021), and to how IoT and digital twins in Precision 
Livestock Farming (PLF) can improve the health and well-being of farm 
animals (Mishra and Sharma, 2023).

3.3. Data

Data are one of the key components of digital twins (Zhang et al., 
2022a), and therefore an equally indisputable exigency for the dynamic 

Fig. 5. The number of publications included in the literature review is displayed by country, based on first author affiliation, indicated by country colors on the 
world map. Countries shown in grey were not indicated as first author affiliation in any of the included publications.

Fig. 6. Number of publications included in the literature review categorised by research focus area (y-axis) and the primary search term used ("Digital Twin" or "3D 
City Model," indicated by bar color). The x-axis shows the number of publications for each category.
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modelling of flora and fauna in digital twins.

3.3.1. Data categories
Following Zhang et al. (2022)’s notion of “Digital Twin Data”, data 

described in the publications are organised here into the six categories 
based on relevance and frequency in the literature: Physical 
entity-related data, domain knowledge, virtual model-related data, 
service-related data, fusion data and connection data (Fig. 7, definition 
in Supplement S2). Each category is integral to the framework of digital 
twins, providing a structured approach to assembling optimised digital 
representation and analysis. Given the extent of the physical 
entity-related data, a separate list can be found in the Supplement S2.

3.3.2. The rhythm of nature stipulates possible timings and frequencies of 
data collection

Digital twins of plants necessitate substantial data (Skobelev et al., 
2022a). However, since flora and fauna depend on the rhythms of na-
ture, collecting all types of data year-round in uncontrolled environ-
ments — such as open-field agriculture or natural ecosystems — is often 

hindered by natural fluctuations (Johannsen et al., 2021; Majore, 2022). 
Greenhouse agronomy or livestock farming depend on the lifecycle of 
the subject of interest in a controlled environment. In contrast, “out-
door” flora and fauna are depending on e.g. the climatic zone, governed 
by annual cycles, with the life-cycle phases being influenced by both 
intrinsic biological factors as well as external conditions like weather 
(Skobelev et al., 2022a). These dependencies can slow data acquisition 
and knowledge gain compared to digital twins of human-made in-
frastructures. Moreover, real-time measurement of some system pa-
rameters, like plant sugar levels, is not practically feasible (Knibbe et al. 
2022).

Frequencies of data collection alike depend on the object of interest, 
the data collection method, available resources, as well as the modelling 
approach. In the selected publications, the frequencies of the data 
collection range from (near) real-time or continuous data collection via 
e.g. IoT devices, Global Positioning System (GPS), Radio-Frequency 
Identification (RFID), etc. (Mishra and Sharma, 2023) to regular up-
dates, where data is collected e.g. once a year (Tanhuanpää, 2016), to 
irregular input data collection (Mongus et al., 2021).

Fig. 7. Data types of flora and fauna models that appeared in the included publications, classified into the six categories of interrelated “digital twin data” types 
proposed by Zhang et al. (2022). A comprehensive list of the data types in this study that were classified as physical entity-related data, along with a description of 
the data type classification by Zhang et al. (2022), is provided in the supplement (S2).
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3.3.3. Data sources and data collection methods
Data sources commonly include existing databases belonging to the 

categories “domain knowledge” and “physical entity-related data”, 
covering e.g. historical data (Zhao et al., 2022). Additionally, data is 
sourced mainly through the following methods:

Spaceborne and Aerial Observation (SAAO) Methods: Spaceborne and 
aerial observations methods (SAAO) employed in the selected publica-
tions include GPS, Airborne Laser Scanning (ALS) (Gobeawan et al., 
2019), multispectral data (Zhao et al., 2022), Light Detection And 
Ranging (LiDAR) scans from Unmanned Aerial Vehicles (UAV) 
(Edemetti et al., 2022; Lu et al., 2023), air-borne and satellite imagery 
(Gobeawan et al., 2018; Zhao et al., 2022) and photogrammetry 
(Kastuari et al., 2020).

Ground-based Methods: Ground-based data collection methods 
require physical presence or instruments placed directly at the location 
or object of interest. These methods are more manifold than the SAAO 
methods. Terrestrial Laser Scanning (TLS) (Guo et al., 2022; Hofierka 
et al., 2017; Shu et al., 2022), Mobile Laser Scanning (MLS), LiDAR and 
other Laser Scanning methods (Gobeawan et al., 2018; Wang et al., 
2022) are comparable technologies to the SAAO that are typically used 
for ground-based vegetation data collection.

Ground-based data collection is in many cases still also carried out 
manually through inspections, field surveys and measurements 
(Gobeawan et al., 2018; Hofierka et al., 2017; Kastuari et al., 2020; Lu 
et al., 2023; Luka and Guo, 2021; Skobelev et al., 2022a). Manual 
methods are said to be subjective, laborious, time-consuming, less data 
rich than other methods, and hence, expensive (Kastuari et al., 2020; Li 
and Wang, 2009; Yuan et al., 2018). Moreover, these methods pose 
challenges in fields like livestock farming (Mishra and Sharma, 2023), 
and manual data entry into information systems hinders the timeliness 
and accuracy of information (Knibbe et al., 2022). Due to e.g. the listed 
shortcomings, coupled with calls for reduced data harvesting costs, Guo 
et al. (2022) assert that manual data collection is losing attractivity. As 
an alternative, GPS systems, diverse sensors and IoT technologies and 
other mobile technologies now enable continuous data collection and 
improve accessibility (Hudson-Smith et al., 2021; Mishra and Sharma, 
2023; Vo et al., 2019). For the automatic updating and integration of 
collected (raw) data into digital twin systems, cloud computing (Mishra 
and Sharma, 2023) or (multi access) edge computing (Edemetti et al., 
2022) are employed.

From Raw Data to Insights: Data Mining and Synthetic Data Collection: 
Data mining methods are applied to extract useful information, e.g. 
derive the tree canopy from a point cloud (Gobeawan et al., 2018). 
Moreover, (synthetic) data is created through modelling techniques, 
which are further described in chapter 3.4 Models.

3.3.4. Challenges in data quality and availability
For meaningful knowledge extraction, high-quality data is para-

mount, and shortcomings on data affect updating frequencies, the Level 
of Detail (LoD), e.g. complexity of 3D representations, and accuracy of 
the digital twins, impeding further progress (Xhafa and Krause, 2021). 
Researchers cite several reasons for insufficient data coverage for dy-
namic modelling flora and fauna, including restrictions in availability 
(Van Evert et al., 2023) and affordability of technologies and infra-
structure (Wang et al., 2022), inaccuracies and inadequacies in sensing 
equipment (Knibbe et al., 2022; Wang et al., 2022), and external factors 
like obstructions in satellite data collection (Kasampalis et al., 2018; 
cited by Zake and Majore, 2022). Even when data are available, not all 
data is equal in terms of quality and relevance. The consequences are 
particularly evident in machine learning applications within digital 
twins, which require substantial data to effectively learn and refine 
conditional probabilities e.g. related to plant states and transitions 
(Johannsen et al., 2021). Moreover, a key challenge lies in the hetero-
geneity and diversity of data, requiring standardizing data-sharing 
protocols across digital twin implementations, including data sources 
and entity attributes. The proliferation of protocols creates technical 

debt, interoperability issues, and governance barriers, diminishing the 
value of digital twins at all scales (Buonocore et al., 2022).

3.3.5. Standards and data management systems
Creating digital twins of flora and fauna requires data aggregation 

and management. One of the main challenges hereby is to ensure 
interoperability between different databases, systems and standards 
(Ketzler et al., 2020; Lei et al., 2023). In the selected publications, data 
management is in most cases not mentioned nor very precisely 
described.

