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A B S T R A C T

In response to growing environmental concerns, this study explores the potential of polyamide 1010 (PA1010) 
and biochar biocomposites as a sustainable solution in polymer engineering. The research addresses the gap in 
reinforcing biocomposites with biochar, demonstrating enhanced physical properties and reduced environmental 
impact. Scanning electron microscopy (SEM) revealed excellent biochar dispersion and strong adhesion with the 
PA1010 matrix. Mechanical testing showed significant improvements, including a 44 % increase in tensile 
strength and a 110 % increase in tensile modulus. Thermal stability also improved, increasing decomposition 
temperature from 460 ◦C to 474 ◦C. Additionally, dynamic mechanical analysis (DMA) and rheology tests 
confirmed increased stiffness and flow resistance. Life cycle assessment (LCA) highlighted a 65 % reduction in 
carbon footprint, indicating the environmental benefits of these biocomposites. These findings position PA1010/ 
biochar biocomposites as promising materials for sustainable applications in engineering, particularly in in-
dustries seeking to reduce environmental impact while enhancing performance.

1. Introduction

Polyamides (PAs) are a versatile class of polymers known for their 
wide-ranging properties and applications. Their long-chain molecular 
structure, characterized by amide bonds, facilitates hydrogen bonding 
between polymer chains, enhancing crystallization. This unique mo-
lecular arrangement imparts high tensile strength, toughness, and flex-
ibility to PAs. Additionally, PAs exhibit excellent chemical resistance 
and low friction coefficients, making them suitable for demanding ap-
plications (Baniasadi et al., 2023b; Fu et al., 2020; Li et al., 2023; 
Madani et al., 2024). However, the widespread use of petroleum-based 
PAs presents significant environmental challenges. These include fossil 
resource depletion, the accumulation of non-biodegradable PA waste, 
and the release of harmful chemicals and microplastics during 

degradation. Additionally, since PA production relies on fossil fuels, it 
contributes to greenhouse gas (GHG) emissions, exacerbating climate 
change (Alijagic et al., 2024; Baniasadi et al., 2023c; Costamagna et al., 
2023).

Bio-based PAs have emerged as a promising alternative. Unlike their 
fossil-derived counterparts, bio-based PAs are produced from renewable 
biomass sources, such as castor oil, which is rich in ricinoleic acid—a 
key building block for bio-based PAs. These materials offer a more 
sustainable solution, reducing dependence on finite fossil fuels and 
mitigating GHG emissions (Mi et al., 2024; Zierdt et al., 2015). A notable 
example is PA1010, synthesized through polycondensation of castor oil 
derivatives: sebacic acid and 1,10-diaminodecane. PA1010 exhibits 
properties comparable to traditional PAs, including high strength, 
chemical resistance, and thermal stability, making it a viable option for 
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automotive, electronics, and consumer goods applications (Alijagic 
et al., 2024; Lu et al., 2017; Quiles-Carrillo et al., 2019).

Another strategy for reducing the environmental impact of plastics 
involves the integration of biochar. Biochar is a carbon-rich material 
resulting from the pyrolysis of biomass or organic waste such as agri-
cultural residues, wood chips, and municipal solid. The production of 
biochar leads to carbon sequestration by trapping CO2 within the ma-
terial matrix, resulting in environmental benefits (Arjona-Jaime et al., 
2024; Francis et al., 2023; Roy et al., 2025). Hence, Incorporating bio-
char into biocomposites can lower CO2 emissions, enhance mechanical 
properties, and promote circular economy principles by utilizing waste 
materials (Baniasadi et al., 2024; Kane et al., 2022; Phiri et al., 2023). 
However, a comprehensive life cycle assessment (LCA) is required to 
quantify these environmental benefits accurately.

While the environmental impact of biochar as a standalone material 
has been extensively studied (Azzi et al., 2021; Brassard et al., 2021; 
Matuštík et al., 2020; Peters et al., 2015), LCAs focusing on 
biochar-filled composites remain scarce. Only a handful of studies exist, 
including a comparative, cradle-to-grave LCA of talc- and 
biochar-reinforced polypropylene (PP) with a filler content of 30 wt% 
(Tadele et al., 2020), a cradle-to-grave LCA of laboratory-scale bio-
char/miscanthus fiber- and talc/colorant-reinforced PP (Roy et al., 
2020), followed by a cradle-to-gate LCA of recycled high-density poly-
ethylene (HDPE), virgin HDPE, polylactic acid (PLA), and poly-
hydroxybutyrate, reinforced with up to 40 wt% of biochar (Kane et al., 
2022). Furthermore, these papers were accompanied by a 
laboratory-scale cradle-to-gate LCA of a composite adsorbent made of 
pomace leaves-based biochar and plastic waste (Osman et al., 2022), as 
well as a review of the prospects of composites in the automotive in-
dustry, also including the use of biochar as a filler and the environmental 
impacts of these composites (Roy et al., 2019). Surprisingly, only one 
study quantified the environmental impact of bio-based polyamide 12 
(PA12) filled with biochar—derived either from cultivated biomass or 
waste streams (Baniasadi et al., 2024). Most LCA studies have focused on 
polyolefin matrices (Kane et al., 2022; Roy et al., 2020; Tadele et al., 
2020), with only one incorporating a bio-based PA. Additionally, bio-
char sources have primarily included Miscanthus grass (Roy et al., 2020; 
Tadele et al., 2020), forestry residues (Kane et al., 2022), pomace leaves 
(Osman et al., 2022), natural fibers (Roy et al., 2019), and wood chips 
(Baniasadi et al., 2024).

Notably, no LCA studies have specifically assessed the environmental 
impact of bio-based PA1010 composites, particularly those incorpo-
rating wood chip-derived biochar. This highlights a critical gap in the 
literature and underscores the need for further research on PA/biochar 
(bio)composites. Considering previous studies have primarily explored 
polyolefin-based biochar composites, our research focuses on a renew-
able, bio-based PA1010 matrix reinforced with wood chip-derived bio-
char. This innovative material combination enhances sustainability 
while also providing valuable insights into the performance-to- 
environmental impact trade-offs. By conducting a comprehensive 
cradle-to-gate LCA, our study bridges a significant knowledge gap, of-
fering a more sustainable and high-performance alternative for future 
biocomposites.

2. Experiments and methodology

2.1. Materials

PA1010 plastic granules were procured from Arkema, France, while 
the wood chips – sourced from pine – were purchased from a local 
supplier in Finland.

2.2. Preparation of biochar

The wood chips underwent pyrolysis at 550 ◦C under a nitrogen at-
mosphere using a furnace (Nabertherm tube furnace model RHTH 

80–300/16). The heating rate was maintained at 5 ◦C/min, and the 
sample was isothermally held at 550 ◦C for 2 h. Subsequently, the 
resulting pyrolyzed sample, termed biochar, was milled using a plane-
tary ball mill (Fritsch Pulverisette 6 Ball Mill) and sieved through a 70 
μm sieve prior to compounding with the PA1010 granules.

2.3. Melt compounding and injection molding

Various concentrations of biochar were melt blended with the 
PA1010 granules by employing a counter-rotating twin extruder (Lab-
tech Extruder model LTE 20–44). The extruder featured five heating 
zones with temperature profiles set at 220 ◦C, 230 ◦C, 240 ◦C, 240 ◦C, 
and 240 ◦C, respectively, while the screw speed was fixed at 50 rpm. The 
estimated shear rate within the extruder ranged between 100 and 300 
s−1, depending on biochar concentration. The average residence time in 
the extruder was approximately 2–3 min, ensuring adequate dispersion 
of biochar without significant thermal degradation. Subsequently, the 
resulting compounds were pelletized into granules. The mass ratios of 
the PA1010 granules and biochar in the biocomposites were varied as 
100/0, 90/10, 70/30, and 50/50, with the corresponding samples 
designated as PA1010, PA1010-BC10, PA1010-BC30, and PA1010- 
BC50, respectively. The digital images of the injection-molded PA1010 
and PA1010-BC50 are shown in Fig. S1. The selected biochar concen-
trations (10 %, 30 %, and 50 %) were chosen to systematically investi-
gate the structure-property correlations, representing low, medium, and 
high filler loadings. Noteworthily, it was not feasible to test higher 
concentrations of biochar due to the material’s hardness, which posed 
constraints on the extrusion process. Specifically, attempts to incorpo-
rate biochar beyond 50 % were unsuccessful, as the twin-screw extruder 
immediately reached its maximum torque, causing the motors to stop 
automatically. This limitation prevented the homogeneous mixing of 
higher biochar contents, further reinforcing the chosen concentration 
range.

