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ABSTRACT

Context. It has recently been shown numerically that a small-scale dynamo (SSD) instability might be possible in solar-like low
magnetic Prandtl number plasmas. It was proposed that the presence of SSD might have a significant effect on the dynamics of the
large-scale dynamo (LSD) in stellar convection zones. The simultaneous study of these two dynamos, SSD and LSD, in a global
magnetoconvection model requires high-resolution simulations and large amounts of computational resources.
Aims. Starting from a well-studied global convective dynamo model that produces cyclic magnetic fields, we systematically increased
the resolution and lowered the diffusivities to enter the regime of Reynolds numbers that enable the excitation of SSD in addition to
the LSD. We studied the change in the properties of convection, generated differential rotation profiles, and LSD solutions due to the
presence of SSD.
Methods. We performed semiglobal convective dynamo simulations in a spherical wedge with the Pencil Code. The resolutions of
the models were increased in four steps by a total factor of 16 to achieve maximum fluid and magnetic Reynolds numbers of above
500.
Results. We found that differential rotation is strongly quenched by the presence of the LSD and SSD. Even though the small-scale
magnetic field only mildly decreases with increasing Reynolds number, the large-scale field strength decreases significantly. We found
no significant quenching of the convective flows by the SSD, as recently claimed by other authors; in contrast, the convective flows
first grow and then saturate for increasing Reynolds numbers. Furthermore, the angular momentum transport is highly affected by
the presence of small-scale magnetic fields, which are mostly generated by tangling of the LSD. These fields not only change the
Reynolds stresses, but also generate dynamically important Maxwell stresses. The LSD evolution in terms of its pattern and field
distribution is rather independent of the increase in the fluid and magnetic Reynolds numbers.
Conclusions. At high fluid and magnetic Reynolds numbers, an SSD can be excited in addition to the LSD, and both strongly affect
the angular momentum transport. Hence, it is important to study both dynamos and their interplay together to fully understand the
dynamics of the Sun and other stars.
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1. Introduction

The Sun and other cool stars exhibit large-scale magnetic fields
that in some cases show cyclic variations (e.g. Baliunas et al.
1995; Boro Saikia et al. 2018; Olspert et al. 2018). This is asso-
ciated with a large-scale dynamo (LSD) that operates in the stel-
lar convection zones and produces complex magnetic features
on the surface (Charbonneau 2014). In addition to the LSD, a
small-scale dynamo (SSD) has been proposed to be present in
these stars (e.g. Rempel et al. 2023). In contrast to an LSD, the
SSD needs no large-scale rotation, shear, or stratification to op-
erate, and the scales of its magnetic field are at or below the
characteristic scales of the flow (Brandenburg & Subramanian
2005). There is some debate whether an SSD can operate in
solar-like stars. These doubts were supported on one hand by
numerical simulations, which showed that an SSD is increas-
ingly harder to excite when approaching the solar parame-
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ters (Schekochihin et al. 2005), and on the other hand by the
inconclusive results of small-scale field observations on the
Sun (Bellot Rubio & Orozco Suárez 2019). Some observational
studies showed a cyclic modulation of the internetwork field,
that is, a connection to the cyclic large-scale magnetic field,
whereas other studies showed that these fields are rather cycle-
independent. The doubts based on numerical simulations, how-
ever, were recently alleviated by high-resolution simulations at
magnetic Prandtl numbers (PrM) that approached the solar value
more closely than ever before (Warnecke et al. 2023). These sim-
ulations showed that an SSD is not only possible at these very
low PrM, but that it becomes even easier to excite in this limit.
This indicates a possible dynamical importance of the SSD in
the Sun and solar-like stars.

The influence of SSD on the dynamics and LSD was
studied with simplified setups (Vainshtein & Cattaneo 1992;
Tobias & Cattaneo 2013; Squire & Bhattacharjee 2015; Singh
et al. 2017; Väisälä et al. 2021), but global convective dy-
namo simulations (Käpylä et al. 2023) were only recently able
to reach the regime in which both LSD and SSD are excited
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and can therefore be studied together (Hotta et al. 2016, 2022;
Käpylä et al. 2017a; Hotta & Kusano 2021, hereafter HK21,
HKS22). Hotta et al. (2016) reported that the SSD suppresses
small-scale flows, which mimics the properties of an enhanced
magnetic diffusivity. This in turn enhances the LSD. Käpylä et al.
(2017a) found on the other hand that the SSD quenches differen-
tial rotation. Because this is one of the main dynamo drivers, it
consequently suppressed the LSD in some of their cases.

The influence of the magnetic field on the differential ro-
tation has been investigated in many previous analytical and
numerical studies. The early global magnetoconvection studies
of Gilman (1983) already showed that large-scale magnetism
quenched differential rotation, but did not affect the convective
motions in a clear manner. Analytical studies in the mean-field (Λ
effect) framework produced similar results (e.g. Kitchatinov et al.
1994a). Many other global magnetoconvection studies followed
(e.g. Fan & Fang 2014; Karak et al. 2015; Käpylä et al. 2016,
2023; Warnecke et al. 2013, 2016; Brun et al. 2022), but the most
relevant for our work is Käpylä et al. (2017a), because it entailed
an SSD. These authors reported that an increase in the magnetic
Reynolds number ReM leads to a strong suppression of differential
rotation. The authors further suggested that the Maxwell stresses
become comparable to the Reynolds stresses, and that therefore,
only a weak differential rotation can be generated. They found that
the increase in Maxwell stresses is partly due to a strong SSD.
HK21 and HKS22 reported that the efficient SSD in their simu-
lation was able to reshape an antisolar differential rotation into a
solar one for increasing Reynolds numbers Re. Because the results
obtained with different approaches diverge quite significantly, it is
necessary to further investigate the role of SSD in LSD-active and
differentially rotating systems. As magnetic fluctuations originate
from different sources, namely SSD-action itself and tangling of
the mean field through convective turbulence, it is also important
to gain further insights into the role of these two contributions sep-
arately. These are the most important goals of this paper.