Urban Environment: For the urban environment, Building Information 
Modelling (BIM) (García-Granja et al., 2020) and City Information 
Modelling (CIM) facilitate information sharing and exchange, enhancing 
the efficiency and sustainability of planning, design, construction, and 
management. Additionally, Landscape Information Modelling (LIM) 
addresses the specific needs of landscape architectural projects, 
enhancing their planning and execution (Shu et al., 2022). City-wide 
tree registers, which map trees and model tree-level parameters — 
such as diameter at breast height, volume, location, species group — are 
employed for tree information management and storage (Tanhuanpää, 
2016).

CityGML is a widely used international open standard for urban 
environments encompassing aspects such as urban geometry, topology, 
and semantics while supporting various levels of detail (García-Granja 
et al., 2020; Kastuari et al., 2020; Vo et al., 2019; Zhang et al., 2022). To 
prevent obsolescence, CityGML has incorporated a mechanism known as 
Application Development Extension (ADE) to enable the modelling of 
additional information, not initially anticipated (Kastuari et al., 2020; 
Vo et al., 2019). Since CityGML 3.0, the Dynamizer module enables the 
representation and management of dynamic data — such as 
time-varying tree heights and simulation results — within the 3D city 
model (Kastuari et al., 2020).

Agricultural Sector: In the agricultural sector, data pertaining to 
management activities are traditionally stored within Farm Manage-
ment Information Systems (FMIS). These systems are available in 
various commercial versions, many of which lack interoperability. Data 
entry into FMIS is typically performed manually, leading to challenges 
in obtaining accurate and up-to-date information. Despite the develop-
ment of standards for data processing, none have achieved widespread 
adoption. (Knibbe et al., 2022)

Cross-domain: Geographic Information Systems (GIS) are commonly 
employed for analysing, simulating, visualising and managing 
geographic data, e.g. in the creation of a virtual bog ecosystem (BogSim- 
VR) (Cirulis et al., 2022).

Tree Information Modelling (TIM) facilitates cross-disciplinary 
knowledge sharing about trees, using a Tree Description System 
(TDS), which standardises tree descriptions with basic information tags 
and geometric representations. The high Level of Detail (LoD) of TDS 
makes it adaptable for various applications, integrating forestry science, 
Functional Structural Plant Modelling (FSPM) and building environ-
ments into a unified platform (Shu et al., 2022).

Application Programming Interfaces (API) allow seamless data 
interaction and are discussed in various contexts, such as for the 
graphics in the BogSim-VR (Cirulis et al., 2022), integrating third-party 
data like weather forecasts (Edemetti et al., 2022; Vo et al., 2019), 
collecting data from bee hive sensors (Johannsen et al., 2021) and 
connecting Tree Information Modelling (TIM) to Building Information 
Modelling (BIM) and GIS (Luka and Guo, 2021; Shu et al., 2022).

3.4. Models

3.4.1. System models
The basis of a digital twin can consist of models with varying 

complexity and integration levels. These range from single models to 
multi-scale multi-domain models connecting multiple high-level system 
models that connect sub-models of various aspects of the physical 
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counterparts into one functional and interactive entity. System models 
presented in the examined literature vary in their structural complexity, 
from hierarchical or modular system models with one or more sub- 
models (Buonocore et al., 2022) to model chains or networks, where 
outputs of sub-models are used as the inputs of subsequent models 
(Pusztai, 2021; Skobelev et al., 2020a), to simple input-output models of 
a key phenomenon of the system (Fernández-Alvarado et al., 2021). 
Additionally, publications contain digital twins that are collections of 
unconnected models, bound together mainly by a shared physical sys-
tem or a common user interface (García-Granja et al., 2020).

3.4.2. (Sub-)model aims and temporalities
System models may include (sub-)models developed for one or more 

model aims, and hence also for one or more temporalities (Fig. 8). For 
the categorisation of temporalities and the model categorisation, the 
three types of analytics techniques — descriptive, predictive and pre-
scriptive models — described by (Roy et al., 2022) are adopted. The 
granularity and spatial scale of sub-models depend on model aims. For 
example, plant models vary from large-scale parameters, e.g. tree can-
opy cover or leaf area index (Cirulis et al., 2022), to tree skeleton models 
for accurate estimations (Chattoraj et al., 2022). Models of animals can 
range from e.g. modelling the behavioural state of a (bee) colony 
(Johannsen et al., 2021) to a model of a cattle’s individual heart rate as 
estimated from the changes of blood flow (Mishra and Sharma, 2023). 
Sub-model structures also reflect the available data collection tools and 
frequencies, e.g. whether the available weather data is based on 
continuous monitoring (Buonocore et al., 2022; Skobelev et al., 2022b) 

or annual statistics (Mongus et al., 2021).
Descriptive Models: Descriptive models (Fig. 8) in many cases form the 

foundational layer of digital twins. In most presented publications they 
summarise (Buonocore et al., 2022) and/or visualise (Gobeawan et al., 
2018) current system states based on the collected data. In forestry, 
agronomy and fauna modelling, descriptive models typically aim for 
(real-time) system monitoring, change detection and information 
retrieval, (Johannsen et al., 2021; Mishra and Sharma, 2023; Zhao et al., 
2022) with their outputs providing the baseline information required for 
these purposes. Moreover, those models assist with data exploration, 
decision-making and manual analysis of intervention needs (Mongus 
et al., 2021). These models output estimates of e.g. system processes or 
function, such as greenhouse gas exchange (Edemetti et al., 2022; Gar-
cía-Granja et al., 2020; Guo et al., 2022), current product states, such as 
tree or forest volumes (Buonocore et al., 2022) or honey in the beehive 
(Johannsen et al., 2021), developmental stages of crops (Skobelev et al., 
2022b), or system performance, such as energy efficiency (Purcell et al., 
2022). They may also be designed to output specific variables to support 
decision-making, e.g. tree health (Pusztai, 2021), forest canopy distance 
from powerlines (Mongus et al., 2021) or social behaviour of a fish 
(Joordens et al., 2019).

Detection Models: In digital twins, detection models facilitate (real- 
time) updates by identifying key system states. This supports in ensuring 
that the virtual counterpart – based on the provided data and depending 
on updating frequencies – remains dynamically aligned with the phys-
ical counterpart. Image analysis-based detection models are, among 
others, sub-models of descriptive models, detecting either the presence 

Fig. 8. Aspects of (sub-)models in the included publications, classified according to the type of data flow and synchronisation between the virtual and the physical 
(columns; for details of the classification, see Fig. 1), responsivity to accumulating system data (green topmost panel), model temporality (light blue bottom panel), 
and model aim (boxes within the light blue bottom panel). The diagram highlights three primary aims of these systems—descriptive, predictive, and pre-
scriptive—spanning from past to (alternative) futures.
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or location of species, phenomena of interest, such as individuals of 
production animals (Mishra and Sharma, 2023), animal or livestock 
herds (Majore, 2022), the presence of certain plant species (Chattoraj 
et al., 2022; Gobeawan et al., 2021) weeds, pathogens (Johannsen et al., 
2021), or e.g. indications of fire (Sanchez-Guzman et al., 2022). Sound 
analysis-based detection models are used to identify the presence of 
many animal species especially in the context of wildlife monitoring 
(Hudson-Smith et al., 2021).

Outputs of detection models are used to e.g. analyse animal behav-
ioural stages, stress levels (Mishra and Sharma, 2023), the onset of 
disease epidemics (Mishra and Sharma, 2023), vegetation coverage 
(Zhao et al., 2022) or species occurrence and distribution (Lu et al., 
2023; Purcell et al., 2022). Furthermore, those models estimate e.g. the 
expected production performance (Skobelev et al., 2022b), or suscep-
tibility to different environmental hazards (Majore, 2022; San-
chez-Guzman et al., 2022).