The composite granules were then fed into an injection molding 
machine (Engel ES 200/40) to fabricate specimens (conforming to ISO 
527, specimen type 1A) for tensile and impact assessments. All the 
heating zones were set at 230 ◦C with a dosing speed of 50 % and a 
counter pressure of 7 bar. An injection speed of 75 mm/s was utilized 
during the injection phase with a mold temperature of 40 ◦C, which was 
followed by an after-pressure phase of 45 bar for 20 s.

2.4. Life cycle assessment

2.4.1. Goal and scope definition
The primary objective of the present cradle-to-gate LCA was to 

comprehensively evaluate the diverse environmental impacts regarding 
bio-based materials, as well as to pinpoint the critical areas of concern 
associated with the newly developed PA1010/biochar biocomposites by 
following the methodological guidelines outlined in ISO 14040:2006 
and 14044:2006 (Baniasadi et al., 2025a) standards. This acquired in-
formation could further optimize the current laboratory-scale processes 
and possibly be used as ex-ante LCA. The utilization of ex-ante LCA would 
help to gain a more accurate understanding of the PA1010/biochar 
biocomposites on the industrial scale (Äkräs et al., 2024; Piccinno et al., 
2015) when the utilized technologies have become mature (Baniasadi 
et al., 2025b; Cucurachi et al., 2018).

The functional unit for the LCA was defined as a mass-based 1 kg of 
biocomposite granules. The study also considered the first half of the life 
cycle of biocomposites, from the cultivation of biomass to its further 
processing and conversion into industrially produced raw materials: 
castor beans, PA1010 granules, and wood chips. The transportation of 
these raw materials and the laboratory-scale manufacturing of PA1010/ 
biochar biocomposite granules were also included within the system 
boundaries (Fig. 1). Nonetheless, the use and End-of-Life (EoL) phases 
were excluded from the system boundaries since the biocomposites are 
still at their early development stage, can still be used for further 
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production as input materials, and have not yet solidly defined appli-
cations or experimentally explored EoL pathways. Additionally, 
combining industrial-scale EoL pathways with laboratory-scale bio-
composites could have derived misleading results and conclusions. The 
selected cradle-to-gate approach is viable, and it has previously been 
employed by Piccinno et al. (2015) and Röder et al. (2022). Further-
more, injection molding was omitted from the system boundaries since it 
was used as a characterization method instead of a synthesis method. 
Concurrently, the selection of laboratory scale for the present LCA was 
reasoned by the objective of the study, namely the early-stage devel-
opment of the biocomposites and the complexity of a theoretical scaling 
up in the absence of suitable frameworks.

The primary geographical focus of the study was Finland. Never-
theless, India and France were considered for the cultivation of castor 
beans and the production of PA1010 granules, respectively. The target 
audience for this study was carefully chosen to include scholars, poli-
cymakers, and industrial stakeholders involved in the exploration and 
implementation of innovative and potentially more sustainable material 
alternatives. Lastly, the comparison of the acquired LCIA results to the 
ones of commercial fossil-based plastics and the laboratory-scale com-
posites, available in the reports of PlasticsEurope and literature 
(Piccinno et al., 2016), was omitted from the study due to the different 
methodological decisions between the studies and the limited number of 
comparable impact categories. However, the LCIA results of the 
PA1010/biochar biocomposites were directly compared with the 
selected commercial and sustainable composites, along with a set of 
polyamide-based composites at their early stage of development.

2.4.2. Life cycle inventory (LCI)
The LCI utilized in the present LCA draws upon primary, secondary, 

and tertiary data sources. Specifically, LCI data for the laboratory-scale 
processes of pyrolysis, milling, extrusion, and pelletizing were gathered 
during the experimental procedures and supplemented by literature 
values, calculations, and/or assumptions (Equations S1-S3). Addition-
ally, these data were enriched with auxiliary process datasets available 
in Sphera Solutions GmbH’s Managed LCA Content (MLC) 2023.2 da-
tabases (Sphera, 2024a) within the LCA for Experts (LCA FE) software 
(Sphera, 2024b). Similarly, the LCI data about the acquisition and pro-
cessing of castor beans and PA1010 granules were purchased from 
Sphera Solutions GmbH, whilst the information required to model the 
production of wood chips was extracted from the Sphera Solution 
GmbH’s MLC 2023.2 databases. Conversely, the transportation of raw 

materials to Aalto University, where the study was conducted, relied 
mainly on assumptions derived from relevant websites, such as Google 
Maps, Fluent Cargo, and SeaRates, along with the auxiliary process 
datasets obtained from the Sphera’s MLC 2023.2 databases. A compre-
hensive compilation of all the LCI data and auxiliary process datasets 
utilized is presented in Tables S1–S7 and Tables S8-S11, respectively. It 
is worth noting that the purchased datasets have been excluded from 
these tables due to their commercial origin and in adherence to the 
guidelines established by Sphera Solutions GmbH.

2.4.3. Data and modeling assumptions
Several assumptions were made when constructing the LCI and 

modeling the system boundaries. Initially, the power of the pyrolysis 
furnace and extruder was estimated based on the findings reported by 
Hopkinson et al. (2011), incorporating a reduction factor of 33 % 
derived from the oven (a proxy equipment for the pyrolysis chamber and 
extruder). By utilizing the oven as the proxy equipment, a more realistic 
assessment of the electricity consumption for the pyrolysis chamber and 
extruder was obtained. Furthermore, the resulting electricity values 
from the pyrolysis and extrusion processes were cross-referenced with 
literature data, yielding a consistent outcome of the same order of 
magnitude, i.e., 2 kWh/kg for both processes (Njobet, 2012; Tadele 
et al., 2020). Similarly, the electricity consumption of the pellet-
izer/milling equipment was calculated based on the equipment’s power 
and usage time (Ang et al., 2020). Nonetheless, estimations were made 
for power and usage time values in instances of missing data or when 
there was a need to ascertain actual equipment usage.

A literature value for cooling water of an industrial extruder was 
used as an estimate for one of the laboratory-scale extruders of the 
present LCA (Maga et al., 2019). The utilized value is comparable with 
the value of solvents in a previous laboratory-scale LCA study (Iliescu, 
2023). Negligible amounts of waste or substance residues generated 
during the laboratory experiments, along with the potential cleaning 
water and typical co-products of biochar (specifically, bio-oil and syn-
gas), were excluded from the LCI. The latter was due to the collection of 
syngas with the nitrogen flow and the absence of bio-oil formation 
during the pyrolysis process. Furthermore, the composition of carbon, 
nitrogen, and oxygen in biochar needed to be partly approximated as a 
base for further calculations, while the German process for PA1010 
granules was utilized in LCA FE due to the lack of a French version. 
Lastly, the transport distances and points of arrival and departure, 
although selected based on available information and logical reasoning, 

Fig. 1. A simplified scheme representing the cradle-to-gate system boundaries used for the LCA. The small colored shapes represent the different unit processes, 
while the arrows stand for the main mass flows between these processes, and – finally – the dashed line delimits the whole system under analysis. Transportation of 
raw materials is not depicted in this scheme.
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were regarded as assumptions rather than incontrovertible data.

2.4.4. Sensitivity analysis
Sensitivity analysis was an essential aspect of the present study, 

assessing the uncertainty associated with the data and modeling de-
cisions. Notably, the analysis identified electricity usage as the primary 
contributor to the environmental burdens across all the laboratory-scale 
processes. Consequently, a sensitivity analysis scenario (denoted as SA1) 
was implemented, utilizing global green electricity, to provide insight 
into the potential mitigation strategies and their impact on the final 
results. Nonetheless, the purchased datasets from Sphera or the process 
for wood chips could not be modified upon modeling, which is why 
green electricity was only used for the laboratory-scale processes in SA1.

2.4.5. Life cycle impact assessment (LCIA)
Sphera’s LCA FE software served as the platform for conducting the 

LCA presented in this paper. The LCIA method employed was EF 3.1, 
which enabled the quantification of the diverse environmental impacts 
associated with the PA1010/biochar biocomposite granules. Within LCA 
FE, the selected impact categories included carbon footprint, acidifica-
tion, eutrophication (terrestrial, freshwater, and marine), and land use. 
Furthermore, the sequestered CO2 in biochar was calculated by using 
Equation (1), which was formulated based on the work of Kane et al. 
(2022). A more detailed explanation of calculating the amount of 
sequestered CO2 in biochar is available in Equations S4-S7 and 
Table S12.  

