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Sebastian Vellmer 1,2 , Dogu Baran Aydogan 3,4, Timo Roine 4, Alberto Cacciola 5,
Thomas Picht1,2 & Lucius S. Fekonja 1,2

Machine learningmay enhance clinical data analysis but requires large amounts of trainingdata,which
are scarce for rare pathologies. While generative neural network models can create realistic synthetic
data such as 3D MRI volumes and, thus, augment training datasets, the generation of complex data
remains challenging. Fibre orientation distributions (FODs) represent one such complex data type,
modelling diffusion as spherical harmonics with stored weights as multiple three-dimensional
volumes. We successfully trained an α-WGAN combining a generative adversarial network and a
variational autoencoder to generate synthetic FODs, using the Human Connectome Project (HCP)
data. Our resulting synthetic FODs produce anatomically accurate fibre bundles and connectomes,
with properties matching those from our validation dataset. Our approach extends beyond FODs and
could be adapted for generating various types of complex medical imaging data, particularly valuable
for augmenting limited clinical datasets.

In the past decade, deep learning techniques have shown great potential
for computer vision tasks, which are particularly interesting for the
automatised analysis of clinical imaging data. Among many other
applications, Convolutional Neural Networks (CNN) have shown
remarkable performance in clinical tasks such as lesion detection, clas-
sification and segmentation of MRI data1–3. However, the success of
neural network training essentially depends on the availability of a suf-
ficient amount of training data4. Since the collection of clinical data is a
time-consuming and expensive procedure and the use of personal data is
often restricted, the amount of training data for medical purposes is in
many cases very limited, particularly in the case of rare pathologies. In
order to improve the performance and thereby to extend the applicability
of deep learning methods in medicine, training data sets may be aug-
mented by synthetic data generated by neural networks5–7.

One unsupervised training method for CNNs that generate syn-
thetic images is given by generative adversarial networks (GANs)8. In
GANs, the training is implemented as the competition between two
CNNs. The Generator transforms noise into an image, while the Dis-
criminator classifies these images as either generated (fake) or part of the
training data (real). After successful training, the Generator creates data
that are indistinguishable from the training for the Discriminator and the

human eye. The resulting CNN may produce realistic images that are,
nevertheless, different from the original training set. It has already been
shown that it is possible to generate realistic 2D MRI slices from random
numbers9,10 or entire 3D volumes11. These methods can generate images
that are different from the training data by learning the data distribution
itself, and thus may augment the variability of a data set. GANs have even
been used for complex 4D MRI data, for instance, to generate MRI time
series of the heart where its motion is prescribed by a mathematical
model12 or to complete undersampled data for a time series of liver
MRI13. Another interesting application of GANs is spatially dependent
diffusion MRI data being highly valuable in network neuroscience14 and,
particularly, in neurosurgical planning15. Deducible from diffusion data,
the connectome has been of most importance in neuroscience since the
introduction of this term16 and refers to a comprehensive map of neural
connections in the brain, however, its potential with regard to clinical
diagnostics has not been exploited so far17 due to its demand on resources
that can be reduced drastically applying machine learning techniques in
data acquisition and analysis. The structural connectome can be com-
puted based on diffusion MRI, which can provide detailed information of
the white matter (WM) fibre pathways non-invasively. In diffusion MRI,
the random motion of water molecules attenuates the MRI signal and
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allows the modelling the local fibre architecture and microstructure.
Techniques, such as constrained spherical deconvolution (CSD)18,19

permit to assess complex WM organisation, overcoming the inherent
limitations of the diffusion tensor model in crossing fibres regions, which
constitute up to 90% of white matter voxels20. With high-quality esti-
mates of the FODs, subsequent tractography algorithms can reconstruct
structural brain connections and measure apparent fibre density, for
example, in clinical studies21. Both, the time-consuming acquisition of
diffusion MRI data and the computationally expensive analysis required
to obtain tractograms or connectomes could be facilitated adapting deep
learning techniques22. To achieve a clinically sufficient performance of
such applications, a large amount of training data is required that in turn
may be augmented by synthetic data.

Here, we generalised a generativemodel that successfully generates 3D
MRI volumes of the brain from random vectors23 to 4D diffusionMRI data,
the FODs.We adapted the structure ofα-WGAN that avoidsmode collapse
problems and blurry images by introducing an additional variational auto-
encoder to a GAN24. Furthermore, the Wasserstein loss function with
Gradient Penalty (WGAN-GP)25 is used to prevent unstable training. The
proposed GAN model successfully generates FODs as 4D images from

vectors of Gaussian noise, which is a major conceptual advancement in
contrast to generating 3D data due to the complex dependencies present in
the 4th dimension of diffusion MRI data. We demonstrate the usability of
themodel and,more importantly, the quality and anatomical validity of the
generated4D imagedatasets by comparing the connectomesand singlefibre
tracts derived from generated FODs with those obtained from a validation
dataset. For the connectome comparisson, we use a complex network
measure of brain connectivity, the global efficiency26,27 and the distributions
of mantel correlations28 of connectome pairs. For the single tracts, we pre-
sent the dice-scores distributions, tract volumes and thefibre densities along
the tracts. The generated data is highly useful for the augmentation of
training sets in which machine learning is applied to perform on FODs.
More importantly, our work demonstrates that α-WGAN can be general-
ised to augment various 4D MRI sets, which would be useful especially for
pathological data where the amount of data is more limited.