Models aiming for system monitoring and change detection also 
include blockchain technologies to track supply chains and to ensure e.g. 
the traceability of timber sources (Buonocore et al., 2022) or cattle 
illness (Mishra and Sharma, 2023). Moreover, descriptive models have 
been developed for management and planning assistance (Gobeawan 
et al., 2021; Shu et al., 2022) as well as for public education and 
outreach (Harrington et al., 2021). These models typically focus on the 
visualisation of system patterns and processes of interest (Harrington 
et al., 2021). Along with the progress of time, descriptive models pro-
duce a timeline of system states into the past (Harrington et al., 2021).

Predictive Models: Predictive models enhance digital twins by simu-
lating future states of the system. Predictive models (Fig. 8) are used to 
predict either system characteristics or outcomes at certain time points 
in the future. Examples include product yield at harvest (Edemetti et al., 
2022), the probability of e.g. a pathogen outbreak within a certain time 
interval (Johannsen et al., 2021), the timing of certain outcomes, such as 
agricultural product completion, or maintenance/pruning need 
(Edemetti et al., 2022; García-Granja et al., 2020), or the swarming in-
terval of bee colonies (Johannsen et al., 2021). Plant growth can be 
modelled using species-specific growth guidelines (Moin-E-Ddin 
Rezvani et al., 2021; Van Evert et al., 2023), and the structural growth of 
a plant can be simulated in space using procedural modelling methods 
(Gobeawan et al. 2018) such as pre-formulated l-system growth rules 
(Gobeawan et al., 2019). Corresponding data can be collected for pre-
dictive modelling of a dairy cow’s life cycle phases and structural 
development (Mishra and Sharma, 2023).

In the case of sparse or sporadic data collection frequencies, pre-
dictive models are being used to model the present system state based on 
data of past system states. Moreover, predictive temporal models are 
implemented to assess analytical scenarios, such as yield forecasting 
(Skobelev et al., 2020b) or animal activities (Mishra and Sharma, 2023), 
and intervention analysis (Fig. 8). These models achieve this by altering 
the input conditions from real ones, e.g. the harvesting cycle (Majore, 
2022; Moin-E-Ddin Rezvani et al., 2021) or the presence of other species 
(Joordens et al., 2019). These alternative futures can reflect the effects 
of human interventions or weather events (Skobelev et al., 2022a), for 
the purpose of analysing e.g. system resilience to extreme weather 
conditions (Sanchez-Guzman et al., 2022) or the outcomes of changed 
management (Majore, 2022).

Prescriptive Models: In digital twins, prescriptive models enable real- 
world interventions by generating actionable insights, which can be 
implemented through automated feedback loops to actuators or manual 
decision-making processes, ensuring the physical system adapts 
dynamically to changing conditions. Precision agriculture, Precision 
Livestock Farming (PLF) and other production-focused digital twins 
entail prescriptive (optimisation-calibration) models, where continu-
ously updating system data of the present system state are deployed to 
evaluate deviations from optimal conditions, e.g. of greenhouse climate 
or growth media (Moin-E-Ddin Rezvani et al., 2021), beehive humidity 
(Johannsen et al., 2021) or nutrient intake of animals (Mishra and 

Sharma, 2023). In some examples robots can then be engaged to auto-
matically modify the conditions of the agricultural system back to the 
desired optimal state, providing a two-way automated feedback loop 
between the physical and virtual systems (Skobelev et al., 2022b).

In precision agriculture, predictive and prescriptive models often 
incorporate elaborate species-specific growth models to simulate crop or 
timber growth (Buonocore et al., 2022; Skobelev et al., 2022b) or the 
upcoming animal behaviour (Mishra and Sharma, 2023). Growth 
models range from simple temporal models that lack interactions with 
any (spatially varying) environmental predictors, limiting their use to 
approximate future growth predictions (Luka and Guo, 2021), to highly 
sophisticated models incorporating e.g. genotype or phenotype effects 
(Skobelev et al., 2022b) or processes occurring at the level of plant 
structures (Moin-E-Ddin Rezvani et al., 2021; Shu et al., 2022; Skobelev 
et al., 2020b) or animal tissue (Mishra and Sharma, 2023).

3.4.3. (Multi) agent-based models
(Multi-) Agent-based models are employed in descriptive models to 

simulate the spatiotemporal patterns and interactions of individuals of 
reactive species, such as pollinator insects (Johannsen et al., 2021), 
(biomimetic robot) fish (Joordens et al., 2019), or as a sub-system for 
plant growth and development (Skobelev et al., 2022b). When 
agent-based models are used to visualise the presences and densities of 
species that are too abundant to be tracked on an individual level, the 
hypothetical movements and behaviours are simulated based on their 
tracked presences or densities (Mishra and Sharma, 2023). Additionally, 
agent-based models are employed in predictive models and scenario 
forecasting, e.g. to test the effects of alternative rules and regulations 
(Johannsen et al., 2021).

3.4.4. Visualisation models
Visualisation models are not always embedded in the digital twin, e. 

g. in applications where monitoring and interventions rely primarily on 
indicators (Mishra and Sharma, 2023). However, most digital twins 
include 2D or 3D visualisation models of the physical system, which 
serve as the basis for their representation in the digital twin’s user 
interface (Chattoraj et al., 2022; Edemetti et al., 2022; Pusztai, 2021; W. 
Zhang et al., 2022).

In some cases, visualisations are of avail to estimate other parameters 
of interest from point cloud data, such as tree species (Chattoraj et al., 
2022), basal area (Wang et al., 2022) or tree growth (Mongus et al., 
2021). Additionally, 3D visualisation models can act as key parts of 3D 
spatial analyses, e.g. in the case of estimation of green volume (W. Zhang 
et al., 2022), shadow casting (García-Granja et al., 2020), analysis of 
object interaction with buildings (Hofierka et al., 2017) or other objects 
(Mongus et al., 2021).

The current state-of-the-art for generating 3D tree models and spe-
cies identification from remote sensing data involves reconstructing 
trees from point clouds and photogrammetry using deep learning 
(Chattoraj et al., 2022; Guo et al., 2022; Lu et al., 2023; Pusztai, 2021; 
Shu et al., 2022). Manual 3D modelling by experts is also used, espe-
cially for game engine-based digital twins (Harrington et al., 2021; Lu 
et al., 2023). Additionally, 3D tree models in digital twins evolve over 
time based on data-driven growth models (Gobeawan et al., 2021, 2019, 
2018; Skobelev et al., 2020b).

3.4.5. Model fitting and validation
Mechanistic and Data-Driven Models: Mechanistic and data-driven 

models are commonly used in the reviewed literature for digital twin 
systems. Mechanistic models, such as those used for well-studied aspects 
of the modelled systems, e.g. crop growth, photosynthesis (Moin-E-Ddin 
Rezvani et al., 2021) or fish tail movement (Joordens et al., 2019), are 
frequently constructed with mathematical functions known to describe 
these phenomena. Digital twins also incorporate data-driven statistical 
models, fitted to data gathered either from the modelled physical or a 
similar well-studied system (Gobeawan et al., 2021, 2019, 2018). These 
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data-driven models include both state-based and process-based models 
(Buonocore et al., 2022). Despite advancements, existing mathematical 
models, including those based on differential equations, statistical data 
analysis from previous periods, and machine learning approaches, are 
currently unable to deliver highly accurate plans, e.g. agro-technical, for 
the entire vegetation period or reliable yield predictions. This challenge 
arises from the necessity for frequent model retraining, as a range of 
dynamic factors — such as global climate change, fertilizer application, 
plant protection products (PPP), and field management techniques — 
must be continuously accounted for (Skobelev et al., 2021).