Here, M(Cbiochar) and M(biochar) denote the molecular weight of carbon 
in biochar and biochar itself, respectively, in grams per mole (g/mol), 
while m(biocharbiocomposite) represents the carbon content of biochar in kg 
for 1 kg of biocomposite granules.

2.5. Characterization methods

2.5.1. Fourier transform infrared spectroscopy (FTIR)
The functional groups of the biochar, PA1010, and their corre-

sponding biocomposites were analyzed by using FTIR with an ATR de-
vice, performed on a PerkinElmer FTIR. The wavenumber range was set 
between 4000 cm−1 and 500 cm−1, with a resolution of 4 cm−1 and 16 
scans per measurement. Before the measurements, the background was 
also scanned using the same parameters. The integral areas of the peaks 
at 3299 cm−1 (A1) and 1633 cm−1 (A2) were used to calculate the 
hydrogen bonding index (HBI) according to Equation (2) (Baniasadi 
et al., 2023a). 

HBI =
A1

A2
(2) 

2.5.2. Scanning electron microscopy (SEM)
The morphology of the biochar, PA1010 granules, and biocomposites 

was examined by using SEM images obtained with the Zeiss Sigma VP 
device. All samples underwent a thin coating (~4 nm) of gold-palladium 
prior to imaging at an operating voltage of 2 kV. Additionally, elemental 
composition analysis was performed using X-ray spectroscopy (EDX) to 
complement the SEM observations.

2.5.3. Characterization of crystallinity
The crystallinity of the biocomposites was determined through DSC 

conducted on the TA Instruments Discovery DSC model 250 Auto. 
Approximately 5 mg of each sample was sealed within a Tzero 
aluminum pan and subjected to two heating and cooling cycles under a 
nitrogen atmosphere. With a fixed heating and cooling rate of 10 ◦C/ 
min, the temperature range spanned from 0 ◦C to 250 ◦C. The second 
heating and cooling cycles were utilized to extract the key parameters, 
such as melting (Tm) and crystallization (Tc) temperatures, as well as 
melting (ΔHm) and crystallization (ΔHc) enthalpies. The melting 
enthalpy (ΔHm) was subsequently employed to calculate crystallinity 
(χc) by using Equation (3), where ΔH0

m represents the melting crystal-
lization of 100 % crystalline PA1010 (i.e., 244 J/g (Hernández-García 
et al., 2023)), and x denotes the fraction of biochar in the sample. 

χc(%) =
ΔHm

ΔH0
m(1 − x)

× 100 (3) 

The crystallinity of the samples was additionally examined by using 
X-ray diffraction (XRD) on the PANalytical X’Pert MPD Alpha 1 system 
from the Netherlands. Data were collected over an angular range of 
5–40◦ (2θ) with an operating voltage of 45 kV and a current of 40 mA, 
employing X-ray radiation at a wavelength of 1.54 Å.

2.5.4. Thermogravimetric analysis (TGA)
The thermal decomposition behavior of the developed biocomposites 

was investigated under a nitrogen atmosphere by using TGA performed 
on a TA Instruments model TGA 5500. The samples were initially 
equilibrated at 30 ◦C before being heated to 800 ◦C at a rate of 10 ◦C/ 

min. Thermal decomposition temperatures, including 5 % and 10 %, and 
maximum decomposition temperatures (T5 %, T10 %, Tmax), as well as 
residue at 800 ◦C, were extracted and analyzed from the TGA and de-
rivative thermogravimetric (DTG) curves.

2.5.5. Evaluation of mechanical properties
The tensile properties of the biocomposites were evaluated through 

tensile testing performed on a Universal Tester Instron device model 
4204 by following the ASTM D638 standards. Conditioning for 48 h at 
23 ◦C and 55 % relative humidity preceded the measurements. Tensile 
modulus, tensile strength, and tensile strain data were extracted and 
analyzed from typical stress-strain curves. Additionally, a three-point 
bending test was performed on a specimen measuring 125 mm × 13 
mm × 3 mm following the ASTM D790 standards to ascertain its flexural 
properties. Moreover, the impact strength was measured based on ASTM 
D256 by using the Izod impact strength test with a 1 J hammer after 
machining a V-shape notch with a depth of 1.2 mm on the sample. 
Multiple measurements (at least three replicates) were conducted for 
each sample to ensure statistical relevance. The statistical analysis of the 
mechanical properties, including ANOVA, was performed with a p-value 
less than 0.05, indicating the statistical significance of the results.

2.5.6. Dynamic mechanical analysis
The dynamic mechanical properties were also assessed by using a TA 

Instruments device model Q800 under a multi-frequency-strain pro-
cedure mode. Strip-shaped biocomposite samples were clamped in the 
device, while preload, strain, and frequency were set at 1 N, 1 %, and 1 
Hz, respectively. The temperature ramped from 0 ◦C to 200 ◦C at a 
heating rate of 5 ◦C/min, and trends of storage modulus (E′) and tan δ 
versus temperature were analyzed.

CO2(biochar) =
M(Cbiochar)

M(biochar)
x m

(
biocharbiocomposite

)
x

1 mol C
12 kg C

x
1 mol CO2

1 mol C
x

44 kg CO2

1 mol CO2
(1) 
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2.5.7. Characterization of rheology
The rheology characteristics of the biocomposites were studied at 

230 ◦C by using an Anton Paar Physica rheometer model MCR 301. A 
strain sweep test was first conducted across the range of 0.01 %–100 % 
at a constant angular frequency of 10 rad/s to identify the linear 
viscoelastic region. Subsequently, a frequency sweep test was carried 
out at a fixed shear strain rate of 1 %, with the angular frequency ramped 
logarithmically from 0.01 rad/s to 628 rad/s. Complex viscosity (|η*|), 
storage modulus (G′), and loss modulus (G″) behaviors were also inves-
tigated based on the results obtained from the frequency sweep test.

3. Results and discussion

3.1. Characterization of biocomposites

3.1.1. FTIR spectroscopic analysis
FTIR spectroscopy was employed to study the functional groups and 

structural characteristics of biochar, PA1010, and the corresponding 
biocomposites. The results are provided in Fig. 2a. The FTIR spectrum of 
PA1010 prominently featured several key peaks confirming the presence 
of polyamide functionality (Baniasadi et al., 2021a; Baniasadi and 
Seppälä, 2021): a broad peak around 3300 cm−1, indicating N-H 
stretching vibrations associated with the amide groups; a strong peak at 
approximately 1640 cm−1, corresponding to C=O stretching vibrations 
in the amide linkages; a peak near 1540 cm−1, attributed to N-H bending 
and C-N stretching vibrations; and a peak around 1230 cm−1, related to 
C-N stretching within the polyamide backbone. In contrast, the FTIR 
spectrum of biochar showed a reduction or absence of characteristic 
peaks of the original wood, reflecting the substantial volatilization of 
organic matter during the carbonization process. For the PA1010/bio-
char biocomposites, the FTIR spectrum generally retained the charac-
teristic peaks of PA1010 but exhibited variations in intensity and slight 
shifts. These changes are attributed to the interaction between PA1010 
and biochar, which may alter the spectral features.

The HBI values, calculated using Equation (2), are summarized in 
Fig. 2b. The incorporation of biochar initially increased the HBI, sug-
gesting enhanced hydrogen bonding interactions and potentially 
improved material cohesion or biocomposite properties. However, the 
HBI slightly decreased in the biocomposites with the highest biochar 
content, such as PA1010-BC50. This reduction indicates a decrease in 
hydrogen bonding strength, which may be due to the disruption of the 
polyamide matrix by the high concentration of biochar particles. Such 
interference could disrupt the hydrogen bonding network and diminish 
overall bonding efficiency.

3.1.2. Microstructure of biocomposites
It is widely recognized that filler dispersion and filler-polymer 

interfacial interaction are critical determinants influencing the proper-
ties of the resulting composites (Alghyamah et al., 2021). Consequently, 
SEM images were employed to examine the degree of biochar dispersion 
and the interface quality between biochar and the PA1010 matrix, 
aiming to assess factors like adhesion and interlocking, which directly 
influence load transfer and mechanical performance. The SEM micro-
graphs of biochar, pure PA1010, and the developed biocomposites are 
provided in Fig. 3. Biochar particles (Fig. 3a) exhibited a random shape 
morphology, with most particles ranging from thin sheets to irregularly 
shaped chunks, aligning with the reported morphologies for pyrolyzed 
softwood prepared with similar carbonization processes (George et al., 
2019; Mohammed et al., 2022). As anticipated, the particles were less 
than 70 μm, consistent with the size of the sieve used for sieving the 
milled biochar particles. Upon magnification (Fig. 3b), surface 
micro-sized pores were apparent on the carbon surface, likely formed 
during the carbonization process. These pores enhanced the biochar’s 
surface area, facilitating increased interaction and improving adhesion 
between the biochar and the polymer matrix. This enhancement 
contributed to increased mechanical strength and durability of the 
biocomposites.