Results
In total, we generated 100 synthetic FODdata sets.Aspresented inFigs. 1–4,
our trained Generator may produce FODs with anatomically meaningful
structures that resemble the trainingdata.Wedidnot observemode collapse

Fig. 1 | Generated FODs. The figure illustrates nine
different, synthetic FOD sets in columns 1–3 in
comparison to one validation FOD set (column 4) in
coronal, axial and saggital views. FOD isosurfaces
are shown in each voxel with the colour encodings:
blue (top-bottom), green (front-back) and red (left-
right). For orientation, we plotted a grayscalemap of
the zeroth FOD coefficient in the background. The
coronal view shows a section through the thalamus
and the pons. We find a similar contrast for gener-
ated and validation FODs, especially for the pons,
corpus callossum, the corticospinal tract and even in
the difficult crossing fibre regions in centrum
semiovale (see zoom). The axial view depicts a sec-
tion through the striate body, the thalamus and the
internal capsule, with a zoom highlighting the white
matter area around the optic radiation. The sagittal
slice demonstrates a section through the insula, and
a zoom to the posterior part of the insula and
Wernicke’s speech region.
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in the data after we drastically increased the contribution of the L1 norm in
the loss function Eq. (1), shifting our model more towards a VAE.

Visual inspection and direct analysis of FOD values
In Fig. 1 we show nine different images of randomly selected synthetic
FODs, three for each plane in the first three columns and one FOD from the
validation set for comparison in the fourth column. For the visualisation, we
usedMRview fromtheMRtrix3 softwarepackage29,30. In thebackground,we
show the respective layer of the first FOD volume for a better orientation. In
all FODs, it was possible to identify the main anatomical structure of the
brain such as the ventricles, basal ganglia, corpus callosum (CC), the cere-
bellum etc. The synthetic data also captured characteristic white matter
tracts in the FOD structures, for which we present three examples in Fig. 1.
As the first example, we present the centrum semiovale in the coronal
section, in which fibres from the corticospinal tract that are predominantly
aligned caudocranially (blue colour encoding) cross fibres from the CC that
are aligned from left to right (red colour encoding).As a second example, we
present the region of the forceps major in the axial section, which connects
the occipital parts of the hemispheres and merges with the optic radiation
that is mainly aligned in anterior-posterior direction (green colour encod-
ing). As the last example, we chose the fasiculus arcuatus in the sagittal
section that connects the Broca’s and Wernicke’s areas.

In Figs. 2–3, we present axial, coronal and sagittal maps of coefficients
of the spherical harmonic functions representing the FODs. The single
volumes of the synthetic data show similar contrast in anatomical areas
compared to validation data. However, the synthetic data contained few
voxels with unphysiologically high or low values, as can be seen for instance
in the 28th volume in the fourth row in Fig. 3 and, compared to the vali-
dation data, the synthetic data are blurred, a known issue of VAEs. In some
FODs, we also see a few unplausible circular structures or sometimes spots
of protruding intensities near the cortex which may occur due to a high
inter-individual variability of the training data in those areas. We mostly
find overlapping histograms for the voxel values presented in Fig. 4B. Dif-
ferences can be found in the first volume, in which our synthetic data has
also somenegative values in contrast to the validationdata that is exclusively
positive. For some volumes, the range of values is larger for the synthetic
data. However, considering the logarithmic scale only few voxels may have
unplausible high values. Comparing the pairwise squared differences, we
find (18.4 ± 6.0) × 103 for the synthetic set and (28.1 ± 4.5) × 103 for the
validation set indicating that the variation is lower in the synthetic data.

Tractography and structural connectomes
For all generated data, we were able to process the synthesised FODs and to
generate meaningful tractography-derived connectivity matrices, resulting

Fig. 2 | Synthetic FOD volumes in axial view. The
figure shows axial slices of single volumes repre-
senting coefficient maps from the harmonic sphe-
rical deconvolution. In the first five rows, we present
synthetic data sets and in the sixth row we show one
FOD from the validation set for comparison. The
number of the presented volume in each column
refers to its position in the output volume of the
MRtrix3 algorithm.
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in structural connectomes as shown in Fig. 5. We compare these con-
nectomes with connectomes derived from the validation data in Fig. 6. By
visual inspection, we find similar structures in connectomes of both groups,
for instance, dense blocks in the corners and in the middle that are inter-
rupted by blocks with lower densities (cf. Fig. 6A). This similarity of the
connectomes can also be visualised by the histograms of all connectome
elements presented in panel Fig. 6B. We find small bias in the connectome
elements of synthetic data compared to the validation data that is caused by
an increased streamline weighting from the SIFT2 algorithm of 8.6% on
average. To compensate for that, we normalise the connectomes such that
the sum of elements of each individual connectome is two, considering that
each connection appears two times in the symmetric connectome. For a
quantitative comparison,we calculated the global efficiency as an exampleof
a complex networkmeasure for each normalised connectome and show the
resulting histograms in Fig. 6C. We find that the validation data exhibit
slightly larger global efficiency and a broader distribution with mean and
standard deviation of (6.59 ± 0.22) × 10−4 compared to the synthetic data
with (6.47 ± 0.16) × 10−4. The small relative difference in global efficiency of
1% is, however, statistically significantwith a p-value of 3.3 × 10−7 calculated
by theWilcoxon-Mann-Whitney test implemented inPython SciPy version
1.11.1. Furthermore, we performed the Mantel test to determine correla-
tions between the connectomes. In contrast to the analysis of the global