Machine Learning (ML) and Artificial Intelligence (AI) Models: ML and 
AI models represent a specialised subset of data-driven models as they 
differ from traditional statistical models in their fitting methods and 
capabilities. For instance, supervised ML methods, such as artificial 
neural networks, require extensive labelled datasets but can generalise 
well to similar scenarios. Unsupervised and reinforcement learning 
techniques, on the other hand, can uncover hidden patterns or optimise 
decisions in less structured contexts. However, these methods also pose 
risks, such as overfitting to training data or producing results that lack 
interpretability, especially when domain knowledge is insufficiently 
integrated (Rebala et al., 2019). A diverse array of supervised and un-
supervised ML methods is used to accurately model phenomena, e.g. 
those that are non-linear or where understanding the causal relations of 
phenomena is not essential (Edemetti et al., 2022; Mishra and Sharma, 
2023; Skobelev et al., 2020a; Van Evert et al., 2023). Knowledge-driven 
ML is considered for phenomena where domain knowledge, e.g. proce-
dural rules and constraints could complement the ML approach 
(Chattoraj et al., 2022). ML methods include e.g. artificial and neural 
networks (Chattoraj et al., 2022; Mongus et al., 2021). Additionally, ML 
and AI models are increasingly used in predictive and prescriptive 
models.

3.4.6. Model responsivity
The responsivity of models to spatial aspects and temporal changes 

in physical systems varies across publications. Models in digital twins 
are commonly spatiotemporally explicit, providing different outcomes 
across space due to i.e. interactions with predefined environmental 
variables, such as local (micro-) climate (Knibbe et al., 2022; Skobelev 
et al., 2022a) soil characteristics (Knibbe et al., 2022; Mongus et al., 
2021; Skobelev et al., 2022b) or human interventions like pruning 
(Gobeawan et al., 2021).

However, the presented models are located differently on Kitzinger 
et al.’s (2018) classification of digital twins, i.e. whether their pre-
dictions are automatically updating based on changes in the physical 
system (Digital Model vs. Digital Shadows vs. Digital Twins). Automatic 
data collection and processing allows the building of “Smart 
Cyber-Physical Systems” (Skobelev et al., 2022a), “Smart Digital Twin of 
a Plant” (SDTP) (Skobelev et al., 2022b) or “Eco-Cyber-Physical Sys-
tems” (ECPS) (Majore, 2022), where also the models themselves are 
automatically calibrated (statistical models) or retrained ((Deep) Neural 
Networks) along with the accumulation of system data (Edemetti et al., 
2022; Johannsen et al., 2021). These models are not yet common in 
digital twins, as the development of those models is tightly tied to the 
advances of automatic data collection and processing. Furthermore, the 
development of AI and ML will support the development of self-learning 
models (Edemetti et al., 2022; Johannsen et al., 2021).

3.4.7. Model validation and calibration
Regular data collection from the physical counterpart enables 

ongoing model validation and calibration. This process enhances the 
accuracy and precision of models beyond their initial construction, 
which may be based on historical data (Knibbe et al., 2022). For 
instance, in the case of tree models, field observations are employed e.g. 
to validate the accuracy of detected risks (Mongus et al., 2021) and to 
calibrate growth predictions (Guo et al., 2022). Similarly, simulated fish 
behavioural patterns are validated against the behaviour of real-life fish 

in corresponding situations (Joordens et al., 2019). The availability of 
remote sensing data and IoT technologies holds potential for automated 
model adjustment, further enhancing model fidelity. However, the 
quality of data is hereby playing a crucial role, as models will only get as 
accurate as their weakest component. Deficits in input data appearing e. 
g. due to human error or technical shortcomings, impair the validation 
and calibration of the respective models and thereby the integrity of 
their outputs.

3.5. Actuators

Actuators, which automatically transfer outcomes from the digital to 
the physical world, are key components distinguishing digital twins 
from digital shadows (Kritzinger et al., 2018). However, only seven out 
of the 32 reviewed publications found with the search term “digital 
twin” and none of the articles found with “3D city model” address this 
aspect. All seven articles discussing actuators are from the field of 
agriculture. These publications are categorised into “Fauna” for live-
stock farming (Mishra and Sharma, 2023), “Controlled Environment 
Agronomy” (Knibbe et al., 2022), and “Open-Air Agronomy” (Edemetti 
et al., 2022; Majore, 2022; Skobelev et al., 2020a, 2020b; Van Evert 
et al., 2023).

Besides the benefits attributed to digital twins in general, in agri-
culture actuators hold potential for addressing challenges in geograph-
ically dispersed areas, increasing harvests, and improving animal 
welfare. Additionally, automated processes could reduce manual labour, 
freeing up time for other activities (Mishra and Sharma, 2023; Van Evert 
et al., 2023).

Actuation in digital and precision agriculture is exemplified by 
autonomous and unmanned machinery like precision planters, 
spreaders, sprayers, and fully autonomous tractors. However, limita-
tions lie in precision equipment accessibility (Van Evert et al., 2023).

In the case of the digital twins for harvest plants, e.g. tomato plants, 
high-level guidance on optimal setpoints, such as indoor temperature 
and pruning rates, is currently provided primarily through consultancy 
(Knibbe et al., 2022). However, there is potential for automatically 
relaying the provided decision advice to an actuator (Knibbe et al., 2022; 
Van Evert et al., 2023). To achieve fully automated control, decision 
support systems would require control algorithms to automatically 
calculate and onset the optimal management of inputs and actions 
(Knibbe et al., 2022).

Future research directions which are not detailed in the analysed 
literature include developing Eco-Cyber-Physical Systems (ECPS) 
(Majore, 2022), executive devices for intelligent cyber-physical systems 
that automate processes like plant growth management (Skobelev et al., 
2020a, 2020b), agricultural actuators in vineyards that receive in-
structions from the digital twin (Edemetti et al., 2022) and robots 
managing tasks without human intervention for livestock management 
and precision agriculture (Mishra and Sharma, 2023).

3.6. User experience

3.6.1. Representation
Although it is already possible today to fully automate the connec-

tion between the physical and virtual worlds via digital twins, human- 
computer interaction remains a critical aspect in the development and 
use of these digital replicas of flora and fauna. The representation and 
especially the visualisation of the underlying data and models is crucial 
for helping humans understand vast amounts of digital data, supporting 
analysis, informs decision-making and behaviours, and fosters data lit-
eracy (Gatto, 2015; Rist and Masoodian, 2022; Venkatraman and Ven-
katraman, 2019).

Representations of flora and fauna in digital twins serve various 
purposes, primarily aimed at "informing" in the broadest sense. This 
covers monitoring (Gobeawan et al., 2021; Hudson-Smith et al., 2021; 
Tanhuanpää, 2016), interpretating simulation outcomes (Purcell et al., 
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2022; Skobelev et al., 2020a), and providing information, recommen-
dations and data for the decision support (Fernández-Alvarado et al., 
2021; Klippel et al., 2021; Skobelev et al., 2020a). The most common 
form of representation is found to be in 2D maps or 3D, emphasising 
scientific modelling over photorealistic visualisation. For this purpose, 
e.g. dummy plants are associated with the plant specific information 
(Edemetti et al., 2022). However, photorealism is emphasised in specific 
applications like the virtual arboretum (Harrington et al., 2021) and the 
virtual scene construction of wetlands (Lu et al., 2023).