Consequently, the morphology of the resulting biocomposites was 
inspected by SEM images to assess the interaction quality between the 
PA1010 matrix and biochar particles and to monitor the filler dispersion 
levels in the matrix. Pure PA1010 (Fig. 3c) exhibited a relatively smooth 
and flat fracture surface with limited plastic deformation. In contrast, 
biocomposite samples containing biochar (Fig. 3d–f) displayed notably 
different fracture surface morphology. Specifically, regions with 
increased roughness and irregularities were observed, particularly 
where biochar particles were covered by the polymer matrix. Notably, 
upon increasing biochar content, the fillers were more and more uni-
formly dispersed throughout the matrix without any indications of 
particle agglomeration, pull-out, debonding, crack formation, or phase 
separation. These observations signify excellent compatibility and 
interface adhesion between the components, as well as appropriate 
bonding between the PA chains and biochar particles. This phenomenon 
can be attributed to the large surface area and porous structure of the 
prepared biochar, a characteristic also supported by the findings of other 
research groups (Alghyamah et al., 2021; Das et al., 2021; Sobhan et al., 
2021). Remarkably, no compatibilizer was employed to enhance 
filler-polymer interfacial bonding, affirming that the observed trend of 
enhanced interface quality is solely due to the inherent characteristics of 
biochar. The failure mode appeared to be ductile, with good adhesion 
and dispersion of biochar particles, contributing to improved mechani-
cal performance.

Fig. 2. (a) FTIR spectra and (b) HBI analysis of PA1010 and its corresponding biocomposites.
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To further support these findings, EDX analysis was conducted to 
examine the elemental distribution in the composites. Fig. 3g presents 
the elemental mapping of carbon and oxygen in PA1010, biochar, and 
their composites, while the elemental quantification is provided in 
Fig. S2. As expected, pure PA1010 exhibited a lower carbon content 
(~71 %) compared to biochar (~92 %), which is highly carbonaceous. 
Upon increasing biochar content in the biocomposites, the carbon con-
centration increased systematically (73.2 %, 77.6 %, and 82 % for 
PA1010-BC10, PA1010-BC30, and PA1010-BC50, respectively), align-
ing well with theoretical predictions. The corresponding oxygen content 
decreased accordingly (from 9.5 % in pure PA1010 to 9.25 %, 8.75 %, 
and 8.25 % in the respective composites), reinforcing the successful 
integration of biochar within the polymer matrix. The homogeneous 
distribution of carbon and oxygen in the EDX maps further confirms the 
excellent dispersion of biochar throughout the PA1010 matrix without 
significant agglomeration.

3.1.3. Mechanical properties
The mechanical properties of composites play a pivotal role in 

determining their suitability and performance across various practical 
applications. Therefore, the tensile properties, bending performance, 
and impact strength of the PA1010 and corresponding biocomposites 
were measured and discussed, with the results illustrated in Fig. 4. Pure 
PA1010 demonstrated high elongation (240 %), with a tensile strength 
of 38.5 ± 2.5 MPa and a tensile modulus of 1015 ± 40 MPa, consistent 
with the literature for pure PA1010 (Hernández-García et al., 2023; Lu 
et al., 2017). The addition of biochar particles improved both tensile 
strength and modulus while reducing elongation at break. In the bio-
composite with the highest biochar content (PA1010-BC50), the tensile 
modulus and strength increased to 2150 ± 40 MPa and 55.5 ± 3.2 MPa, 

respectively, reflecting a 110 % and 44 % improvement over the pure 
matrix. However, elongation at break dropped to 6 %.

These results show that biochar particles reinforced the bio-
composite, enhancing tensile strength and modulus. Biochar’s high 
stiffness and strength properties, when uniformly dispersed within the 
polymer matrix, act as a filler material, reinforcing the matrix and 
resisting deformation under tensile stress. This increases both tensile 
strength and modulus. However, elongation at break decreased due to 
biochar’s rigidity, which restricts polymer chain mobility and limits 
elongation under stress. Additionally, biochar’s particle size and 
porosity can cause localized stress concentrations, leading to premature 
failure and reduced ductility. This phenomenon is common in reinforced 
composites, where the reinforcing agents limit plastic deformation 
(Abidnejad et al., 2025; Fazeli et al., 2024; Raja et al., 2024; Raja and 
Devarajan, 2025). Furthermore, biochar may interfere with crystalliza-
tion, making the material less ductile overall.

Other studies have reported similar findings. Rajendran et al. (2024)
observed a notable increase in the tensile strength of polyester com-
posites filled with biochar. Similarly, Koriema et al. (Koriem et al., 2023) 
noted a significant enhancement in the tensile strength of nitrile buta-
diene rubber (NBR) composites due to increased hydrogen bonding 
between carbonyl groups in the NBR compounds. Additionally, a 
considerable increase in tensile modulus was reported for the epoxy 
resin filled with biochar derived from maple trees (Giorcelli et al., 2019). 
It has also been confirmed that increasing biochar filler loading en-
hances the stiffness of the PLA composites (Mozrall et al., 2023; Zhang 
et al., 2023).

A three-point bending test was conducted to evaluate the bio-
composites’ stiffness and strength further. Results, shown in Fig. 4b, 
reveal significant improvements in flexural modulus and strength with 

Fig. 3. (a) and (b) SEM images from the surface of biochar. SEM images from the cryofracture surface area of (c) PA1010, d) PA1010-BC10, (e) PA1010-BC30, and (f) 
PA1010-BC50. (g) Energy-dispersive X-ray spectroscopy (EDX) elemental mapping in PA1010, biochar, and PA1010-biochar composites.
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increasing biochar loading. Specifically, the flexural strength increased 
from 40.5 ± 1.1 MPa in PA1010 to 73.8 ± 2.0 MPa in PA1010-BC50, 
while the flexural modulus rose from 760 ± 20 MPa to 2050 ± 35 
MPa. These improvements can be attributed to biochar’s reinforcement 
properties, its uniform dispersion within the PA1010 matrix, and its 
ability to enhance stress distribution during bending. Biochar’s high 
aspect ratio and surface area facilitate strong bonding with the polymer 
matrix, improving stress transfer and enhancing mechanical properties 
(Cho et al., 2021; Rong et al., 2023). These improvements suggest that 
PA1010/biochar biocomposites are promising for load-bearing appli-
cations (Shahnaz et al., 2024).

Finally, an impact test was performed to assess the material’s energy 
absorption capacity, reflecting its toughness. The results, shown in 
Fig. 4c, indicate that pure PA1010 exhibited the highest impact strength 
at 7.3 ± 0.5 kJ/m2. In contrast, the impact strength of the biochar- 
containing biocomposites decreased, with PA1010-BC50 showing a 
reduction to 3.6 ± 0.2 kJ/m2, a 50 % drop compared to the pure matrix. 
The addition of biochar seems to disrupt the biocomposite’s ability to 
absorb and dissipate energy during impact, likely due to changes in the 
microstructure and potential interfacial interactions between the bio-
char and polymer matrix. As a result, the biocomposite’s toughness and 
resilience under dynamic loading are reduced.

3.1.4. Thermal decomposition of biocomposites
The thermal decomposition behavior of both pure PA1010 and the 

developed biocomposites was examined using TGA. The corresponding 
plots are shown in Fig. 5, and the relevant data is summarized in Table 1. 
Pure PA1010 exhibited exceptional thermal stability below 400 ◦C, 
demonstrating only a minor weight change of less than 1 %. However, 
upon further temperature escalation, it underwent complete thermal 
decomposition within the range of 400 ◦C–550 ◦C, consistent with 
findings from prior research (Quiles-Carrillo et al., 2019; Tang et al., 
2023). In contrast, biochar exhibited robust thermal stability within the 
tested temperature range of 30 ◦C–800 ◦C, experiencing only a minor 
weight loss of 10 %. This resilience can be attributed to biochar’s high 
carbon content and structural integrity. Notably, the incorporation of 
biochar markedly enhanced the thermal stability of the PA1010 matrix, 
as evidenced by a significant increase in thermal decomposition tem-
peratures. For instance, T5 %, T10 %, and Tmax shifted from 417 ◦C, 
430 ◦C, and 460 ◦C in PA1010 to 425 ◦C, 450 ◦C, and 474 ◦C in 
PA1010-BC50, respectively. These findings are consistent with similar 
observations reported for biochar-reinforced thermoplastic matrices, 
including PLA (Yiga et al., 2023; Zhang et al., 2024), HDPE (Kane and 
Ryan, 2022; Zhang et al., 2020b), PP (Alghyamah et al., 2021; Luo et al., 
2022; Mohammed et al., 2022), and PA (Baniasadi et al., 2023a; Nisa 
et al., 2023).