Since the pioneering work of Brandenburg (2016) and
Käpylä et al. (2017b), it has been known that a more realistic
description of the radiative heat diffusivity using the Kramers-
opacity-based term can lead to the formation of subadiabatic
layers at the base of the convection zone (e.g. Käpylä et al. 2019;
Viviani & Käpylä 2021). The dependence of the shape and depth
of these layers on Re or the presence of SSD and LSD has only
been studied in a few Cartesian simulations (Hotta 2017; Käpylä
2019a, 2021), but not in a global setup.

We present a study of a global convective dynamo model in an
azimuthal wedge of a spherical shell using the Kramers-opacity-
based heat conductivity. We increased the resolution systemati-
cally from 128× 256× 128 to 2048× 4096× 2048 grid points to
reach Re and ReM of above 500. This parameter regime allowed us
to investigate the LSD and SSD interaction in detail. To separately
study the effect of the LSD and SSD on the overall dynamics, we
ran for each configuration a full model, in which potentially both
LSD and SSD can be excited; a reduced model, in which the large-
scale field was removed to allow only for an SSD; and a hydrody-
namic model without a magnetic field. The paper is organized as
follows: In Sect. 2 we present our model and setup, in Sect. 3 we
discuss the results in detail, and in Sect. 4 we present our conclu-
sions. Additional information is given in Appendices A–C.

2. Model and setup

The stellar convection zone was modeled in spherical geometry
(r, θ, φ) as a shell with a depth D = 0.3R similar to that in the
Sun (0.7R ≤ r ≤ R), where R is the radius of the star. We left

out the poles (θ0 ≤ θ ≤ π − θ0 with θ0 = 15◦) and restricted our
model to a quarter of the sphere (a wedge, with 0 ≤ φ ≤ π/2),
both for numerical reasons. Our model is similar to the models
of Käpylä et al. (2013, 2016, 2019) and we refer to these papers
for a detailed description.

We solved the fully compressible MHD equations in terms
of the vector potential A (ensuring the solenoidality of B), the
velocity u, the specific entropy s, and the density ρ, and we em-
ployed an ideal-gas equation of state. We included the rotational
effects by adding the Coriolis force 2u × Ω0 to the momentum
equation, where Ω0 = Ω0(cos θ,− sin θ, 0), and Ω0 is the an-
gular velocity of the corotating frame of the modeled star, in
which the plasma has zero total angular momentum. We chose
a constant magnetic diffusivity η and kinematic viscosity ν, ex-
cept near the latitudinal boundaries, where we added ν and η
profiles in some of the runs for numerical reasons. These two
profiles increased with θ toward the boundaries across an inter-
val ∆θ (see Appendix A for details). In our model, the diffusive
heat flux has two contributions. The first contribution models
the radiative heat flux as Frad = −K∇T with a temperature-
and density-dependent radiative heat conductivity K, based on
Kramers opacity, so that K is given by

K(ρ,T ) = K0

(
ρ

ρ0

)−2 (
T
T0

)13/2

, (1)

and the reference values ρ0 and T0 were set to the corresponding
values at the bottom of the domain in the initial (hydrostatic)
state (for details, see Barekat & Brandenburg 2014; Käpylä et al.
2019; Viviani & Käpylä 2021). The second contribution mimics
the heat flux of the unresolved or subgrid-scale (SGS) convection
and stabilizes the system. This SGS heat flux is given by FSGS =
−χSGSρT∇s. As in Käpylä et al. (2013), χSGS followed a smooth
radial profile that was zero at the bottom of the domain, constant
(χSGS = χSGS

m ) in the bulk, and maximum near the top, where it
transports most of the heat. For some of the hydrodynamic runs,
we needed to add a slope-limited diffusion (SLD) that acted on
density and velocity to stabilize the system (see Appendix B for
details).

The plasma was heated at the bottom by a constant heat flux
and cooled at the top by blackbody radiation. The velocity u was
stress-free at all radial and latitudinal boundaries, and the en-
tropy s had zero derivatives at the latitudinal boundaries. At the
lower radial and at the latitudinal boundaries, we chose the mag-
netic field B to follow a perfect conductor, while being purely
radial at the top. In the φ direction, the boundary conditions for
all quantities were periodic.

Our runs were defined by the following nondimensional in-
put parameters: We defined a normalized angular frequency and
the Taylor number

Ω̃ = Ω0/Ω�, Ta =
[
2Ω0D2/ν

]2
, (2)

where Ω� = 2.7 × 10−6 s−1 is the rotation rate of the Sun, while
the thermal, SGS-thermal, and magnetic Prandtl numbers were

Pr =
ν

χm
, PrSGS =

ν

χSGS
m

, PrM =
ν

η
, (3)

where χm = K(r = rm)/ρcP is the thermal diffusivity based
on the Kramers opacity in the middle of the convection zone
(r = rm), see Eq. (1), and cP is the specific heat capacity at con-
stant pressure. As K depends on local density and temperature,
we used a one-dimensional hydrostatic model to determine K
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Table 1. Summary of runs.