Besides the visual representation, Harrington et al. (2021) detail an 
additional modality in acoustic form, wherein an enhanced multimodal 
sensory experience, encompassing both visual and acoustic elements, is 
achieved. Their framework of high information fidelity enables the ac-
curate acoustic replication of the environment, e.g. specific insect and 
avian populations of each location and season. This approach enhances 
the accessibility of digital nature experiences for e.g. vision-impaired 
individuals. (Harrington et al., 2021)

3.6.2. Human-computer interaction
User interfaces form the point of human-computer interaction, rep-

resentation and communication for digital replicas. Hereby, poor us-
ability can compromise the value of a digital twin by reducing 
accessibility and practicality (Purcell et al., 2022). Most of the analysed 
literature does not detail user interfaces, often referring to them 
generally as platforms or interfaces (Edemetti et al., 2022). Skobelev 
et al. (2020a, 2022b) describe the development of a specialised user 
interface, encompassing an ontology editor, a digital twin editor and a 
multi-agent planning module for their developed SDTP (Smart Digital 
Twin of Plant). Purcell et al. (2022) propose an interface-driven design 
focusing on one standardised interface, which can be reused and 
extended with additional components. This approach simplifies the 
creation of new interface expansions or services for additional data 
sources or functionalities. Commonly used interfaces are Graphical User 
Interfaces (GUIs), 3D, and Spatial User Interfaces, e.g. for virtual city 
platforms (Gobeawan et al., 2019).

Common mediums for human-computer interaction include 
Extended Reality (XR), encompassing Augmented Reality (AR) and 
Virtual Reality (VR) accessed via Head Mounted Displays and controllers 
(Cirulis et al., 2022; Harrington et al., 2021; Joordens et al., 2019; 
Klippel et al., 2021; Lu et al., 2023). Additionally, Harrington et al. 
(2021) connect the VR headset to a treadmill to create a more realistic 
and immersive physical-virtual environment. Also Cave Automatic Vir-
tual Environment (CAVE) systems, equipped with motion tracking, offer 
immersive interaction (Lu et al., 2023). Other interaction mediums 
include PCs (Harrington et al., 2021) with e.g. web browsers (Lu et al., 
2023), web applications (Johannsen et al., 2021) and mobile devices 
such as phones (Skobelev et al., 2020a) or tablets (Cirulis et al., 2022).

The human-computer interaction primarily consists of three main 
parts: 

1. Data input: Users manually input data through tools like online 
documentation in web applications (Johannsen et al., 2021).

2. Virtual Interaction: Users interact with dynamic models and simu-
lations, involving movement in virtual environments (Edemetti 
et al., 2022; Harrington et al., 2021; Lu et al., 2023) or altering input 
variables like pasture and weather to e.g. test or forecast future states 
of the objects or systems (Purcell et al., 2022; Skobelev et al., 2020b) 
with real-time updates in the virtual counterparts (Cirulis et al., 
2022).

3. Action in Physical Counterpart: Users take action in the physical 
counterpart based on digital twin information, such as watering 
crops or feeding colonies. These changes can be manually or auto-
matically (re-) introduced into the digital twin (Johannsen et al., 
2021).

3.7. Ethical considerations

Ethical considerations are found in the field of digital twins of agri-
culture, addressing potential privacy breaches, technology reliability, 
and the possibility of their misuse (Mishra and Sharma, 2023; Van Evert 
et al., 2023). Further, Mishra and Sharma (2023) discuss concerns about 
technologies not aligning with animals’ best interests, potential harm to 
animals, and animals being used solely as data sources. Data-based de-
cision tools in farming raise ethical concerns, particularly regarding 
shifts in power dynamics between farmers and commercial actors. 
Often, the data generated are benefiting companies more than the 
farmers who provide it. Simultaneously, individual farmers may strug-
gle to make the necessary investments to fully benefit from these tools 
(Van Evert et al., 2023). Knibbe et al. (2022) refer to ethical aspects 
being discussed in Korenhof et al. (2021) and Van Der Burg et al. (2021).

An emphasis on sustainability and improvements of various aspects, 
as one of their digital twin development purposes was found in many of 
the selected publications. In agronomy, aspects such as resource con-
sumption e.g. water (Edemetti et al., 2022) are widely discussed. In this 
regard it is furthermore prompted that the environmental impacts, 
including the energy consumption of IT infrastructures and their carbon 
footprints, need further investigation (Stoll et al., 2019 as cited in 
Buonocore et al., 2022). The extent to which these concerns are driven 
by ethical, economic, or other considerations is unclear from the 
literature.

4. Discussion, future research directions and conclusion

The study of flora and fauna has evolved over centuries, leading to 
extensive knowledge on the topic. Simple models and simulations are 
being replaced by complex and highly sophisticated virtual represen-
tations which are offering rich, multifaceted insights into the in-
teractions between the biotic and further layers of the digital replicas. As 
technological advancements continue to accelerate, research in this area 
is evolving rapidly leading to increasingly heterogenous approaches 
across different disciplines and applications.

The horizontal, cross-sectoral view on flora and fauna modelling for 
digital twins allowed this review to highlight the diversity of approaches 
which are tailored to various developers, disciplines, user groups, and 
specific purposes, incorporating diverse data, developed and employed 
models, user experience methods, actuators and ethical considerations. 
Based on these findings, this review should be regarded as a compre-
hensive resource showcasing current methodologies and serving as a 
foundation for future advancements in the diverse fields of flora and 
fauna modelling in digital twins, rather than as an uniform framework to 
follow.

4.1. Limitations of this study

Only the scientific publications listed in the three databases Scopus, 
Web of Science and Google Scholar found with the search strings 
detailed in the Section 2.2 Definition of Keywords and Search Strings, 
are covered in this review. It is to be assumed that a more comprehensive 
perspective on the development of the dynamic modelling of flora and 
fauna in digital twins could have been gleaned from grey-literature in-
quiries and with the use of additional search terms. Specifically, for the 
dynamic modelling of fauna, search terms from domains such as agri-
culture, precision farming, livestock modelling, and aquaculture could 
provide further insights. Moreover, only studies with titles, abstracts, 
and full texts available in English were included in this review. While 
English is widely used in academic publications in this field, this crite-
rion may introduce a language bias by potentially excluding key studies 
published in other languages.
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4.2. Particular focus areas of fauna models for digital twins

As the systematic literature review approach used in this study 
resulted in an imbalance of articles for fauna and flora, this chapter 
discusses particular focus areas of fauna models in digital twins. To 
provide context and address gaps not fully covered in the reviewed 
literature, select examples from external sources are provided here.

4.2.1. Mobility
While many challenges of flora and fauna modelling for digital twins 

are similar, some key differences emerge between these two domains of 
modelling for digital twins. One critical distinction lies in the mobility of 
most animal species. Data collection for flora models often relies on 
remote sensing techniques such as LiDAR or multispectral imaging to 
capture data on plant structures and growth. In contrast, fauna models 
often incorporate the movement of either individuals or populations. 
This requir specific spatial data collection methods, such as the use of 
GPS collars for wildlife monitoring (De Koning, 2025) or fixed moni-
toring stations equipped with e.g. camera traps (Sharef et al., 2022) or 
RFID readers (Mishra and Sharma, 2023).

If digital twins rely on updating data to estimate population sizes or 
species compositions within defined areas, modelling challenges can 
arise due to the movement of new organisms into the area after the 
model has been defined. This issue is particularly pronounced in fauna 
models, where animal mobility introduces variability in shorter time 
scales respective to flora. For instance, Convolutional Neural Networks 
(CNNs) have been applied to classify species in camera trap images 
(Sharef et al., 2022), while machine learning models have been 
employed to analyse bird species from sound recordings, addressing the 
complexities of tracking highly mobile organisms (Ovaskainen et al., 
2024).