efficiencies, we obtain similar distributions of correlation coefficients for
connectomes within the generated data and generated vs. validation data
(see Fig. 6C) indicating similarity of generated and validation connectomes.
The distribution within the validation data is more narrow and shifted
towards larger coefficients.

Individual fibre tracts
We reconstructed single fibre tracts with the deterministic Peak-FODbased
FACT, and the probabilistic iFOD2 algorithms. We obtained anatomically
meaningful tractograms derived from the synthetic FODs, for which we
present one example containing the CC, the arcuate fascicle (AF) and the
corticospinal tract (top row) and the inferior fronto-occipital fascicle, the
optic radiation and the uncinate fascicle (bottom row) derived by the FACT
algorithm, cf. Fig. 7A. The selection of bundles includes association, com-
missural and projection fibres. For a quantitative analysis of our data, we
compared the volumes of the reconstructed tracts of the synthetic and the
validation data by the dice score (see Eq. (4)). The resulting dice-score
distributions for the tracts CC, left and right AF and left and right corti-
cospinal tract (CST) are presented in Fig. 7B. The distributions of synthetic
vs. validation data are similar in shape and location to the distributions of
validation vs. validation data showing that synthetic tracts are similar to
validation tracts in shape and size. For synthetic vs. synthetic data, the

Fig. 3 | Visual comparison of synthetic and vali-
dation FODs. A Synthetic FOD volumes in coronal
view. See caption of Fig. 2 for details. B Histograms
of FODs. Distributions of FOD voxels for the entire
synthetic data set corresponding to the volumes
labelled above in A. Synthetic voxel data in red,
validation voxel data in blue. Note the
logarithmic scale.
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distributions are similar in shape but slightly shifted towards higher values.
This finding indicates that the variation of the tracts’ shapes is lower.We do
not find high dice scores close to one such that we may exclude a mode
collapse problem.However, in two of the generated FODs, small fibre tracts
such as the UF could not be reconstructed even with the iFOD2 algorithm.
In both cases, the UF fibre-bundle mask derived with tractSeg was dis-
continuous. Therefore, we find no overlap indicated by a zero or low dice-
score, respectively, for a few synthetic vs. synthetic and synthetic vs. vali-
dation data pairs but not for validation vs. validation pairs.

For the iFOD2-derived tracts, the mean volumes are presented in
Fig. 8A, beginning with the smallest tract on the left-hand side to the
largest one on the right-hand side. For all tracts, we find that synthetic
data yielded smaller tracts in terms of volume compared to the validation
data. The ratios of the synthetic and validation’s mean volumes from
synthetic and validation data are presented in Fig. 8B. Over all tracts, we
find that the synthetic ones are on average 8 ± 4 % smaller than the ones
from the validation set. As a further analysis, the apparent fibre densities
along the AF, IFOF, OR, UF and the CST calculated with the iFOD2-
derived tracts are shown in Fig. 8C. Synthetic and validation tracts are
characterised by a similar progression of the fibre densities with peaks
and dips at the same locations indicating that the generated FODs
resemble the validation data set. We only find smaller deviations in the
absolute values, especially for the small UF.

The relative differences of fibre-density mean and standard deviations
(seeEq. (5)) in theAALparcels reveal a bias in the cerebellumwhere they are
up to 12 and 45 percent, respectively. For other regions, wefind lower values
under 5 and 20 percent, respectively, that are distributed along the cortex
without deducible bias towards a certain area. The highly individual
structureof the cerebellummaybemoredifficult to be learnedbyourmodel.

Discussion
In recent years, generative models have demonstrated versatile applications
in many studies devoted to medical imaging data. For instance, GANs have
been used to convert between different imagingmodalities, such as T2MRI
to CT contrasts31, or to generate synthetic T1 MRI out of Gaussian noise32.
Here we have shown that GANs are capable of generating FODs as an
example of complex MRI data that consist of several volumes.