Run Resolution Ta[108] RaKram[107] RaSGS[107] R̃aSGS Pr Re Co SLD ∆θν ∆θη ∆νη

0M 128× 256× 128 1.25 73 1.2 48 5.13 27 10.4
0H 128× 256× 128 1.25 73 1.2 48 5.13 28 9.9 Yes
1M 256× 512× 256 5.00 280 5.9 94 1.52 61 9.3 5◦ 5◦ 2
1H 256× 512× 256 5.00 280 5.9 94 1.52 66 8.5 Yes
2M 512× 1024× 512 20.0 1050 23.7 149 0.58 127 8.9 5◦ 5◦ 5
2S 512× 1024× 512 20.0 1050 23.7 149 0.58 139 8.1 5◦ 5◦ 5
2H 512× 1024× 512 20.0 1050 23.7 149 0.58 143 7.9 Yes 5◦ 5
3M 1024 × 2048 × 1024 80.0 3155 71.5 178 0.27 255 8.9 17◦ 17◦ 5
3S 1024 × 2048 × 1024 80.0 3155 71.5 178 0.27 265 8.5 17◦ 5◦ 5
3H 1024 × 2048 × 1024 80.0 3155 71.5 178 0.27 287 7.9 Yes 17◦ 5
4M 2048 × 4096 × 2048 320.0 7536 185.9 184 0.12 517 8.7 17◦ 5◦ 5
4M2 2048 × 4096 × 2048 320.0 7536 185.9 184 0.12 549 8.5 17◦ 5◦ 5
4S 2048 × 4096 × 2048 320.0 7536 185.9 184 0.12 550 8.2 17◦ 5◦ 5

Notes. Columns 2 to 7: input parameters. Columns 8 and 9: solution parameters, calculated from the saturated stage of the simulations. The last
four columns indicate whether SLD and/or a diffusion profile in θ was used with the corresponding parameters (see Appendices A and B). All runs
had a density contrast Γρ ≡ 〈ρ〉θφ(0.7R)/〈ρ〉θφ(R) of roughly 30, and Ω̃ = 5, PrSGS = 1. The M and S runs had PrM = 1.

and ρ for Pr. We note that Pr in the saturated stage can be sig-
nificantly different from the hydrostatic model. Additionally, we
defined two Rayleigh numbers calculated from the same hydro-
static model, one based on the Kramers heat diffusivity χ,

RaKram(r) =
GMD4

νχ(r)R2

(
− 1

cP

dshs

dr

)
, (4)

and the other on the SGS heat diffusivity χSGS,

RaSGS(r) =
GMD4

νχSGS(r)R2

(
− 1

cP

dshs

dr

)
, (5)

where shs is the specific entropy in the hydrostatic model, G is
the gravitational constant, and M is the total mass of the star. Our
specific choices of Ra reflect the difficulty of defining a mean-
ingful value for fully compressible convection. To meet the re-
quirement of being determined by input parameters, that is, in
the absence of convection, we used a one-dimensional version
of our setup and allowed it to equilibrate to the hydrostatic state
shs. As the Rayleigh numbers strongly depend on r and are not al-
ways positive in the middle of the domain (as in the non-Kramers
runs), we averaged them over their logarithmized positive con-
tribution ln Ra+,

Ra = exp 〈ln Ra+(r)〉r, (6)

where the subscript r marks radial averaging.
To estimate the supercriticality, we defined a further

Rayleigh number, in which the reduction of supercriticality due
to rotation was compensated for by the Taylor number R̃a =

Ra/Ta2/3, following (e.g. Chandrasekhar 1961; Roberts 1968;
Barik et al. 2023).

We further characterized our simulations by the fluid and
magnetic Reynolds numbers together with the Coriolis number,

Re =
urms

νkf
, ReM =

urms

ηkf
, Co =

2Ω0

urmskf
, (7)

where kf = 2π/D ≈ 21/R is an estimate of the wavenumber of

the largest eddies in the domain, and urms =

√
(3/2)〈u2

r + u2
θ〉rθφt

is the rms velocity; the subscripts indicate averaging over r, θ, φ,

and a time interval covering the saturated state. This definition is
a good estimate of the turbulent velocity because the meridional
circulation is weak in all of our runs and the 3/2 factor accounts
for the omitted azimuthal component of u (see also Käpylä et al.
2013 for more details).

The nondimensional input and solution parameters are given
in Table 1 for all runs. In summary, we used the same model as
in Käpylä et al. (2016), except that we applied the Kramers heat
conductivity instead of a fixed conductivity profile.

For our analysis throughout the paper, we decomposed each
field into a mean (axisymmetric) and a fluctuating part, which
are indicated by an overbar and a prime, respectively. For ex-
ample, B = B + B′ and u = u + u′. Restricted to fluctuating
fields, we defined an r- and θ-dependent turbulent rms veloc-
ity u′rms(r, θ) =

〈
u′ 2

〉
t
1/2, turbulent rms magnetic field strength

B′rms(r, θ) =

〈
B′ 2

〉
t

1/2, and turbulent equipartition field strength

Beq(r, θ) = u′rms(µ0ρ)1/2, where µ0 is the magnetic vacuum per-
meability. The total kinetic energy density is defined as

Etot
kin = 1

2

〈
ρu2

〉
V
, (8)

which is further decomposed into the energy densities of the fluc-
tuating velocity, the differential rotation, and the meridional cir-
culation,

Eflu
kin = 1

2

〈
ρu′ 2

〉
V
, Edif

kin = 1
2

〈
ρu2

φ

〉
V
, Emer

kin = 1
2

〈
ρ
(
u2

r + u2
θ

)〉
V
. (9)

Here, 〈·〉V indicates volume averaging. In a similar way, the total
magnetic energy density is defined as

Etot
mag = 1

2µ0

〈
B2

〉
V
, (10)

and it can be split into the energy density of the fluctuating field,
along with those of the toroidal and poloidal mean fields,

Eflu
mag = 1

2µ0

〈
B′ 2

〉
V
, Etor

mag = 1
2µ0

〈
B

2
φ

〉
V
, Epol

mag = 1
2µ0

〈
B

2
r + B

2
θ

〉
V
.