4.2.2. Responsiveness
Another key challenge of fauna modelling is related to the multiple 

types of animal responsiveness, which operate often on shorter time 
scales than vegetation dynamics. Fauna models may need to simulate 
dynamic physiological processes, sensory responses, cognition, and even 
emotions to replicate animal behaviour (Føre et al., 2024). Due to these 
multi-dimensional complexities, AI-driven frameworks are employed to 
model e.g. livestock behaviour (Neethirajan and Kemp, 2021; Tagarakis 
et al., 2024), fish feeding (Ubina et al., 2023), and the perception and 
feeding dynamics of dairy cows (Zhang et al., 2024).

4.2.3. 3D modelling
For digital twins that encompass 3D model representations of living 

organisms, 3D modelling approaches may diverge between flora and 
fauna digital twins. Whereas flora models focus particularly on the ac-
curate modelling of individual or species-specific structures and growth, 
fauna models may need to account also for the dynamic nature of animal 
responsivity and movement. This is exemplified by the models of tail 
movement to simulate the swimming dynamics of fish (Joordens et al., 
2019). The future opportunities of responsive fauna models are exem-
plified by the neuromechanical model of a fruit fly Drosophila mela-
nogaster (Lobato-Rios et al., 2022).

4.3. Research gaps and outlook

Despite the ongoing progress and due to the novelty of the field and 
its interdisciplinary nature, many research gaps remain unresolved and 
are only beginning to be explored. Our review identified several trends 
and challenges in the dynamic modelling of flora and fauna within 
digital twins, which are summarised into the following categories.

4.3.1. Insufficient understanding of fundamental details and potential 
knowledge generation

Despite extensive research, a key challenge remains in the limited 

understanding of interactions between flora, fauna, and their biotic and 
abiotic environments, such as plant growth (Skobelev et al., 2022a, 
2020b) and animal behaviour (Joordens et al., 2019). Improving the 
understanding of these biological and ecological processes, and inte-
grating them into dynamic models, will enhance accuracy and predic-
tive capabilities. At the same time, digital twins offer potential by 
enhancing knowledge generation. However, their utility in ecological 
applications will remain limited without a strong foundational under-
standing of the underlying biological and ecological processes, which is 
essential for improving models of biotic interactions in the environment.

4.3.2. Bottleneck: data
Diverse “Digital Twin Data” (Zhang et al., 2022a) is produced and 

used for dynamic modelling of flora and fauna as elaborated in chapter 
3.3 Data. Despite ongoing debates about the necessity of both – 
ground-based (Hudson-Smith et al., 2021) and SAAO data collection in 
form of UAVs (Edemetti et al., 2022), researchers still face challenges 
highlighted in chapter 3.3.4.

Data challenges are widely recognised as a critical bottleneck in the 
development of digital twins. Beyond the lack of accurate and available 
data, bias, interoperability, low operating frequencies of data collection 
and the inability to fully capture dynamic interactions, additional bar-
riers include data heterogeneity and diversity. Variability in spatial and 
temporal resolution, measurement methods, and data completeness on 
e.g. species occurrence and functional trait data, can hinder model 
integration and reliability. Addressing these issues requires besides 
standardised protocols, data harmonisation, also efforts to fill gaps in 
underrepresented regions and taxa.

Furthermore, data fusion, forming another data-related challenge 
itself, plays a pivotal role in overcoming data heterogeneity, which is 
being researched e.g. for digital twins in ecology (De Koning et al., 
2023). This process involves combining data, referred to as fusion data, 
see Supplement S2, from sensors (also referred to as sensor fusion), 
databases, and other sources to create a coherent and unified repre-
sentation. Robust data assimilation techniques are essential to address 
the inherent uncertainties in both the data and the mathematical 
models. Developing standardised and scalable approaches for data 
fusion and assimilation is crucial to enhance the reliability and accuracy 
of digital twins, particularly for achieving predictive and prescriptive 
functionalities. (Liu et al., 2018; Macías et al., 2024) Overcoming these 
challenges will pave the way for comprehensive monitoring of flora, 
fauna and their environments. This would allow for realistic digital 
replicas, continuous recalibration, precise prescriptive models and dig-
ital twins’ responsiveness to changes.

To get closer to this aim, on the one hand inaccuracies in data 
collection need to be addressed and the reliable methods and techniques 
for this made accessible to a broad audience. Guo et al. (2022) assert that 
manual data collection is losing attractivity. A shift in data collection 
methods – transitioning from manual to automated methods – is likewise 
presented in the literature beyond this SLR, such as in Tuia et al. (2022)
or Rozenstein et al. (2024). This shift in the data collection has the po-
tential to support overcoming mentioned shortcomings (Rozenstein 
et al., 2024; Tuia et al., 2022). Additionally, the listed shortcomings 
could be approached through the application of AI technologies, such as 
computer vision and other methods, enabling the automatic quantifi-
cation of properties from e.g. video footage and other comprehensive 
data sources. These advancements hold promise to facilitate the mining 
of previously uncollected data, higher accuracy, more frequent updates, 
scalability, cost efficiency, non-invasive monitoring, the discovery of 
hidden patterns, adaptability to new data, customisation and precision, 
automation of tedious tasks, and the integration of data from multiple 
sources.

Data availability could be leveraged by incentivised cross-domain 
data sharing and the application of FAIR (Findable, Accessible, Inter-
operable, Reusable) (Wilkinson et al., 2016) data principles. Van Evert 
et al. (2023) examines the EU Code of Conduct on agricultural data 
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sharing, suggesting that similar Codes of Conduct could help prevent 
only commercial actors from benefiting from data sharing. On the other 
hand, for the interoperability of data from various sources, data har-
monisation and adherence to standards is substantial.

4.3.3. Models becoming dynamic in nature
There is already a plethora of approaches to modelling flora and 

fauna across various domains. Traditional ecological modelling tech-
niques, such as agent-based and descriptive models, are prevalent and 
increasingly being coupled with ML and AI methods. Existing and 
established models could further evolve by integrating continuous data 
updates, becoming dynamic in nature, and connecting them to the 
digital twin concept. To drive actions in the physical counterpart, these 
models must also incorporate mechanisms for decision-making and 
actuation, enabling their outputs to influence real-world processes. Such 
developments enhance the accuracy and efficiency of the dynamic 
models, enabling them to shift from descriptive to prescriptive.

However, while the field of machine engineering is advancing 
rapidly, particularly in the digital twin sphere, it is essential to recognise 
the multifaceted intricacies of natural systems. Flora and fauna possess 
inherent complexities that distinguish them from machines. Over-
simplified models, especially in areas such as environmental sustain-
ability, food production, or those involving living organisms, can lead to 
unforeseen consequences if not carefully considered. Additionally, 
applying “Good Modeling Practices” (GMP) as outlined by Jakeman 
et al. (2024) helps to ensure that models are robust, transparent, 
adaptable, and reliable, enhances their accuracy, usability, and impact 
across diverse applications. This is particularly relevant, as the devel-
oped models may be influenced by human factors including e.g. biases 
and uncertainties (Jakeman et al., 2024).

Validation for digital twins is imperative but also uniquely chal-
lenging due to (real-time) data integration and the – where applicable – 
autonomous synchronisation with the real world. Key techniques 
include (dynamic) data validation, model validation, machine learning- 
based validations, feedback-loop validation, and scenario-based vali-
dation. (Hua et al., 2022; Mertens and Denil, 2024)

Additionally, model acceptance by practitioners is often hindered by 
a lack of trust and the complexity of models. Strengthening collabora-
tion between researchers, extension workers, and advisors and the 
application of GMPs is essential to maximise the benefits of data and 
modelling (Van Evert et al., 2023).