The improved thermal stability of PA1010 upon biochar incorpora-
tion can be attributed to several factors. Firstly, the high surface area 
and porous structure of biochar act as insulating barriers, increasing 
thermal resistance and delaying decomposition. Additionally, biochar 

Fig. 4. Typical (a) tensile stress-strain and (b) bending curves. (c) The comparison between different mechanical properties.
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enhances mechanical stability by reinforcing the polymer matrix, 
reducing polymer chain mobility and the likelihood of thermal degra-
dation. Moreover, biochar can adsorb volatile decomposition products, 
limiting their release and mitigating degradation reactions. While bio-
char can exhibit catalytic properties that accelerate thermal decompo-
sition at high temperatures, this effect was not observed in our study, 
likely due to the specific biochar type, surface characteristics, or its 
interaction with PA1010.

3.1.5. Crystallinity of biocomposites
DSC thermograms were employed to investigate the impact of bio-

char on the crystallinity of the PA1010 matrix. The DSC plots are 
depicted in Fig. 5c. Pertinent data, including the melting temperature 
and enthalpy, as well as the crystallization temperature and enthalpy, 
are summarized in Table 2. PA1010 exhibited a dominant endothermic 
peak at 203 ◦C, corresponding to its melting point, and a prominent 
exothermic peak at 176 ◦C, assigned to its crystallization temperature, 
consistent with the values reported in the literature for PA1010 (Ye 
et al., 2023). In contrast to other reports (Hernández-García et al., 2023; 
Pinto et al., 2023), no additional peaks were detected within the test 
temperature range, indicating the presence of one crystalline phase, 
namely, a highly homogeneous structure devoid of impurities or phase 
transitions, most likely the alpha crystalline phase (Baniasadi et al., 
2021a, 2021b). Both Tm and Tc remained essentially unchanged upon 
the introduction of biochar, implying that the incorporation of biochar 
does not significantly alter the thermal properties of the PA1010 matrix.

Nevertheless, the crystallinity of PA1010 decreased from 35 % to 19 
% after introducing 10 wt% biochar, possibly due to interference from 
the biochar particles within the PA1010 matrix, which hindered the 
formation of ordered crystalline structures. Another contributing factor 
could be the interaction between the biochar particles and the poly-
amide, which disrupts the packing arrangement of the polymer mole-
cules and impedes the formation of crystalline regions. Notably, 
increasing the biochar concentration to 30 wt% and 50 wt% resulted in a 
marginal increase in crystallinity. This could be attributed to the greater 
presence of biochar, which may act as a more effective nucleating agent, 
promoting the formation of crystalline structures within the matrix. 
Additionally, the enhanced interaction between the biochar particles 
and polyamide chains at higher concentrations may improve the align-
ment and packing of the polymer molecules, fostering the formation of 
larger and more ordered crystalline regions, thereby increasing the 

Fig. 5. (a) TGA and (b) DTG thermograms of pure PA1010, biochar, and biocomposites. (c) DSC curves and (d) XRD patterns of pure PA1010 and biocomposites.

Table 1 
Thermal decomposition temperatures and residue material at 800 ◦C (the data 
are extracted for TGA and DTG plots).

Sample T5 % (◦C) T10 % (◦C) Tmax (◦C) Residue at 800 ◦C (%)

Biochar 422 763 – 89
PA1010 417 430 460 0
PA1010-BC10 423 437 468 5.9
PA1010-BC30 425 437 468 22
PA1010-BC50 425 450 474 33

Table 2 
Crystallization temperatures, phase change enthalpies, crystallinity, and glass 
transition temperature of the pure PA1010 and the developed biocomposites.

Sample Tm (◦C) Tc (◦C) ΔHm (J/ 
g)

ΔHc (J/ 
g)

χc (%) Tg (◦C)

PA1010 205 176 86 57 35.2 69
PA1010- 

BC10
204 176 42 47 19.1 77

PA1010- 
BC30

203 176 36 37 21 70

PA1010- 
BC50

203 176 29 29 23.8 72
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overall crystallinity.
XRD patterns were employed to further examine the crystalline 

structure of PA1010 and its biochar composites, as shown in Fig. 5d. The 
pure PA1010 sample exhibited sharp and well-defined diffraction peaks 
at 2θ values of 8.2◦, 19.9◦, and 23.9◦, corresponding to the (002), (100), 
and (010) planes, respectively (Wang et al., 2019). These peaks confirm 
the crystalline nature of PA1010, consistent with the α-phase of poly-
amide crystals commonly observed in similar materials. The absence of 
additional peaks or shoulders indicates a homogeneous crystalline 
structure (Baniasadi et al., 2024), showing the dominance of a single 
crystalline phase, which agrees with the DSC results. In the case of 
biochar, a broad and diffuse peak around 2θ = 23◦ was observed due to 
the abundance of amorphous carbon (Ye et al., 2024). Upon incorpo-
ration of biochar in the polymer matrix, the XRD patterns of the com-
posites retained the major peaks of PA1010, indicating that the 
fundamental crystalline structure was preserved. However, the broad, 
diffuse peak associated with biochar’s amorphous nature was less pro-
nounced in the composites, indicating that the biochar interferes with 
the crystalline packing of PA1010 at low concentrations. This interfer-
ence likely causes the reduction in crystallinity, as seen with the 10 wt% 
biochar composite, where the crystallinity decreased from 35 % to 19 %. 
At higher biochar concentrations (30 wt% and 50 wt%), the crystallinity 
of the composites marginally increased, possibly due to biochar acting as 
a nucleating agent, facilitating the formation of more ordered crystalline 
structures. This suggests that higher biochar content enhances the 
interaction between biochar particles and polyamide chains, improving 
alignment and promoting crystallization.

3.1.6. Dynamic mechanical analysis
DMA was employed to investigate the viscoelastic behavior of 

PA1010 and the developed biocomposites, providing insights into the 

interactions between the biochar and the PA1010 matrix. All samples 
underwent heating up to 200 ◦C in a multi-frequency-strain mode, and 
the trend of E′ as well as tan δ versus temperature was analyzed and 
discussed. The results, depicted in Fig. 6a–b, revealed distinctive char-
acteristics. At low temperatures, all samples exhibited a plateau in the 
storage modulus, indicating a minimal change in the material stiffness 
within this temperature range. This suggests efficient energy storage and 
recovery without significant deformation, typical of a glassy state where 
molecular motion is restricted. However, as temperature increased, a 
pronounced reduction in the storage modulus was observed across all 
samples, signifying a transition in the material behavior. This reduction 
indicated a decrease in stiffness or rigidity with the rising temperature, 
marking the onset of a molecular motion and a transition from a glassy 
to a rubbery state typically associated with the material’s glass transi-
tion temperature (Tg) (Siddique et al., 2021; Wan et al., 2013). The 
observed Tg for PA1010, approximately 69 ◦C, as indicated in Table 2, 
exhibited an increase in the biocomposites, which is attributed to 
various factors. Biochar particles act as nucleating agents in the PA1010 
matrix, promoting a more ordered polymer structure and increasing Tg 
by restricting polymer chain mobility. Their surface interactions with 
the polymer enhance stiffness, while their high aspect ratio and surface 
area improve interfacial adhesion, further limiting chain movement. 
Additionally, biochar particles serve as physical barriers, reinforcing the 
matrix and creating a network-like structure that restricts polymer flow, 
contributing to the Tg elevation (Bardha et al., 2023; Wan et al., 2013; 
Zhang et al., 2020a; Zhou et al., 2024).