(11)

The presented analyses and quantities were performed and
calculated from the saturated stage of the simulations. The
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rescaling to physical units was based on the solar rotation rate
Ω� = 2.7 × 10−6 s−1, solar radius R = 7 × 108 m, density
at the bottom of the domain ρ(0.7R) = 200 kg/m3, and µ0 =
4π · 10−7 H m−1. As discussed in Käpylä et al. (2013, 2014), this
is one particular choice that gives meaningful results for the in-
put flux, the velocities, and magnetic field strengths in the bulk
of the convection zone. All simulations were performed using
the Pencil Code (Pencil Code Collaboration 2021).

3. Results

Our goal was to study the LSD and SSD together in a setup that
includes a physically motivated heat conductivity based on the
Kramers opacity. As our starting point, we used the model of
Käpylä et al. (2016), with the only difference that we replaced
the prescribed heat conductivity by a conductivity based on the
Kramers opacity; this represents Run 0M. We then lowered step
by step the viscosityν, the magnetic diffusivityη, and the SGS heat
diffusivity χSGS, which caused the simulation to become gradu-
ally more turbulent, while keeping PrSGS and PrM constant. At
each step, indicated by the number in the run label, the diffusivi-
ties were halved, which led to a total reduction by a factor of 16
from Set 0 to Set 4. Technically, this required doubling the reso-
lution and remeshing the run at each step, and finally, running the
simulation in the saturation regime for a sufficient time span.

To study the effects of the SSD in isolation and to determine
whether it was indeed present, we forked each MHD run into two
with identical setups: In the first setup, denoted with S, we re-
moved the mean field B at every fifth1 time step. No LSD was
therefore able to develop. When an SSD was sustained, we studied
it in detail. In the second setup, denoted by M, we did not remove
the mean field, and the LSD was therefore able to develop freely.
Finally, we also performed the corresponding hydrodynamic sim-
ulations, denoted by H. Run 4M2 was basically the same as 4M,
but we did not remesh and restart from 3M, which had an LSD,
but restarted from 4S, where only an SSD was present. This again
allowed the LSD to grow after the restart. Our motivation was here
to study whether an LSD can be excited and grow in the presence
of already existing strong magnetic fluctuations. Runs 0M to 2M
were similar to Runs G1 to G3 in Käpylä et al. (2017a), where-
upon the difference is in the use of the Kramers-opacity-based heat
conductivity in our work and in a normal magnetic field condition
at the latitudinal boundaries in G2 and G3.

All runs are listed in Table 1 with their control and solution
parameters. We note that an SSD is present in Sets 2−4, imply-
ing that its critical ReM lies between roughly 60 and 130. This is
consistent with the study of Käpylä et al. (2017a), who typically
found an SSD for ReM > 60. Interestingly, run G2 of Käpylä et al.
(2017a) has an SSD with ReM = 66, in contrast to our Run
2M with ReM = 61, which does not excite an SSD. Either the
SSD is very close to critical, or the slight differences in the se-
tups are causal. We note here that ReM in their work and ours is
only an average, and it hence does not reflect the detailed local
dynamics. The critical ReM we found is somewhat higher than
what was obtained from theoretical models for smooth velocity
fields at low compressibility, which yielded predictions of about
30−60 (Brandenburg & Subramanian 2005), and 30−50 for sim-
ple isothermal forced-turbulence models (e.g. Schekochihin et al.
2005; Väisälä et al. 2021; Warnecke et al. 2023).

When the diffusivities are decreased, the Rayleigh numbers
RaKram and RaSGS strongly increase by a factor of more than

1 This cadence was chosen to avoid slowing down the computing while
still removing the large-scale field efficiently.

100. However, because also the Taylor number, Ta, increases
significantly by a factor of nearly 300, one needs to inspect
the compensated Rayleigh number R̃aSGS to assess whether the
supercriticality increased as well. Indeed, R̃aSGS is nearly four
times higher in the run with the lowest diffusivities than in the
run with the highest diffusivities. The rotational influence on the
convection in terms of Co decreased only slightly when the diffu-
sivities were decreased because the turbulent convection becomes
slightly stronger. Pr is above unity for Sets 0 and 1 and below unity
for Sets 2−4, indicating that heat conduction (in the middle of the
convection zone) is dominated by the SGS contribution for Sets 0
and 1 and by the Kramers contribution otherwise. We recall, how-
ever, that these two terms involve different gradients.

All runs reached dynamical saturation in terms of their run-
ning time tmax being a multiple of the convective turnover time
τ = 1/urmskf ; i.e., tmax/τ > 3000 for Sets 0, 1 and 2, tmax/τ > 360
for Set 3, and tmax/τ > 2.4 for Set 4. In terms of the turbulent
magnetic diffusion time τturb

mag = D2/ηt with ηt = urmskf/3, which
is important for the evolution of the mean field, all runs from Sets
0−3 reached multiples of τturb

mag and hence can be considered to be
in a steady state (see also the discussion in Sect. 3.2).