We presented an adapted version of the α-Wasserstein GAN23 that
combines the Wasserstein GAN with a VAE. For training, we derived 965
FODs from the HCP dataset and performed aligned rotations to augment
the trainings set to 4825 subjects.We trained ourmodel with FODs derived
from the preprocessed HCP data set33 with a spatial resolution of
128 × 128 × 64 and lmax ¼ 6 corresponding to 28 volumes of spherical
harmonic coefficients.Compared to the originalmodel,wemade fourmajor
changes:firstly, we addedone layer to each, the generator, the discriminator,
and the encoder networks to allow for a higher spatial resolution
(128 × 128 × 64 compared to 64 × 64 × 64 in the original paper). It is a
convenient technique, mostly used in GANs and VAEs, to double the
resolution in each CNN layer by interpolation. Only in the last layer, we
decided to keep the resolution in axial direction constant, in order to keep a
tractable size of the data resulting in an anisotropic voxel size. Secondly, we
increased the size of the latent dimension to 5000 to account for the higher
complexity of the data compared to single volumes. Thirdly, in order to
generate anatomically reasonable data, we had to increase the number of
channels per layer up to themaximumnumberwhich is limited by theGPU
memory available. From our experience with the training process, we
assume that the use of an even higher number of channels enabled by future
developments in hardware, the quality of the FODs would be improved.
And, fourthly, we avoided the mode collapse problem, by drastically
increasing the contribution of the L1 distance of the loss function by using
λ = 50, 000 in Eq. (2), tuning our model more towards a VAE. In previous
training attempts, we used λ = 10 and observedmode collapse. Our trained
generator network is able to generate anatomicallymeaningful FODs as one
example of complex, four-dimensional MRI data. However, by visual
inspection of the synthetic FODs’ single volumes, we found that the gen-
erated images appeared moderately noisy and blurry. Such blurriness is a
known artefact of VAEs34,35. Nevertheless, compared to a pure VAE we
tested for FODs with a lower spatial resolution (not shown), our α-WGAN
generated less blurry FODs with increased spatial details. While brain
regionswith lower variability in the trainingdata such as the ventricles, basal
ganglia or CC are well represented in the synthetic data, the model has
demonstrated some difficulties in accurately generating high-variability
regionswithfinely detailed structures, such as cortical regions, characterised
by individual configurations of sulci and gyri.

Fig. 4 | Synthetic FOD volumes in sagittal view.
See caption of Fig. 2 for details.
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Furthermore, we have shown that our generated data could be pro-
cessed by common tractography algorithms, yielding reasonable bundle-
specific tractograms and even connectomes similar to connectomes derived
from real data. We have to mention, that the anisotropic voxel size is non-
optimal for tractography in general. However, herewe use it to compare our
synthetic FODs to real ones regarding their anatomical accuracy, while both
types share the sameanisotropy.Besides the visual inspectionandhistogram
analyses, we performed the comparison by means of the global efficiency,
which is a complex network measure and the Mantel correlation for con-
nectomes, and the dice score, tract volumes and along-tract fibre densities
for single tractograms. Global efficiency measures the average inverse
shortest path length in a network. It quantifies the efficiency of information
exchange over the network. A higher global efficiencymeans that the brain
network can transfer information better between regions. In return, a lower
global efficiency indicates a longer average path length, suggesting that the
information needs to pass through more steps to go from one region to
another. Differences in global efficiency may reflect differences in the
structural connectivity between brain regions. A relatively small difference
in the mean values. Nevertheless, we expected slight deviations, as the
synthesised data may not capture all the properties of the real, structural
connections26. For the Mantel correlations, we find that synthetic data are
slightly less correlated to each other than the validation data whichmight be
a consequence of numerical noise incorporated by theCNNs.As a test of the
resulting bundle-specific tractograms, we compared their dice-score dis-
tributions.We found that tractograms derived from synthetic data resemble
the ones from the validation data, however, the dice scores indicate lower
variation in the synthetic tractograms compared to the tractograms derived
from the validation data that we already discovered comparing the pairwise
mean squared values of each set that is substantially higher on average for
the validationdata.Thisobservation is in contrast to themantel correlations,
however, it seems that the numerical noise has lower impact on single tracts
than it has on whole-brain tractograms, probably due to the restrictions by
starting and endingROIs. Streamlines disturbed by the noisemight bemore

likely to be rejected, since theydonot arrive at the endingROIwhile they are
counted in the whole-brain tractography. This would also explain the lower
volume of the tracts derived from synthetic data. Summing up our analysis,
we have shown that our generated FODs capture the essential anatomical
features but are still distinguishable from the validation FODs and the
variation within the group of generated FODs is slightly smaller.

The main problems using GANs for the generation of complex syn-
thetic data are mode collapse, that we avoided by using the α-WGAN and
thehighdemandoncomputationalhardware, especiallyGPUmemory36.As
a consequence, we downscaled the FODs to keep the generation feasible.
The high demand and long training times further complicate detailed
optimisation of hyperparameters and network structures, as well as testing
of different loss functions such as perceptual loss37 which might further
improve the results. However, novel techniques such as latent diffusion
models have shown remarkable results in generating high-resolution T2

volumes11 and require less computational resources. Such approaches, as
well as advances in hardware, might enable us to generate high-resolution
FODs indistinguishable from real data in the future. It is worth to note that
our approach is not limited to synthetic FODs, but may be generalisable to
synthesise any 4D MRI data, such as raw diffusion MR images, functional
MRI data or data from an entire MRI protocol containing multiple con-
trasts. The generation of such multimodal data might be useful in the
training of neural networks performing various tasks not only on single
volumes, but may take into account multiple modalities or entire MRI
acquisition schemes.