4.3.4. Enhancing interoperability, integration, standardisation and 
transferability

Interoperability between different databases, software, and digital 
twin instances is not yet fully established, necessitating the development 
of and adherence to standards and protocols. Implementing Minimal 
Interoperability Mechanisms (MIMs) (Ketzler et al., 2020) can help 
address this challenge. Additionally, Application Development Exten-
sions (ADE), such as those in CityGML (Vo et al., 2019), offer a prom-
ising approach for integrating flora (Petrova-Antonova et al., 2024) and 
fauna into existing standards, enabling the modelling of additional in-
formation. A modular approach to developing digital twins of flora and 
fauna would further enhance the transferability and adaptability of 
research. In some cases, the source-code is being made publicly avail-
able. Doing this in a systematic and formalised way also allows for 
traceability, validation, model auditing (Jakeman et al., 2024) and e.g. 
the adaptation and further development (Johannsen et al., 2021).

It is important to emphasise that interoperability or the sharing of the 
models between systems does not guarantee transferability to other 
contexts. Specifically, models being designed for particular contexts, e.g. 
geographic locations and environmental conditions, inherit limiting 
factors which cannot be transferred offhand.

To date, research on digital twins incorporating flora and fauna has, 
as stated for the agricultural sector by Purcell et al. (2022), largely 
focused on experimental feasibility, neglecting key design aspects like 

scalability, reusability, and simulation. As a result, many advanced 
digital twin examples lack clear, systematic design principles and 
essential functionality to ensure long-term value (Purcell et al., 2022). 
Additionally, there are no universally applied methods, standards, or 
guidelines for developing the software, software architecture and 
workflows of such (De Koning et al., 2023) which cause inconsistencies 
and hinder progress (Trantas et al., 2023).

Addressing these gaps and applying GMPs will further leverage the 
development of digital twins. However, future research should aim to 
prioritise the development of standardised methods and design frame-
works to address the burgeoning fragmentation of developments. 
Hereby the emphasis should lie on scalability, reusability, and simula-
tion, ensuring both the long-term value and broader adoption of digital 
twins of flora and fauna.

4.3.5. Accessibility and user experience
Digital twins were initially focused on accurate, data-driven and 

mechanistic models, but as their use expanded, the need for accessible, 
user-centred design has become paramount. Digital twins often 
encompass complex factual situations, data, and domain-specific models 
which are not directly accessible and interpretable for users with vary-
ing expertise levels. As a result, user experience (UX) plays a crucial role 
in helping users understand content and enabling evidence-based deci-
sion making across fields including agriculture, education and policy- 
making (Trantas et al., 2023). Developers must therefore elicit and 
capture stakeholder needs (Jakeman et al., 2024) and consider how 
output are visualised and interpreted by end-users (De Koning et al., 
2023). Digital twins involving sensitive information are typically 
restricted to expert groups. However, for broader outreach such as 
educational or participatory purposes, digital twins are increasingly 
being developed without access restrictions (Johannsen et al., 2021). 
Whether access is restricted or open, to make digital twins accessible and 
to foster active application of its users, a range of interfaces and devices 
are employed, as elaborated in Section 3.5.

While digital twins often are based on 2D and 3D visualisations 
(Chattoraj et al., 2022; Edemetti et al., 2022; Pusztai, 2021; Zhang et al., 
2022), current UX emphasises intuitive, multimodal interfaces, 
frequently incorporating VR/AR to simplify complex data (Deckert 
et al., 2020; Harrington et al., 2021). Moving forward, UX will prioritise 
inclusivity, with adaptive interfaces tailored to user roles and expertise. 
Enhanced multimodal interactions, e.g. voice and gesture control and 
biometric feedback along with collaborative, multi-user environments 
will create immersive experiences (Kern et al., 2022), benefiting appli-
cations like collaborative work, virtual testing and education. By 
lowering technical barriers and supporting personalisation, digital twins 
aim to engage broader audiences, making these tools valuable for both 
experts and the public across various fields.

To evaluate how well digital twin systems meet user needs, the User 
Experience–Digital Twin Maturity Model (UX-DTMM) has been devel-
oped. This framework is built on the five pillars of experience: visual 
understandability, usability, convenience, dependability, and delight 
factors. It can guide improvements by assigning maturity scores to these 
aspects, helping to optimise digital twin interfaces for better engage-
ment and functionality (Manickam et al., 2023).

4.3.6. Interdisciplinary synergy for advancing digital twins of flora and 
fauna

The future of this research relies on progress across various fields and 
close interdisciplinary collaboration. Integrating advancements from 
pioneering fields like ML and AI to applications will improve the pre-
cision of dynamic models for flora and fauna. Additionally, applying 
expertise from computer science, ecology, biology in domains like e.g. 
urban planning and agronomy is crucial to transcends isolated disci-
plines which is accelerating progress toward comprehensive solutions 
and can be seen as essential to address complex ecological and envi-
ronmental challenges arising in different domains.
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Moreover, leveraging diverse expertise, as e.g. from the examples 
showcased in this review, enables researchers to address knowledge 
gaps through cross-disciplinary collaboration, fostering a dynamic 
environment for the exchange and integration of ideas, methods and 
models.

4.3.7. Ethical considerations
Ethical considerations in digital twins, particularly in healthcare 

(Bruynseels et al., 2018; Popa et al., 2021), medicine (Braun, 2021), and 
the built environment (Ying et al., 2020), are well-established. However, 
this literature review reveals that ethical aspects of digital twins of flora 
and fauna have received less attention compared to other fields or 
technical aspects. Although ethical considerations are gradually gaining 
relevance in fields like agri-food (Van Der Burg et al., 2021), they are not 
commonly discussed within digital twins of flora and are sporadic in 
fauna. Especially within the living environment, addressing issues such 
as data privacy and potential misuse is essential to ensure ethical and 
future-proof applications. Tools like the Mepham’s Ethical Matrix for 
food and agriculture (Mepham et al., 2006; cited by Van Evert et al., 
2023) can support decision-makers assess the ethical acceptability and 
regulations of technologies. Given the nascent stage of digital twins of 
flora and fauna, everyone involved in the development of those tech-
nologies should proactively integrate societal values and ethical con-
siderations already early in the research and development phase.

Additionally, with the increasing application of digital twin tech-
nologies, these as a whole system as well as its discrete parts, become 
more prone to cyber threats with widespread consequences (Bissadu 
et al., 2024; Praharaj et al., 2024). Therefore, the need to efficiently 
develop and comprehensively employ cyber security measures should be 
seen as mandatory (Holmes et al., 2021).

4.3.8. Gradualism: from digital models to closed-loop digital twins
In most cases, digital twins are being developed incrementally, 

building upon existing models (Rolph et al., 2024). This development 
process typically follows a progression from digital models to digital 
shadows, and ultimately to autonomous digital twins. Such an approach 
allows for gradual integration of advanced capabilities, such as contin-
uous data updates and bidirectional interactions, enabling a systematic 
evolution towards complete mutual influence between the physical and 
digital counterparts.

To date, digital twins are still abstractions of the physical counter-
parts, and the full realisation of this concept, along with its inherent 
logical challenges, continues to be debated, e.g. for urban environments 
(Batty, 2018). The term “digital twin” is often applied broadly in the 
literature, encompassing systems with varying levels of capability - from 
integrating data at variable frequencies with models to fully autono-
mous, feedback-controlled cyber-physical systems. Systems that do not 
adhere to the strict definition of digital twins, particularly those lacking 
automated feedback between the digital and physical counterparts, are 
on one handmore accurately described as "digital shadows" 
(Botín-Sanabria et al., 2022; Kritzinger et al., 2018), "prototype digital 
twins"(Groeneveld et al., 2024; Khan et al., 2024; Lopez et al., 2020) or 
similar terms, as proposed by researchers. These distinctions help clarify 
the difference between systems with limited interaction and fully syn-
chronous digital twins that autonomously influence both – the physical 
and virtual counterparts, a hallmark of closed-loop digital twins. On the 
other hand, researchers such as Tagarakis et al. (2024) suggest 
sector-specific definitions for digital twins. While this approach provides 
contextual relevance, it also contributes to the fragmentation of research 
around the term "digital twin”.