3.1. Overview of the dynamics

As shown in Fig. 1 for all the M runs, the radial velocity be-
comes more turbulent and develops progressively more small-
scale structures when the diffusivities are decreased and hence
the Reynolds numbers increase. For all runs, prominent ther-
mal Rossby waves, also known as Busse columns or banana
cells (e.g. Busse 1970, 1976; Featherstone & Hindman 2016;
Bekki et al. 2022), were present outside the tangent cylinder in
the equatorial regions. This agrees with earlier models and the-
oretical expectations. Interestingly, the longitudinal degree of
these waves did not vary much with increasing Re. It was mostly
between m = 32 and m = 40 for all runs (see Appendix C for a
more detailed analysis).

In Fig. 2 we show the corresponding radial magnetic field
close to the surface for all the M runs. Near the equator, the ra-
dial magnetic field is mostly concentrated in the downflow lanes
of the banana cells, where it forms complex structures with small
bipolar patches. The radial field is mostly dominated by mag-
netic fluctuations, while the mean field is not visible near the
equator. At higher latitudes in Runs 0M–2M, hints of longitudi-
nal bands of the same polarity as traces of the weak mean radial
field are visible. For 3M, 4M, and 4M2, these patterns are no
longer as clearly visible.

In Fig. 3 we show the azimuthal magnetic field for Runs 2M,
2S, 3M, 3S, 4M, and 4S. For this component, the difference be-
tween Sets S and M is most pronounced. In the M runs, the
mean field is clearly visible at all covered latitudes. The mag-
netic fluctuations in these runs are also present ubiquitously.
In Run 2S, the fluctuating magnetic field is more concentrated
near the equator. The fluctuations become distributed over pro-
gressively wider latitude ranges when the Reynolds numbers are
increased (see Runs 3M to 4M). Interestingly, the banana-cell
pattern does not produce a strong imprint on the azimuthal mag-
netic field structure.

3.2. Energies

Next, we studied the total (volume-averaged) energy densities, as
shown in Fig. 4 and Table 2. For the H runs, the kinetic energy is
generally higher than for the other sets, and it is dominated by the
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Fig. 1. Radial velocity ur at r = 0.98 R with a low-latitude cutout for all M runs in the saturated stage. The wedge is duplicated to form a
half-sphere.

Fig. 2. Radial magnetic field Br at r = 0.98 R for all M runs. Otherwise the same as Fig. 1.
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Fig. 3. Azimuthal magnetic field Bφ at r = 0.98 R for all M runs with an SSD and the corresponding S runs. Otherwise the same as Fig. 1.

Fig. 4. Dependence of the kinetic and magnetic energy densities on Re.
In the top panel, we show Etot

kin (black), which is composed of Eflu
kin (red),

Edif
kin (blue), and Emer

kin (purple) for H runs (dashed), M runs (solid), and
S runs (dotted). In the bottom panel, we show Etot

mag (black) composed
of Eflu

mag (red), Etor
mag (blue), and Epol

mag (purple). EM
mag = Etor

mag + Epol
mag is the

energy density of the mean magnetic field (yellow) (see Eqs. (8)–(11)
for definitions). The lower mean-field energy densities for Re ∼ 530
indicate Run 4M2, which has been started from Run S4 and is possibly
not yet saturated, hence the bifurcation.

differential rotation at all Re. For the M runs, the contribution of
the differential rotation becomes weaker and subdominant with
respect to the velocity fluctuations with increasing Re. For the
lowest considered diffusivities, however, the contribution of the
differential rotation to the total kinetic energy seems to level off
at a value of roughly 15%. The contribution of the meridional
circulation is tiny for all runs. The energies of the fluctuating
velocities remain for roughly constant at increasing Re. for all
sets, but are slightly higher for the H runs than for the M runs.

The S runs with small Re show a similar dominance of dif-
ferential rotation, but its contribution diminishes for growing Re,
similarly to the M runs. The S runs basically show a transition
from an almost purely hydrodynamic state (2S) to a fully mag-
netically dominated state (4S). This has to be attributed to the
SSD, which strongly increases with growing Reynolds numbers,
as we discuss below.

The magnetic energy increases with increasing Re for the
first three M runs. This is mostly due to the increase in the
mean field. For higher Re, the energy in the mean field actually
decreases, whereas the contribution of the small-scale field in-
creases. The results for the lowest diffusivities (4M, 4M2) need
to be taken with caution: Run 4M was restarted from a remeshed
earlier stage of 3M, at which the mean-field energy was still
high (see Fig. 13 and its discussion in Sect. 3.6). Run 4M was
most likely not run long enough for the magnetic field to reach a
new saturated stage. For 3M, it took already ∼10 yr to saturate.
Run 4M2 was started from 4S to determine how fast the mean
field was able to recover after it was removed. After running for
∼0.06 yr, the mean field was still very weak.

For all runs, the mean field is dominated by its toroidal part.
For all M runs, the small-scale field contribution dominates the
total magnetic energy and shows some tendency to increase for
high Re. In the runs without SSD (0M and 1M), the fluctuations
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Table 2. Energy densities for all runs.