The diagnostic by means of clinical images often requires human
expertise, interpreting and abstracting to understand disease progression and
explain radiological findings. These tasks cannot yet be performed by
modern artificial intelligences, especially considering the vast diversity in
individual cases. However, AI can automate repetitive tasks such as counting,
measuring and segmenting lesions if provided with sufficient amount of data
catching the appearing variations in patients38,39. Furthermore, with proper
training data AI can facilitate the acquisition and processing of complexMRI

Fig. 5 | Connectomics. The figure illustrates an
exemplary connectome, derived from a synthetic
FOD data set.A shows slice views through the whole
brain tractogram in axial, coronal and sagittal views.
B shows the obtained connectome (right), in rela-
tion to the whole brain tractogram, shown in a 3D
view (left, top row, cf. [A], the AAL parcellation (left,
middle row) and the connectome matrix plot (left,
bottom row).
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data and, thereby, increasing efficiency which results in better image quality
or reduced measurement times40. In particular, the acquisition of complex
4DMRI data such as spatially dependent diffusion data or functional MRI is
time-consuming and has high demands on hardware. As a consequence,
clinical or scientific usage often involves a tradeoff between quality and
measurement times, is uneconomically or even impossible. There, the
application of AI could allow for a broader application of modern MRI
techniques, for instance, introducing connectomes into standard clinical
protocols. However, the performance of neural networks on all mentioned
tasks depends on the training set that can still be improved by augmentation
with synthetic data generated by a GAN. This augmentation can enhance the
robustness and generalisability of machine learning models, leading to more
accurate and reliable diagnostic or analytical tools41,42. This is particularly
valuable for rare pathologies, where synthetic data can effectively supplement
the limited training data and enhance the performance of neural networks.
In this regard, automated tract segmentation tools, such as TractSeg43, may
perform fibre bundle segmentations with high accuracy on healthy subjects.
However, a suitable training dataset consisting of pathology-related FOD
image acquisitions supplemented by synthetic data could improve perfor-
mance, such as using data on tractograms of patients with brain tumours.
Diffusion MRI GAN may also play a role in mitigating data imbalance, as it
can generate additional data for the underrepresented groups, which can lead
to more balanced and accurate models. Furthermore, it could also show its
value for medical training and the teaching of data analysis, especially if data
privacy protection restricts access. One may also think of synthetic MRI
sessions serving as a control group for a clinical study with certain age and
gender distributions tomatch a patient cohort or the use of synthetic data for

a preliminary study in which the effect size and, thus, the required number of
patients can be estimated. Finally, synthetic FOD data allow for rigorous
testing of algorithms and methodologies in a controlled environment, thus
leading to the development of more accurate and robust analysis techniques
for clinical applications.

Methods
Fibre orientation distributions
Thediffusionofwater inbrain tissueprovides informationaboutunderlying
neural microstructure, such as the orientation and density of axonal fibre
bundles in the white matter, that can be measured noninvasively along
predefined axes by diffusionMRI. A suitable representation for the spatially
dependent diffusion within one voxel is the fibre orientation distribution
(FOD) that consists of a set of harmonic spherical functions19,30. Fitted to
diffusion data, the FODs represent a measure of the spatial orientation of
axonal fibre bundles and enable us to reconstruct white matter tracts and
reveal the brain’s structural connectivity44. Regarding the FOD repre-
sentation as sequence of volumes, we follow the conventions fromTournier
et al.30. In this paper, we consider FODs represented by spherical harmonics
up to lmax = 6 corresponding to 28 three-dimensional volumes per subject.

Input data, data preprocessing & data preparation
We derived our training data set from the openly accessible data from the
from the Human Connectome Project45 (HCP) S1200 release, available at:
https://db.humanconnectome.org. In brief, the HCP is an effort to investi-
gate brain connectivity and function and their variability in healthy adults.
The HCP dataset comprises multi-modal imaging, extensive behavioural

-

A

B C D

Fig. 6 | Generated vs. validation connectomes. We show four randomly selected
structural connectomes based on the AAL atlas derived from generated FODs
(A, top row) and the validation FODs (A, bottom row). For comparison, we present
the connectome elements of the entire synthetic and validation data as histograms in

(B), as well as the weighted global efficiency of normalised connectomes in (C) and
the Mantel correlations in (D). Note that the ordinate in panel B is scaled loga-
rithmically while (B, C) are linearly scaled.
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Fig. 7 | TractSeg results and volume overlap. The left column shows examples of
the tractograms that we derived from one synthetic FOD data set using the FACT
algorithm implemented in TractSeg. On the right-hand side, we present histograms
of dice scores that measure the volume overlap of selected tracts (arcuate fascicle
[AF], corpus callosum [CC], corticospinal tract [CST], Inferior Fronto-Occipital