On the other hand, upon introducing biochar particles, a significant 
increase in the storage modulus, particularly below Tg, was observed. 
For instance, at 25 ◦C, the storage modulus rose from 1735 MPa to 3204 
MPa in the PA1010-BC50 biocomposites, indicating enhanced stiffness 
and mechanical strength. This improvement can be attributed to 

Fig. 6. Dynamic mechanical analysis results: (a) storage modulus and (b) tan δ versus temperature. Rheology results: (c) complex viscosity and (d) storage and loss 
moduli versus angular frequency at 1 % shear strain rate and 23 ◦C.
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biochar’s reinforcing effect within the polymer matrix, facilitated by its 
high aspect and surface area-to-volume ratio, which promotes strong 
interfacial interactions and restricts chain mobility (Alshahrani and 
Prakash, 2022; Raja and Devarajan, 2024; Vidal et al., 2022). Addi-
tionally, the reduction in the height of the tan δ curve, resulting from the 
incorporation of biochar, suggests a decrease in damping properties, 
further indicating the increased stiffness and rigidity of the bio-
composite. This reduction in tan δ reflects the lowered internal friction 
at the interface between biochar and the polymer matrix, contributing to 
the overall enhancement of mechanical properties. This observation 
aligns with findings reported by Infurna et al. (2024) for PLA/biochar 
composites and supports the idea of restricted molecular mobility and 
reduced internal friction at the biochar-polymer matrix interface. 
Therefore, the DMA results validate the uniform dispersion of the bio-
char particles within the PA1010 matrix, even at a high loading of 50 wt 
%, and demonstrate their effective interaction, resulting in bio-
composites with improved mechanical properties, characterized by 
higher stiffness and enhanced load-bearing capabilities.

3.1.7. Rheology properties
Rheology properties were used to further investigate polymer-filler 

interactions and the dispersion of biochar within the PA1010 matrix. 
The rheology curves, including |η*|, G′, and G″ versus angular frequency 
are plotted in Fig. 6c–d. Firstly, a strain sweep test was conducted at a 
constant angular frequency of 10 rad/s to identify the linear viscoelastic 
region. The results are provided in Fig. S3. At low strain rates, all sam-
ples exhibited a constant G′ and G″, indicating a linear viscoelastic 
behavior. However, with a further increase in the shear strain values, 
both G′ and G″ began to deviate from linearity, suggesting the onset of 
nonlinear viscoelastic effects. Consequently, a shear strain of 1 % was 
chosen as a safe value to ensure that the frequency sweep test remained 
within the linear viscoelastic region.

Fig. 6c illustrates the trend of |η*| versus angular frequency. As fre-
quency increased, viscosity decreased in all samples, indicating shear- 
thinning behavior. This is likely due to the disruption of intermolec-
ular forces or polymer chain entanglements, which ease flow at higher 
frequencies. Additionally, biochar particles may align or reorient within 
the PA1010 matrix under higher frequencies, reducing resistance to flow 
(Baniasadi et al., 2021c; Ren et al., 2020). Shear-thinning behavior is 
beneficial for extrusion processes as it allows smoother material flow, 
reduces energy consumption, and ensures consistent product shape. 
However, the introduction of biochar particles increases viscosity. These 
particles disrupt polymer chain flow, causing entanglement or interac-
tion with the biochar surface, which raises resistance. The high aspect 
ratio and surface area of the biochar particles may further enhance these 
interactions, increasing viscosity and introducing additional frictional 
forces (Mardlin et al., 2022; Nazari et al., 2024).

The PA1010-BC30 composite showed higher viscosity than the 
PA1010-BC10 sample at low frequencies but lower viscosity at high 
frequencies. At low frequencies, the increased biochar concentration 
leads to stronger particle-particle interactions and entanglements, 
raising resistance to flow and increasing viscosity. Biochar particles 
disrupt polymer chains more at lower shear rates, further contributing to 
this effect. At higher frequencies, the lower viscosity of the 30 % com-
posite is likely due to shear-thinning behavior, where biochar particles 
align or reorient within the PA1010 matrix, reducing flow resistance. 
This effect is more pronounced in composites with higher biochar con-
tent, where particle alignment at high shear rates lowers internal friction 
and viscosity. In contrast, the PA1010-BC50 biocomposite exhibited the 
highest viscosity across the entire frequency range. The 50 wt% biochar 
content leads to stronger particle-particle interactions and a more 
extensive network within the PA1010 matrix, increasing resistance to 
flow. At lower frequencies, this results in greater entanglement between 
polymer chains and biochar particles, further raising viscosity. While 
shear-thinning behavior reduces viscosity at higher frequencies in some 

composites, the dense network and increased frictional forces in the 50 
% biochar composite maintain its higher viscosity throughout.

As illustrated in Fig. 6d–G" consistently surpassed G′ across all 
samples, except for the biocomposite with the highest biochar content. 
This indicates a liquid-like behavior, where polymer chains are relaxed 
and exhibit significant molecular mobility, a feature typical of materials 
that flow easily under applied stress (Kiziltas et al., 2021; Wan et al., 
2013). However, in the PA1010-BC50 biocomposite, G′ exceeded G″ 
across all frequencies, signaling a transition to more solid-like behavior, 
with increased resistance to flow and reduced molecular mobility. This 
shift can be attributed to the formation of an interconnected network 
within the polymer matrix, restricting polymer chain movement.

Both G′ and G″ increased significantly with higher biochar content, 
particularly at lower frequencies. This is due to the reinforcing effect of 
the biochar particles, which form a denser, more interconnected struc-
ture in the matrix (Lopresti et al., 2024). This enhanced structure in-
creases resistance to deformation and improves mechanical properties, 
as reflected in the higher G′ and G″ values (Bai et al., 2014; Baniasadi and 
Seppälä, 2021; Mousavi et al., 2023) Additionally, at lower frequencies, 
polymer chains have more time to interact with biochar particles, 
forming stronger interfacial bonds that further enhance the stiffness and 
damping properties of the biocomposites. Thus, the increase in both G′ 
and G″ at lower frequencies results from improved particle dispersion 
and interfacial interactions within the PA1010/biochar biocomposites.

3.2. Life cycle assessment

3.2.1. LCIA results (baseline case and sensitivity analysis)
The increased incorporation of biochar as a filler in the plain PA1010 

matrix was evidenced to reduce the total environmental impacts of the 
PA1010/biochar biocomposite granules across all the studied impact 
categories – carbon footprint, acidification, eutrophication (terrestrial, 
freshwater, and marine), as well as land use, respectively. Further, the 
magnitude of the total reductions per each impact category (excluding 
the eutrophication of freshwater) was slightly increased upon the 
deduction of the sequestered CO2 and the application of green electricity 
in SA1, as evidenced in Table 3. These observed reductions can majorly 
be attributed to the progressive replacement of the international culti-
vation of castor beans and the production of PA1010 granules with the 
locally produced wood chips-derived biochar, which possessed sub-
stantially lower impacts than these two other raw materials. As an 
example, in the present study, the carbon footprint of biochar was found 
to range between 0.01 and 0.5 kg CO2 eq./kg of biocomposite granules, 
the exact value depending on the biochar content and the type of case – 
baseline case or sensitivity analysis, respectively. Further, the lower 
impacts of SA1 can be reasoned to be derived from the reduced use of 
fossil-based resources to generate green electricity (Li et al., 2022). The 
interpreted LCIA results are also succinctly presented in Figs. 7 and 8
regarding the baseline case and SA1, respectively.

The preceding reasoning can also be supported by other types of 
data. In more detail, upon the addition of biochar up to 50 wt%, all the 
environmental impacts caused by the biocomposite granules were 
decreased by 50 % (in the case of castor beans and PA1010 granules) and 

Table 3 
A compilation of the total reductions in the impact categories under analysis for 
the baseline case and SA1, respectively.

Impact categories Baselinea SA1a Baselineb SA1b

Carbon footprint 43 % 49 % 58 % 65 %
Acidification 47 % 49 % 47 % 49 %
Eutrophication (terrestrial) 48 % 49 % 48 % 49 %
Eutrophication (freshwater) 50 % 50 % 50 % 50 %
Eutrophication (marine) 48 % 50 % 48 % 50 %
Land use 46 % 47 % 46 % 47 %

a Without the sequestered CO2 in biochar.
b With the sequestered CO2 in biochar.
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Fig. 7. LCIA results of the baseline case: (a) carbon footprint, (b) acidification, (c) eutrophication (terrestrial), (d) eutrophication (freshwater), (e) eutrophication 
(marine), and (f) land use.