Run Etot
kin Edif

kin Emer
kin Eflu

kin Etot
mag Etor

mag Epol
mag Eflu

mag Etot
mag/E

tot
kin Eflu

mag/E
flu
kin

0M 2.225 1.562 0.006 0.658 0.369 0.072 0.048 0.250 0.166 0.379
0H 17.089 16.159 0.010 0.920
1M 1.267 0.546 0.006 0.716 0.604 0.172 0.047 0.385 0.476 0.538
1H 4.397 3.457 0.010 0.930
2M 0.933 0.213 0.005 0.715 0.763 0.198 0.044 0.521 0.819 0.729
2S 5.643 4.503 0.010 1.130 0.140 0.000 0.000 0.140 0.025 0.124
2H 8.697 7.514 0.012 1.171
3M 0.923 0.197 0.005 0.721 0.510 0.057 0.023 0.430 0.553 0.597
3S 1.448 0.542 0.007 0.900 0.228 0.000 0.000 0.228 0.158 0.254
3H 7.352 6.347 0.011 0.993
4M 0.854 0.144 0.005 0.705 0.876 0.190 0.030 0.656 1.026 0.931
4M2 1.016 0.132 0.006 0.879 0.604 0.009 0.006 0.590 0.594 0.671
4S 1.004 0.137 0.005 0.862 0.514 0.000 0.000 0.515 0.512 0.597

Notes. The energy densities (Cols. 2 to 9) are in 105 J/m3, for their definitions see Eqs. (8)–(11).

contribute roughly 65% to the total magnetic energy. When the
SSD starts operating, this contribution increases from 68% (Run
2M) to 75% (4M).

In the S runs, we observe a significant increase in the magni-
tude of the magnetic fluctuations due to the strengthening SSD.
Let us assume that Eflu

mag in the S runs represents the strength of
the SSD-generated field well also in the corresponding M runs,
despite some differences in the flow dynamics. For Re ∼ 130, a
quarter of Eflu

mag is then due to the SSD, which increases to nearly
80% for Re ∼ 500.

In our interpretation, the quenching of the differential rotation
at low Re is caused by the small-scale field that is generated by
the tangling of the large-scale magnetic field and not directly by
the large-scale field. At higher Re, the SSD also generates a small-
scale field, which further quenches the differential rotation.

Disregarding Run 4M because of the issues mentioned
above, the total magnetic field energy tends to saturate at high
ReM because the increase in the fluctuating-field energy com-
pensates for the decrease in the mean-field magnetic energy. This
is in contrast to previous studies (Nelson et al. 2013; Hotta et al.
2016; Käpylä et al. 2017a), where the total field increased mono-
tonically with ReM. However, for the mean field, our study is
roughly consistent with the results of Nelson et al. (2013) and
Hotta et al. (2016). These authors reported that the mean-field
energy decreased with ReM. Our study is inconsistent with our
previous work (Käpylä et al. 2017a), however, where the mean
field did not decrease.

The total magnetic energy is close to equipartition with the
total kinetic energy only at the highest Re (4M) because of
the strong mean field and its tangled fluctuating field (see the
last two columns of Table 2). In the pure SSD runs, the field
reached only 50% of the equipartition value. This disagrees with
the results of HKS22, who found superequipartition fields at
their highest resolution. The comparison with recent work by
Yan & Calkins (2022) on large- and small-scale convective dy-
namos in plane layers yields several differences: They reported
that the ratio of the magnetic to kinetic energy decreased with in-
creasing R̃a, but showed some tendency to saturate from R̃a ≈ 50
on. In contrast, we found the opposite trend, but in the R̃a inter-
val [48, 184]. Moreover, we cannot confirm their conclusion that
SSDs are likely to yield lower energy ratios. We recall, how-
ever, that their simulations were performed at R̃eMTa1/6 ≈ O(1),
whereas we covered the R̃eM interval [26, 210].

3.3. Overshoot and Deardorff layers

Similar as in the work of Käpylä et al. (2019) and Viviani
& Käpylä (2021), we found that using a Kramers-based heat con-
ductivity causes the development of subadiabatic but convective
layers in addition to the usual convective zone. From top to bot-
tom of the domain, the zones are defined as

Fenth > 0, ds/dr < 0 buoyancy zone (BZ) (12)

Fenth > 0, ds/dr > 0 Deardorff zone (DZ) (13)

Fenth < 0, ds/dr > 0 overshoot zone (OZ) (14)

Fenth < 0,
∣∣∣Fenth

∣∣∣ < 0.03F tot radiative zone (RZ), (15)

where Fenth = cP(ρur)′T ′ is the radial enthalpy flux, and F tot =

F
rad

(0.7 R) is the total flux, defined by the flux through the bot-
tom boundary. In the definitions above, all fluxes are additionally
averaged over latitude, and hence, they only depend on the radius
r.

We investigate the dependence of these zones on Re for dif-
ferent runs in Fig. 5. As a first result, we observe that approx-
imately the lower quarter of the domain is convectively sta-
ble (even more so for low Re). This is consistent with pre-
vious works in similar parameter regimes (Käpylä et al. 2019;
Viviani & Käpylä 2021).

The DZ is more pronounced near the equator in the high-
diffusivity runs, especially in hydro cases. As Re increases, the
DZs become narrower near the equator and more uniform over
latitude, while their radial extent at high latitudes depends on the
presence of magnetic fields. In the M runs, the DZ becomes very
thin and is partly replaced by a thin OZ and an extended RZ for
high Re. In the S runs, the DZ is more pronounced at low lati-
tudes, even at high Re. For the H runs, it is always pronounced
at low latitudes. At high Re, however, most of it is replaced by
the overshoot zone.