Despite the potential for automated bi-directional information ex-
change, this capability level remains underexplored in current research. 
Notably, the agricultural sector being the only one discussing actuators 
in the reviewed literature, with e.g. precision agriculture (Van Evert 
et al., 2023) and ECPS (Majore, 2022), leads in fulfilling the closed-loop 
digital twin criteria. These forerunners provide inspiration for future 

development in e.g. urban and ecological applications, though not as a 
universal blueprint.

Regardless of the potential realisation of the digital twin concept, the 
necessity and appropriateness in every field is to be questioned. A 
nuanced, context-specific approach is essential, with digital shadows in 
some cases being more suitable given the current technological state. 
These tailored approaches ensure digital (twin) technologies are both 
practical and ethically sound across diverse fields.

4.3.9. Yet underexplored but big potential
This review has demonstrated that the digital twin concept is being 

developed and applied across diverse fields, including among others 
ecology, forestry, agronomy, livestock farming and urban sciences. 
These applications highlight the versatility and potential impact of 
integrating natural elements and environments into digital twins. Yet, 
compared to the rampant development, level of detail and application of 
the digital twin concept in human-made areas such as manufacturing 
(Semeraro et al., 2021; Tao et al., 2019), cities (Lei et al., 2023; Shahat 
et al., 2021), engineering (Jiang et al., 2021) and aerospace 
(Botín-Sanabria et al., 2022; Liu et al., 2021; Phanden et al., 2021), the 
digital twins of flora and fauna still remain significantly underexplored. 
However, the development of digital twins for flora and fauna is accel-
erating and is continuing to do so. Especially in ecology, publications 
such as from De Koning et al. (2023) and Trantas et al. (2023) give 
guidance and outlook to the future of digital twins in this field. Further, 
a multitude of theoretical frameworks, such as digital twins of forests 
(Buonocore et al., 2022) are currently being developed but are not yet 
fully implemented. Prototype digital twins, such as those developed 
within the BioDT project (BioDT, 2024) for e.g. invasive alien species 
(Khan et al., 2024) and the Digital Twin of the Earth (Bauer et al., 2021; 
Nativi et al., 2021) are currently being elaborated and tested. These 
theoretical frameworks and development suggestions are expected to be 
put into practice and tested soon and together with the already existing 
protype digital twins going to be refined based on real-world applica-
tion, feedback and new scientific insights.

Applying theoretical frameworks, refining prototypes, addressing 
the previously listed challenges and taking proactive steps toward 
overcoming them offer significant potential for advancing the inclusion 
of flora and fauna in digital twins. By doing so, this field is expected to 
make up leeway with the development of digital twins in the pioneering 
domains.

Ultimately, dynamic modelling of flora and fauna through digital 
twins offers a transformative approach to addressing complex challenges 
outlined in the introduction and advancing the United Nations Sus-
tainable Development Goals (SDGs). Future digital twins could enhance 
biodiversity monitoring and conservation (SDGs 14 and 15), enable 
precise predictions of climate change impacts (SDG 13), and optimise 
sustainable agricultural practices (SDG 2). Additionally, they could 
inform urban planning (SDG 11) by integrating natural habitats into city 
designs, promoting sustainable living environments and fostering more- 
than-human approaches to cities.
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simulators for inclusion and participation: broadening perspectives on accessible 
cities and public space. In: REAL CORP 2022: Mobility, Knowledge and Innovation 
Hubs in Urban and Regional Development: Proceedings of 27th International 
Conference on Urban Planning, Regional Development and Information Society =
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Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., 
McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., 
Whiting, P., Moher, D., 2021. The PRISMA 2020 statement: an updated guideline for 
reporting systematic reviews. Syst. Rev. 10, 89. https://doi.org/10.1186/s13643- 
021-01626-4.

Petrova-Antonova, D., Malinov, S., Mrosla, L., Petrov, A., 2024. Towards a conceptual 
model of CityGML 3.0 vegetation ADE. Int. Arch. Photogramm. Remote Sens. Spatial 
Inf. Sci. XLVIII-4/W10-2024, 155–161. https://doi.org/10.5194/isprs-archives- 
XLVIII-4-W10-2024-155-2024.

Phanden, R.K., Sharma, P., Dubey, A., 2021. A review on simulation in digital twin for 
aerospace, manufacturing and robotics. Mater. Today Proc. 38, 174–178. https:// 
doi.org/10.1016/j.matpr.2020.06.446.

Popa, E.O., Van Hilten, M., Oosterkamp, E., Bogaardt, M.-J., 2021. The use of digital 
twins in healthcare: socio-ethical benefits and socio-ethical risks. Life Sci. Soc. 
Policy. 17, 6. https://doi.org/10.1186/s40504-021-00113-x.

Praharaj, L., Gupta, D., Gupta, M., 2024. A lightweight edge-CNN-Transformer model for 
detecting coordinated cyber and digital twin attacks in cooperative smart farming. 
https://doi.org/10.48550/ARXIV.2411.14729.

Purcell, W., Klipic, A., Neubauer, T., 2022. A digital twin for grassland management. In: 
2022 International Conference on Electrical, Computer and Energy Technologies 
(ICECET). Presented at the 2022 International Conference on Electrical, Computer 
and Energy Technologies (ICECET). IEEE, Prague, Czech Republic, pp. 1–6. https:// 
doi.org/10.1109/ICECET55527.2022.9873446.

Purcell, W., Neubauer, T., 2023. Digital twins in agriculture: a state-of-the-art review. 
Smart Agric. Technol. 3, 100094. https://doi.org/10.1016/j.atech.2022.100094.

Pusztai, P., 2021. The advantage of point cloud derived tree modelling on urban greenery 
maintenance: shortlisting dangerous trees, assessing ecosystem services. A Master 
Thesis submitted for the Erasmus Mundus Joint Master Degree on Smart Cities and 
Communities (SMACCs) - University of Mons, Heriot Watt University, International 
Hellenic University, University of the Basque Country.

Pylianidis, C., Osinga, S., Athanasiadis, I.N., 2021. Introducing digital twins to 
agriculture. Comput. Electron. Agric. 184, 105942. https://doi.org/10.1016/j. 
compag.2020.105942.

Qian, C., Liu, X., Ripley, C., Qian, M., Liang, F., Yu, W., 2022. Digital twin—cyber replica 
of physical things: architecture, applications and future research directions. Future 
Internet. 14, 64. https://doi.org/10.3390/fi14020064.

Rebala, G., Ravi, A., Churiwala, S., 2019. An Introduction to Machine Learning. Springer, 
Cham. 

Rist, T., Masoodian, M., et al., 2022. Interactive map visualizations for supporting 
environmental sustainable development goals. In: Ardito, C., Lanzilotti, R., 
Malizia, A., Larusdottir, M., Spano, L.D., Campos, J., et al. (Eds.), Sense, Feel, Design. 
Springer International Publishing, Cham, pp. 36–46. https://doi.org/10.1007/978- 
3-030-98388-8_4. Lecture Notes in Computer Science. 

Rolph, S., Andrews, C., Carbone, D., Lopez Gordillo, J., Martinovič, T., Oostervink, N., 
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