[IFO], Optic Radiation [OR] and Uncinate Fascicle [UF]) of all possible pairs of
subjects that are both generated (red), both from the validation set (blue), or one
generated vs. one from the validation set (green). We show results from tracts
derived with the FACT and the iFOD2 algorithm and on the left and right-hand side,
respectively.
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and genetic data from a cohort of 1,065 subjects. MRI data were acquired
using a customised SiemensMagnetom Skyra 3TMRI system as part of the
Human Connectome Project45. For diffusion MRI acquisition, diffusion
weightings of b = 0, 1000, 2000 and 3000 s/mm2 were applied in 18, 90, 90
and 90 directions, respectively. In addition, all images were acquired with
reversed phase encoding, for the purpose of EPI distortion correction46.
Other imaging parameters were: TR/TE: 5520/89.5 ms, voxel size:
1.25 × 1.25 × 1.25mm3,matrix: 145 × 145, slices: 174 andNEX: 1. TheHCP
data are available in a minimally pre-processed form that includes EPI
susceptibility-based distortion and motion correction, as well as coregis-
tration of structural and diffusion images33.

We computed the FOD images using three steps, all performed with
the MRtrix3 software package29,30. We calculated the response functions by
the Dhollander algorithm47 that are used as Kernels in the second step,
where we performed multi-shell multi-tissue constrained spherical decon-
volution (MSMT-CSD)18. Here, we consider the spherical harmonic func-
tions up to lmax ¼ 6 which corresponds to 28 coefficients per voxel or, put
differently, 28 three-dimensional volumes. lmax refers to the maximum
spherical harmonic order that we include in the spherical harmonics series.
A higher lmax allows for a higher level of angular resolution to be repre-
sented; however, it also necessitates the storage and processing of more
coefficients. Subsequently, in all volumes we removed slices that did not
contain parts of the whole brain masks in all subjects and, thus, did not
contain relevant information. We kept from the sagittal slices 10 to 137,
from the frontal slices 7 to 171 and from the axial slices 2 to 129. Finally, we
converted the data to a spatial resolution of 128 × 128 × 64 voxels using
MRtrix329 resulting in a voxel size of 1.25 × 1.61 × 2.5 mm3.We split thedata
in a training set containing 965 FOD and a validation set with 100 FOD
image data.

We artificially augmented the trainingdata pool by four slightly rotated
versions of each data set.We usedGaussian distributed random angleswith

zero mean and a standard deviation of 1° and spatially rotated the volumes
around each main axes. As another augmentation, we also added a version
in which we performed three subsequent rotations with independent
Gaussian distributed random angles with zero mean and a standard
deviation of 1°.

Model architecture
To generate synthetic FODs, we adapted the α-WGAN (Code available
under https://github.com/CUB-IGL/alpha-WGAN-for-FODs) that was
initially proposed to generate three-dimensional MRI data by Kwon et al.23.
The α-WGAN model reduces the effect of two issues of classical GANs:
mode collapse and instability of the training, by combining theWasserstein
GAN with a variational autoencoder (VAE). The learning process is per-
formed by the interplay of four subnetworks (see Fig. 9): the Generator, the
Discriminator, the Encoder and the Code Discriminator.

As in the classical GAN, the Generator transforms a one-dimensional
array of Gaussian distributed random numbers zr into a synthetic data set
xsyn =G(zr), here the FODs represented by four dimensional arrays of size
28 × 128 × 128 × 64. We refer to the number of components of zr as the
latent dimension forwhichwe choose 5000. In theα-WGANit is alsopart of
a VAE in the function of the Decoder. The Generator consists of six layers
(see Table 1 for all details). The first layer is a 3D transposed convolutional
layer including a batch normalisation and a leaky ReLU activation function.
Afterwards, we double the number of increments in each spatial dimension
by nearest neighbour interpolation. followed by a convolutional layer, batch
normalisation and a ReLU activation function. This block, consisting of
interpolation, convolutional layer, batch normalisation and ReLU is repe-
ated four times. After these five blocks, nearest neighbour interpolation is
performed only for increments along the frontal and the horizontal axis,
followed by a 3D convolutional layer and a tanh activation function. As
shown in Table 1, we reduce the output channels from layer to layer.

Fig. 8 | Tract volumes and along-tract fibre densities. In (A), we show the tract
volumes from synthetic and validation data startingwith the smallest one on the left-
hand side to the largest one on the right-hand side. Themean values are presented as
crosses and dots, the standard deviation is indicated by the coloured area. In (B), we

present the mean volume ratio of synthetic to validation data. The dashed vertical
lines in (A, B) indicate the positions of the UF, OR, CST, AF, IFOF and the CC. In
panel C, we show the fibre density along the indicated tracts. The lines present the
mean values at each streamline increment, the areas the standard deviations.
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The Discriminator is a classifier that aims to distinguish real FODs
from the training data from generated FODs. This classification is repre-
sented by a single real number output. It consists of six 3D convolutional
layerswith leakyReLUactivation functions (seeTable 2 for all details). After
layer 2–5 a batch normalisation is performed.

The Encoder projects the FODs of the training set into a vector in the
latent space ze = E(xtrain) that has the same dimensionality as zr. Except the
output of its last layer, its implementation is same as the Discriminator
(seeTable 3 for details).Note that theGenerator alsoworks as thedecoder in
a VAE such that xdec = G(ze) ≈ xtrain).