Regarding the discussion on the dependence of the OZ depth
on Re (see Hotta 2017; Käpylä 2019a), our conclusion is com-
plex. For all runs, the depth at high latitudes seems to remain
rather constant, which agrees with Käpylä (2019a, 2021). At low
latitudes, however, the depth decreases with Re for the H runs,
which agrees with Hotta (2017), but it increases in the S runs. For
the depth of the DZ, Käpylä (2021) reported a weak dependence
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Fig. 5. Visualization of the four zones formed in the simulations: buoy-
ancy (BZ, yellow), Deardorff (DZ, red), overshoot (OZ, green), and ra-
diative zone (RZ, dark blue) (see Sect. 3.3 for definitions).

on Re, which we can confirm for high latitudes, but not through-
out.

3.4. Flow and magnetic field distribution

The variation in the fluid and magnetic Reynolds numbers also
impacts the distribution of the turbulent velocity and the mag-
netic fields. In Fig. 6 we illustrate the latitudinally averaged
radial profiles of u′rms for all runs and compare them with the val-
ues for the Sun, relying on the mixing-length theory (MLT) (see
the green line for the Standard Solar Model of Table 6.1 in Stix
2002). As MLT provides only radial velocities, we multiplied
them with

√
3 to obtain an estimate of urms assuming isotropy

of the flow. These values of the convective velocities need to be
taken with caution as they rely on crucial assumptions, such as
the value of the MLT parameter. Furthermore, helioseismic anal-
ysis has cast doubt on them (e.g. Hanasoge et al. 2012).

First, our values are somewhat lower than those from the
Sun, which is expected because the rotational effects in our simu-
lations are stronger, as indicated by the Coriolis numbers, which
range from Co = 8 to 9. Near the surface, significant discrepan-
cies arise that are likely due to the absence of a strong density

Fig. 6. Radial profile of the latitudinally averaged turbulent velocity u′rms
of all runs. The colors indicate the different run sets with different Re as
indicated. The solid lines show M runs, the dotted lines show S runs and
the dashed lines show H runs, The thick green line indicates the values
from the solar model of Stix (2002) based on mixing-length theory. The
inset shows u′rms at a fixed radius r = 0.9 R as a function of Re. There,
we overplot u′rms of Hotta & Kusano (2021) using the Re estimated in
HKS22 (solid red) and a reestimate according to Eq. (16) (dashed).

stratification. The M runs show the poorest agreement, while the
H runs exhibit higher velocities than their M counterparts. The
S runs fall between these two. We interpret this as suppression
of the turbulent velocities by magnetic fields, primarily by those
that are generated by the large-scale dynamo.

Upon investigating the turbulent velocity as a function of Re
at r = 0.9 R (see inset in Fig. 6), we observed as before that for
all H runs, u′rms is larger than for the M runs, with the S runs con-
sistently in between. The velocity fluctuations initially increased
for all run sets with Re and then decreased for higher Re. This
decrease is not as pronounced as the initial increase, however.
The decrease in u′rms in Run 4M might be caused by the mag-
netic field, but we observed a mild decrease in Run 3H as well
and even an increase for Run 4S. Therefore, this interpretation
may not be entirely valid.

We also compared our velocities to the results of HK21, who
reported that the SSD suppressed the turbulent velocity as their
effective Re increased. The authors did not explicitly define Re
because they used a SLD scheme without explicit diffusivities,
and they therefore estimated Re using the Taylor microscale. As
an alternative, we estimated their Re using the grid spacing of
our Set 4,

ReHK21 = Re4∆φ4/∆φHK21. (16)

Here, Re4 = 530 is a rough average of all Re in Set 4,
∆φ4 = π/2/2048 is the grid size in this set, and ∆φHK22 =
2π/(1536, 3072, 6144) is the variable grid size of the three runs
of HK21. This approach ensured that Re did not increase much
more than by a factor of two when the resolution was doubled,
in contrast to the approach of HKS22.

The comparison revealed two significant findings: First, as
evident from the inset of Fig. 6, their u′rms values are markedly
higher than ours and exceed those of the Standard Solar Model
(Stix 2002) for their low and medium resolutions. Second, our
simulations do not exhibit a decrease in u′rms with increasing
Re, as notable as observed in HK21. Instead, we only observe a
mild decrease at high Re. Two explanations for this behavior can
be considered: First, it may be linked to the more efficient SSD
in the highest-resolution simulation of HK21, which is likely a
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Fig. 7. Radial profile of the normalized latitudinally averaged turbulent
magnetic field B′rms/Beq of all runs. The color-coding and line styles are
the same as in Fig. 6, with the exception of Run 4M2 (purple dashed
line).

result of higher turbulent velocities. Second, it might be a conse-
quence of their use of a pure SLD scheme for viscous and mag-
netic diffusion, as opposed to the constant explicit diffusivities
employed in our study. This is supported by the fact that HK21
achieved a more efficient SSD at an even lower resolution than
we did.

However, if the turbulent velocities were quenched by the
SSD at high Re, we would expect to see a suppression of u′rms as
a function of Re only for the M and S runs, but we also observe it
for H runs. Another possible cause may be the specific setup of
HK21, who fixed the energy fluxes to the solar luminosity at both
radial boundaries, forcing the total energy to remain constant at
its initial value. This constraint assumes that the initial stage is
already very close to the final solution, because large departures
from the initial stratification are not possible. This makes the so-
lution intrinsically not self-consistent. We are confident that our
model, which allows the thermal energy to adjust to the dynam-
ics, is more self-consistent and hence more realistic.