Fig. 8. LCIA results of SA1: (a) carbon footprint, (b) acidification, (c) eutrophication (terrestrial), (d) eutrophication (freshwater), (e) eutrophication (marine), and 
(f) land use.
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46–50 % (in the case of transportation), respectively, in both baseline 
case and SA1. Remarkably, when the sequestered CO2 was considered 
for both cases, the carbon footprint reductions were further increased 
from 50 % to 67 % (in terms of castor beans and PA1010 granules) 
compared to plain PA1010 granules. Simultaneously, the environmental 
impacts caused by the PA1010/biochar biocomposite granules remained 
constant, which indicates that the changes in the ratio of raw materials 
outside the laboratory do not significantly influence the performance of 
the laboratory-scale processes. Subsequently, the general order of con-
tributors to the impacts (hotspots) in descending order was formulated 
as follows: castor beans and PA1010 granules, transportation, PA1010/ 
biochar biocomposite granules, and biochar, the exact order of the last 
two contributors depending on the type of case (see Table 4 and 
Tables S13–S20 for the details). Notably, the datasets of castor beans and 
PA1010 granules were combined for the present interpretation to adhere 
to the guidelines set by Sphera Solutions GmbH.

The acquired results can be stated to be well aligned with the out-
comes of past LCA studies, which have examined the characteristics of 
composites with biochar as the filler. In this regard, Kane et al. (2022), 
Roy et al. (2020), and Tadele et al. (2020) all found out that the pro-
duction of plastic granules as a matrix raw material posed the biggest 
environmental impacts on the studied composites (>60 %) across all the 
impact categories, followed by the manufacture of these composites (25 
%), and transportation (15 %) (Roy et al., 2020). Although the relatively 
low impacts of the laboratory-scale processes of the present study can be 
explained by the existing internal circulation of cooling water, leaving 
the electricity consumption of the laboratory equipment the major 
contributor to the environmental impacts caused by the biocomposite 
granules. Additionally, in the previous literature, the impacts related to 
the production of fillers were reported to be marginal (Tadele et al., 
2020) or were primarily included in the carbon uptake during photo-
synthesis (Kane et al., 2022). In line with the findings of the present 
paper, Civancik-Uslu et al. (2018) also concluded that regardless of the 
filler type, the reductions in the environmental impacts of plastic 
products are proportional to the added filler content. This is attributed 
to the fact that fillers, with a lower environmental impact, replace the 
(fossil-based) materials, which are otherwise required to manufacture 
the composites (Civancik-Uslu et al., 2018). Similarly, Kane et al. (2022)
demonstrated that the addition of biochar to the plastic matrix poses a 
linear relationship between the added biochar content and the resulting 
carbon footprint of the composite, leading to up to twice higher re-
ductions in the carbon footprint compared to the added biochar content 
(when, however, the impacts caused by the growth of biomass to pro-
duce biochar was excluded from the analysis). In the same vein are also 
the results acquired by Baniasadi et al. (2024), indicating a progressive 
reduction in the composites’ carbon footprint upon the integration of 
biochar into the neat PA12 plastic matrix.

The considerably high impacts related to the castor beans and 
PA1010 granules of the present study, combined with the distinctly low 
impacts caused by biochar, are also in alignment with the conclusions 
derived from the available literature (Bergman et al., 2022; Brizga et al., 
2020; Pari et al., 2020). For instance, these literature sources indicated 
that the carbon footprint of the cultivation of castor beans and extraction 
of castor oil is 8.14 kg or 18.9 kg CO2 eq./kg of castor oil extracted (the 
value being dependent on the farming practices and selling of the 

by-products) (Pari et al., 2020), while the carbon footprint of bio-based 
PAs ranged from slightly below 4 to closer to 10 kg CO2 eq./kg of plastic 
(Brizga et al., 2020), respectively. Additionally, the carbon footprint of 
biochar pellets was found to be 0.27 (without forest operations) and 
0.37 (with the forest operations) kg CO2 eq./kg of biochar pellets when 
the transport of biochar pellets or their EoL was not included in the LCA 
(Bergman et al., 2022). Noteworthy, due to considerable methodological 
differences between the LCAs of the analyzed literature sources and the 
present study, the direct comparison of the composites was considered 
not to yield sufficiently truthful information; however, general conclu-
sions were able to be drawn, as done in the present section.

While pyrolysis offers environmental benefits, it also involves tech-
nical and environmental trade-offs. Biochar quality and yield depend on 
feedstock type (e.g., moisture content, waste stream), pre-treatment, 
pyrolysis equipment (Zhu et al., 2022), and process parameters like 
temperature and residence time. Higher temperatures and shorter resi-
dence times favor bio-oil production but increase energy consumption, 
whereas lower temperatures with longer residence times maximize 
biochar yield with lower energy use (Afshar and Mofatteh, 2024; Zhu 
et al., 2022). Additionally, higher temperatures promote secondary re-
actions, reducing biochar and bio-oil yields (Zhu et al., 2022).

Large-scale pyrolysis is more energy-efficient and has a lower carbon 
footprint than small-scale pyrolysis, which can cause more air pollution 
and particulate emissions (Zhu et al., 2022), potentially undermining 
CO2 sequestration benefits. The 500 ◦C pyrolysis temperature, recom-
mended for lignocellulosic feedstock (Zhu et al., 2018, 2022), was used 
in this study to ensure successful biochar production while maintaining 
CO2 sequestration benefits. Lignocellulosic feedstocks, especially agri-
cultural residues, are more environmentally friendly than alternatives 
like sludge or pig manure. Energy consumption can be further reduced 
by capturing pyrolysis gas energy (up to 28 %) and including biochar use 
and its EoL in the LCA (Afshar and Mofatteh, 2024). Scaling the labo-
ratory process to an industrial scale would likely further reduce the 
carbon footprint. This aligns with findings from Tsalidis and Korevaar 
(2022), which show that laboratory-scale torrefaction has a significantly 
higher carbon footprint and terrestrial acidification than industrial-scale 
processes. Thus, scaling up would likely reinforce the study’s conclu-
sions, highlighting biochar as an effective filler for reducing the carbon 
footprint and agricultural impacts of bio-based PA1010 plastic.

3.2.2. Comparison with commercial plastics and early-stage composites
To validate the LCIA results, PA/biochar biocomposites were 

compared with early-stage PA-based composites, as well as commercial 
and sustainable plastics made from bio-based or recycled materials or 
produced using renewable energy. The PA1010-BC50 biocomposite, 
with 50 wt% biochar was selected for comparison due to its lowest 
environmental impacts. Commercial plastics and early-stage composites 
were chosen based on similar functional units, system boundaries, and 
impact categories. Methodological details and comparisons with 
PA1010-BC50 are presented in Table S6 and Table S21. Only carbon 
footprint as well as freshwater and marine eutrophication were 
considered for comparison due to differences in impact assessment 
methods.

After analyzing Table 5, key factors influencing the LCIA results 
include the feedstock origin (main vs. side/waste stream), type of filler 
and plastic matrix (bio- vs. fossil-based), electricity grid mix (renewable, 
fossil-based, or mixed), and the number of optimized manufacturing 
processes. For the PA12/biochar composites (#3 and #4), composite 
#3, using fossil-based energy, showed increased impacts across all cat-
egories despite using wood chips as a waste stream and a thermal 
oxidizer in pyrolysis. In contrast, switching to a fully renewable elec-
tricity grid mix in composite #4 significantly reduced all impacts 
(Baniasadi et al., 2024). The PA66/lignin-based carbon fiber (CF) 
composite (#6) showed a significantly higher carbon footprint than 
other composites in Table 5, primarily due to the fossil-based PA66 
matrix (6.45 kg CO2 eq./kg) and the energy-intensive production of 

Table 4 
The process steps and their relative contributions to the overall impacts. The 
relative values were obtained by calculating a mean of all the relative contri-
butions of the biocomposite granules across all the impact categories for the 
baseline case and SA1, respectively.

Cases Castor beans and 
PA1010

Biochar Biocomposite 
granules

Transportation

Baseline 91.3 % 1.4 % 2.3 % 4.3 %
SA1 94.2 % 0.6 % 0.5 % 4.3 %
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lignin-based CFs. These were made by compounding 50 wt% bio-based 
TPU with 50 wt% organosolv lignin, which accounted for 56 % of the 
total carbon footprint (Beaucamp et al., 2024). In comparison, 
PA1010/biochar biocomposites (#1 and #2) outperformed the 
PA66/lignin-based CF (#6) in both baseline and SA1 cases, and 
PA1010/biochar also had lower freshwater eutrophication than 
PA12/biochar (#3) made with fossil-based electricity. However, further 
process optimizations are needed to improve the biocomposites’ envi-
ronmental performance, which will be discussed in section 3.2.4.