The Code Discriminator (CD) classifies data as Gaussian distributed
random variables and is trained by zr. It ensures that the encoded training
data ze follow a continuous Gaussian distribution. It consists of three linear
layers. After layer one and two, batch normalisations are performed and
leaky ReLUs are used as activation functions (see Table 4).

Model training
For training, we useAdamoptimisation for all networkswith a learning rate
of 0.0001 and a batch size of 6. We use one batch of generated Gaussian
random numbers zr in the latent space and one batch with randomly
selected FODs xtrain from the training set. As in the original work from
Kwon et al.23, the first loss function contains theWasserstein distances used
to train the Generator and the Encoder and the L1 distance for FODs from
the training data xtrain and their corresponding decoded versions

xdec = G(E(xreal)). It reads:

LG;E ¼ �hDðxdecÞi � hDðxsynÞi � hCDðzeÞi þ λhkxreal � xdeckL1 i; ð1Þ

where the angular brackets denote the averages over the batches. Note that
the term 〈CD(zr)〉 ismissing, since both, the generator and the encoder have
no effect on it. Compared to the original αWGAN, we drastically increased
the influence of the VAE by setting λ = 50, 000 in order to avoid mode
collapse of the generated data. To train the Discriminator and the code
discriminator, we use the loss functions

LD ¼ hDðxdecÞi þ hDðxsynÞi � 2hDðxtrainÞi þ κϕD andLCD ¼ hCDðzeÞi � hCDðzrÞi þ κϕCD;

ð2Þ
respectively, where ϕD and ϕCD are the gradient penalty terms (see also
ref. 48). ϕD is calculated as

ϕD ¼ hðk∇x̂Dðx̂ÞkL2 � 1Þ2i þ hðk∇~xDð~xÞkL2 � 1Þ2i; ð3Þ

where x̂ ¼ αxtrain þ ð1� αÞxsyn and ~x ¼ βxtrain þ ð1� βÞxdec. Again, the
angular brackets denote the average over the batch. For each batch com-
ponent, different random numbers α and β are used. ϕCD is calculated
similarly: ϕCD ¼ hðk∇ẑCDðẑÞkL2 � 1Þ2i with ẑ ¼ γze þ ð1� γÞzr . Here γ
is a uniformly distributed random number that is drawn for each batch
component. As proposed by Kwon et al., we use κ = 10. Within one epoch,

Fig. 9 | α-Wassterstein GAN. The network model used in this paper is the combination of the Wasserstein GAN (red path) and a variational autoencoder (blue path).

Table 1 | Generator implementation details: in the first layer, we apply a 3D transposed convolutional layer and 3Dconvolutional
layers elsewhere

Generator
layer scale input output kernel stride padding batch ReLU

factor channel channel size norm neg. slope

1 5000 3200 4 1 0 ✓ 0.1

2 2 3200 1600 3 1 1 ✓ 0.0

3 2 1600 800 3 1 1 ✓ 0.0

4 2 800 400 3 1 1 ✓ 0.0

5 2 400 200 3 1 1 ✓ 0.0

6 2,2,1 200 28 3 1 1

Inbetween the layers,weperformnearest neighbour interpolation.Herea scaling factor of 2means thatwedouble thenumber of increments in all spatial dimensionsand thescale factor 2,2,1 thatwedouble
the increments only in the axial layer. After each of the layers 1-5, we use batch normalisations and ReLU activation functions and after the sixth layer, we use tanh as activation function.
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we first update LG,E and perform one optimiser step for E and two for G.
Afterward, we perform four loops of updating LD and perform an optimiser
step forD. At the end of each epoch, we update LC and perform the update
step for CD. In total, we trained our network for 37,000 epochs with a
computation time of seven days.

Tractography, connectome construction and single tract
generation
As an example of usability of the generated data, we reconstructed structural
connectomes. To consider all spatial dimensions equally, we regridded the
data to an isotropic voxel size of 1.25 mm using MRtrix3. Subsequently,
probabilistic tractography was performed with the 2nd-order integration
over FODs (iFOD2) algorithm29.We set themaximum streamline length to
250 mm. For each tractogram, we computed five million streamlines. We
registered the Automated Anatomical Labelling atlas (AAL)49 to the indi-
vidual space obtaining subject-specificparcellations.All resultswere visually
inspected before subsequent computations. Streamline weights were
assigned by applying the SIFT2 algorithm50 to the whole-brain tractogram,
determining an appropriate cross-sectional area multiplier for each
streamline. We obtained structural connectome matrices by mapping the
streamlines based on their assignments to the node-wise endpoints defined
in the AAL parcellation. This resulted in weighted, undirected networks
represented by symmetric 116 × 116 adjacency matrices. We observed
higher streamline weights for synthetic data yielding a bias in the

connectomes. To correct for that bias, we normalised the connectomes such
that the sum of all connections is one or, put differently, the sum of all
components of the connectivity matrix is two considering the double
occurences in the symmetricmatrix. Furthermore,we reconstructed72fibre
bundles per dataset using TractSeg version 2.843. We used two different
algorithms: the deterministic, FOD-peak based tractography algorithm
FACT and the FOD-based, probabilistic iFOD2 algorithm29.

Validation
For validation, first of all we visually inspected the FOD volumes and
compared different contrasts for different anatomical regions. We also
compared the FOD values by histogram analysis. Furthermore, we com-
pared two FODs by calculating the sum of voxelwise squared differences.
We used the distribution of these squared differences for all pairs within one
dataset to quantify its variation. We compared connectomes from the
generated data with connectomes from the validation data bymeans of two
measures. Firstly, we compared the global complex networkmeasure global
efficiency for weighted networks26 that we calculated using the brain con-
nectivity toolbox in Python (bctpy 0.6.1). Secondly, we performed the
mantel test28 for the connectomes using themantel 2.2.0 package in Python.
From the single tracts, we considered the CC (commissural fibres), the left
and right AF (association fibres) and the left and right corticospinal tracts
(projection fibres) as well as the inferior fronto-occipital fascicle, the unci-
nate fascicle and the optical radiation of both sides. Using MRtrix3, we
mapped the selected fibre bundles as binary masks with an isotropic voxel
size of 1mmand compared the volumes aswell as the shapes of the resulting
tractograms by calculating the Sjørensen-Dice score (cf.51,52) for two binary
masks A and B as:

SðA;BÞ ¼ 2
P

A � B
P

AþP
B
; ð4Þ

where * denotes an element-wise product and the sums go over all three
spatial dimensions and, thus, represents the volumes of the bundles.
Moreover,we calculated the apparentfibredensity from theFODs following
the procedure in53 using MRtrix. We restructured the streamlines of the
tracts into 100 equidistant points and sampled thefibre densities along these

Table 2 | Discriminator implementation details: we use six 3D convolutional layers, batch normalisation only in layers 2 to 5 and
ReLU activation functions

Discriminator
layer inp. channel out. channel kernel size stride padding batch norm ReLu neg. slope

1 28 125 4 2 1 0.2

2 125 250 4 2 1 ✓ 0.05

3 250 500 4 2 1 ✓ 0.05

4 500 1000 4 2 1 ✓ 0.05

5 1000 2000 4,4,3 2,2,1 1 ✓ 0.05

6 2000 1 4 1 0

Table 3 | Encoder implementation details: The encoder has the same structure as the Discriminator, except that the number of
output channels in the last layer is 5000 instead of 1

Encoder
layer inp. channel out. channel kernel size stride padding batch norm ReLu neg. slope

1 28 125 4 2 1 0.2

2 125 250 4 2 1 ✓ 0.05

3 250 500 4 2 1 ✓ 0.05

4 500 1000 4 2 1 ✓ 0.05

5 1000 2000 4,4,3 2,2,1 1 ✓ 0.05

6 2000 5000 4 1 0

Table 4 | Code Discriminator implementation details: we use
three linear layers with batch norm and ReLU activation
functions in layers one and two

Code
Discriminator
layer inp. features out.

features
batch
norm

ReLu
neg. slope

1 5000 4096 ✓ 0.2

2 4096 4096 ✓ 0.2

3 4096 1 –
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tracts. We also tested our data for a regionally specific bias by determining
the mean and standard deviations of the fibre densities in AAL parcels. For
comparison,we calculated the relative differences inmean (fd) and standard
deviations (σ), that we define as

Δfd ¼
j fdsyn � fdvalj
fdsyn þ fdval

andΔσ ¼ jσsyn � σvalj
σsyn þ σval

: ð5Þ

Computational resources
We conducted the experiments at our HPC environment of the Charité -
Universitätsmedizin Berlin. The model was trained on an NVIDIA DGX
A100 80G system, with 128 AMD Epyc cores (Rome), 2TB RAM, 32TB
local scratch space and 8xNVIDIAA100 80GGPUs. Both the frontend and
the computing nodes run CentOS 8.3. We used Python 3.10 with the
Pytorch deep learning library. Training required around 7 days of
computation time.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The code used for initialising and training of the neural networks, as well as
the trained neural networks, scripts to generate FODs and used synthetic
andvalidationdata are available underZenodo (https://zenodo.org/records/
13902256 version 3) as synthetic_FODs.zip, validation_FODs.zip, synthe-
tic_connectomes.zip and validation_connectomes.zip. Global efficiencies
presented in Fig. 7C are up-loaded as global_efficiency_validation.txt and
global_eff iciency_synthetic.txt, mantel correlations presented in Fig. 7C as
mantel_correlations.txt. Dice scores presented in Fig. 8 are uploaded as
dice.zip. Presented and analysed tracts are uploaded as tracts_synthetic.zip
and tracts_validation.zip. Tract volumes presented in Fig. 9A are uploaded
as tract_volumes_synthetic.txt and tract_volumes_validation.txt. Fibre
densities measured along the tract as presented in Fig. 9C are uploaded as
along_tract_fd_validation.zip and along_tract_fd_validation.zip. All other
data is available on request.
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