Some commercial polyamides were also chosen for comparison 
(Arkema, 2025; Evonik, 2024; Morão and De Bie, 2019). A direct com-
parison of PA1010-BC50 biocomposites with these plastics is shown in 
Fig. 9. Due to a lack of comparable units, only carbon footprint, 

acidification, and freshwater eutrophication were considered. Vesta-
mid® Terra DS PA1010 had the highest environmental impacts, likely 
due to the use of standard energy and land-intensive castor bean culti-
vation. The PA1010-BC50 biocomposites performed better than com-
mercial PA1010 in all impact categories and outperformed Vestamid® D 
PA612 and Vestamid® eCO E40 CC50 PTA in acidification and fresh-
water eutrophication, respectively. Vestamid® eCO L BBM PA12 
excelled in all categories, benefiting from renewable or recycled mate-
rials and renewable energy. Interestingly, Vestamid® eCO E40 CC50 
PTA had higher freshwater eutrophication impacts, likely due to the use 
of biomass-based renewable energy, which contributes significantly to 
eutrophication compared to other renewable sources like wind or solar 
(Mahmud and Farjana, 2022) (see Fig. 9).

3.2.3. Functional performance-to-impact ratio
To further evaluate the sustainability characteristics of the newly 

developed PA1010/biochar biocomposites, the functional performance- 
to-impact ratio was calculated, which core purpose was to compare the 
biocomposites’ improvements in the mechanical properties against their 
observed environmental impact reductions. In this sense, as also previ-
ously reported, the incorporation of biochar in the neat PA1010 matrix 
resulted in significant enhancements: tensile strength increased by 44 % 
(from 38.5 MPa to 55.5 MPa), and tensile modulus rose by 110 % (from 
1015 MPa to 2150 MPa), respectively. Simultaneously, in terms of the 
analyzed environmental impacts, the conducted LCA demonstrated up 
to 65 %, 49 %, 50 %, and 47 % impact reductions in the carbon footprint, 
acidification and terrestrial eutrophication, freshwater and marine 
eutrophication, as well as land use, respectively, which is attributed to 
the gradually increased biochar content in the biocomposites. The 
calculated functional performance-to-impact ratios for improvements in 
the tensile strength and modulus, relative to the reductions in each 
impact category, are conveniently presented in Fig. 10, which highlights 
each percentage point of tensile strength or modulus improvement 
corresponding to a reduction of 0.68–0.90 or 1.69–2.24 percentage 
points, respectively, in the studied environmental impacts. In conclu-
sion, the present analysis can be argued to underscore the potential of 
PA1010/biochar biocomposites as more sustainable material alterna-
tives, balancing improved mechanical performance with substantial 
environmental benefits.

3.2.4. Uncertainties, areas for development, and future outlook
The LCA study contains uncertainties from LCI compilation, 

Table 5 
A comparison of PA1010-BC50 biocomposite (baseline case and SA1) with the 
selected early-stage composites available in the literature. The data for the 
composites of PA12/biochar, PA11coPA1218/starch, and PA66/lignin-based CF 
were collected from Baniasadi et al. (2024), Äkräs et al. (2024), and Beaucamp 
et al. (2024)/Moncada et al. (2018), respectively. The sequestered CO2 is 
included in the values.

Composite Carbon 
footprint (kg 
CO2 eq.)

Freshwater 
eutrophication (kg 
P eq.)

Marine 
eutrophication (kg 
N eq.)

#1: PA1010/biochar 
(50 wt%)a

4.73 0.0017 0.025

#2: PA1010/biochar 
(50 wt%)b

3.77 0.0017 0.025

#3: PA12/biochar 
(50 wt%)c

2.32 0.0039 0.00028

#4: PA12/biochar 
(50 wt%)d

−1.83 −0.00008 −0.00003

#5: PA11coPA1218/ 
starch (50 wt%)e

3.9 0.00065 0.011

#6: PA66/lignin- 
based CF (20 wt 
%)f

18.1 n.d n.d

a Biofiller as a primary stream, Finnish electricity in the laboratory phase.
b Biofiller as a primary stream, global green electricity in the laboratory phase.
c Biofiller as a waste stream, fossil-based electricity, thermal oxidizer.
d Biofiller as a waste stream, fully renewable energy, thermal oxidizer.
e Biofiller as a primary stream, Finnish electricity in terms of biofiller and the 

laboratory phase.
f Biofiller as a side stream, varying electricity grid mixes.

Fig. 9. A comparison of the PA1010-BC50 biocomposite (baseline case (BSC) and SA1) with the selected commercial plastics. a) Carbon footprint, b) acidification, 
and c) eutrophication (freshwater). Due to the lack of data or comparable units, Rilsan® PA11 was excluded from graphs b) and c) and Luminy® PLA from graph b), 
respectively. The presented values also include the amount of sequestered CO2.
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modeling practices, and assumptions (Ren, 2021). Estimations of py-
rolysis furnace and extruder power, cooling water use, and equipment 
times, along with the use of a German dataset for PA1010 granules and 
estimated biochar molecular formulas, may have influenced the LCIA 
results. However, transport parameter variations have a minimal impact 
(Tadele et al., 2020; Roy et al., 2019) and pyrolysis of wood-based 
feedstock aligns with findings in this study (Afshar and Mofatteh, 2024).

While the LCIA results are robust due to laboratory-scale data, 
replacing secondary data with primary data and scaling up the process 
could improve accuracy (Kralisch et al., 2015; Roy et al., 2020; Tadele 
et al., 2020). Additionally, replacing the laboratory-scale data with the 
industrial one (for example, by scaling up the process setup to an in-
dustrial scale) could derive more accurate information about the envi-
ronmental impacts of the PA1010/biochar biocomposites under study 
(Roy et al., 2020). Ultimately, after scaling up, incorporating the use and 
EoL phases of the biocomposites into the LCA could potentially make 
them carbon neutral or even carbon negative (Osman et al., 2022; Roy 
et al., 2019; Bergman et al., 2022).

Longer biochar sequestration improves carbon storage, and 
increasing plastic lifespan through design, reuse, and recycling could 
reduce environmental impacts (Kane et al., 2022; Meng et al., 2024). 
Although biochar-based composites are currently difficult to recycle 
(Kane et al., 2022; Roy et al., 2019), further research on their lifespan 
and applicability is recommended. Decarbonizing energy sources and 
improving material efficiency are feasible actions to reduce plastic im-
pacts, including mitigating impacts from castor bean cultivation and 
using more decarbonized PA1010 synthesis pathways (Pari et al., 2020; 
Meng et al., 2024). The LCIA results provide a foundation for process 
optimization and environmental impact assessment. After process opti-
mizations, ex-ante LCA can be used to evaluate the biocomposites’ im-
pacts at an industrial scale, addressing limitations of laboratory-scale 
LCAs, such as energy efficiency and scalability issues (Piccinno et al., 
2015; Recupido et al., 2023).

4. Conclusions

In this study, we conducted a comprehensive experimental and 
methodological investigation of novel PA1010/biochar biocomposites, 
systematically analyzing their physical properties and sustainability 
aspects. SEM analysis confirmed excellent compatibility and interface 
adhesion between the biochar particles and the PA1010 matrix, with 
uniform dispersion observed throughout the matrix. Mechanical testing 
revealed significant improvements in tensile strength (from 38.5 MPa to 
55.5 MPa), tensile modulus (from 1015 MPa to 2150 MPa), and flexural 
strength (from 40.5 MPa to 73.8 MPa) with increasing biochar content, 
demonstrating the reinforcing effect of biochar and enhanced interfacial 

interactions. Thermal decomposition studies showed an increase in the 
thermal stability of the biocomposites, along with a reduction in crys-
tallinity due to the interference in polymer matrix formation and 
nucleation site effects. DMA and rheology studies further corroborated 
these findings, showing enhanced stiffness and resistance to flow in the 
biocomposites. Additionally, LCA results demonstrated a reduction in 
environmental impacts, with up to a 65 % decrease in carbon footprint 
when biochar replaced PA1010 granules. These results indicate the 
potential of biochar-reinforced PA1010 biocomposites for more sus-
tainable applications, such as in the automotive, construction, and 
packaging industries, where enhanced mechanical properties and 
reduced environmental impact are of paramount importance. Looking 
forward, this work provides a foundation for further process optimiza-
tions and advanced ex-ante LCA assessments. The promising mechanical 
and thermal properties, coupled with the environmental benefits of 
biochar, suggest that these biocomposites can play a crucial role in 
sustainable material design. Future research will focus on scaling up the 
production process and exploring additional applications, such as in 
smart materials and high-performance engineering components. The 
integration of biochar into biopolymer matrices aligns with the growing 
demand for environmentally friendly materials, and this study contrib-
utes to the ongoing efforts to reduce industrial carbon footprints, 
providing a positive impact on society by promoting more sustainable 
and eco-friendly material solutions.
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