Next, we examined the latitudinally averaged turbulent mag-
netic field strength B′rms, normalized by the equipartition field
strength in Fig. 7 (see Fig. 6 for the turbulent kinetic energy).
As expected, the turbulent magnetic field increased with Re for
the M and S runs. Weak superequipartition fields were only ob-
served for Run 4M in the middle of the convection zone. Runs
4M2, 4S, 3M, and 2M reached values above B′rms/Beq = 0.9,
but did not exceed unity in the entire convection zone. The pure
SSD (S) runs consistently exhibited weaker B′rms than their M
counterparts.

Interestingly, the field increased with Re (=ReM) for the M
runs, mostly in the lower half of the convection zone, and it ap-
peared to be mostly independent of ReM in the upper part of the
domain. Only the highest ReM run (4M) showed a slightly en-
hanced field in the upper part of the domain. In contrast, the S
runs showed an increase in B′rms with ReM throughout the do-
main. We interpret this as follows: In the M runs, where the SSD
is still weak, B′rms is primarily generated by the tangling of the
large-scale magnetic field. This process seems independent of
Re for the upper part of the domain but becomes more effective
in the lower part of the domain as Re increases. As the SSD in-
creases similarly at all radii, it also enhances B′rms for the highest
Re runs, where the SSD field becomes comparable to the tangled
field.

Fig. 8. Spectra of kinetic (a) and magnetic (b) energy density along with
their ratio (c) near the surface, r = 0.98 R, all excluding the m = 0 con-
tribution. As before the solid lines show M runs, the dotted lines show
S runs and the dashed lines show H runs, while different colors indicate
run sets with distinct Re. Panel (d) highlights the Re dependence of the
kinetic and magnetic spectra for l = 10 and 100.

In Fig. 8 we present the spherical-harmonic spectra of kine-
matic and magnetic energies along with their ratio for all runs,
calculated from near the surface (r = rs ≡ 0.98 R) θφ slices. The
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spectral energies Ẽkin(l) and Ẽmag(l) were calculated using the
following definitions:∑

l

Ẽkin(l) = rs Ekin|r=rs

∑
l

Ẽmag(l) = rs Emag
∣∣∣
r=rs

, (17)

where l is the spherical-harmonic degree, and the energy densi-
ties are given as

Ekin|r=rs
= 1

2µ0
〈ρu′2〉θφ

∣∣∣
r=rs

Emag
∣∣∣
r=rs

= 1
2µ0
〈b′2〉θφ

∣∣∣
r=rs

. (18)

We removed the mean-field contribution (m = 0) and summed
over all other m. Because of our wedge approach, l = 4
is the lowest possible l. We refer to Viviani et al. (2018) and
Käpylä et al. (2019) for details of computing spherical harmonic
decompositions from simulations of the presented type.

For low l, the kinetic energy spectra (Fig. 8a) are similar
for all runs – only the hydro runs have slightly higher ener-
gies. At the highest resolutions and l > 50, the velocity devel-
ops an inertial range, which can be best described by a power
law of l−11/5, as illustrated by the compensated spectrum in the
inset. This power law was predicted by Bolgiano (1959) and
Oboukhov (1959), and was also found in Käpylä (2021). How-
ever, as discussed in several studies (e.g., Brandenburg 1992;
Rieutord & Rincon 2010; Xie & Huang 2022; Alam et al. 2023),
this scaling was obtained for stably stratified media, but not
for rotating convection. Moreover, the Bogliani-Obukhov scal-
ing should only appear for those larger scales, which are influ-
enced by the gravity-induced anisotropy, while being followed
by a standard Kolmogorov scaling for smaller scales. Further-
more, we observe an extended inertial range only at the highest
resolutions, as viscous diffusion affects all l otherwise.

For the magnetic spectra (Fig. 8b), the energies are very sim-
ilar for all M runs at low l. 4M alone has a lower power at l < 10,
which might be caused by some data loss2. We do not observe
an inertial range with a clear power law, as in the H runs. For
the S runs, the energies are lower at all scales than for the cor-
responding M runs. However, Run 4S has a higher power than
the other S runs, however, in particular at low l, but it appears
to be indistinguishable from Run 4M for l > 100. That the field
in the S runs is lower than in the M runs, in particular at low l,
is consistent with nearly the entire field at l > 500 being due to
the SSD, whereas tangling is dominant at l < 500 for the high-
est ReM. Surprisingly, the shapes of the spectra of the M and S
runs are similar in general, which implies that the spectral prop-
erties of LSD- and SSD-generated fields are very similar, at least
for l ≥ 4. We only observe that amplitude differences are more
pronounced at l < 100.

To investigate whether the magnetic field reaches su-
perequipartition at certain scales, we also examined the ratio of
the magnetic and kinetic spectra near the surface, as shown in
Fig. 8c. Superequipartition is achieved (around l ∼ 1000) only
in Run 3S, whereas the corresponding M run has a maximum
energy ratio of 0.6. The lowest diffusivity runs only achieve just
equipartition for 600 < l < 2000. We note that these spectra
were taken close to the surface, where the horizontally averaged
magnetic field is well below equipartition, as shown in Fig. 7. We
would expect the spectral ratio at larger depths to be higher. The
fanning of the spectra, particularly at high l in the kinetic ones, is

2 Unfortunately, we lost the data slices of Run 4M, so we used some
early slices from Run 4M2, where the mean field was removed, but not
all large-scale fields had decayed yet.

related to inaccuracies resulting from employing spherical har-
monic decomposition on a spherical grid with an incomplete θ
range.

To show the Re dependence of the spectral energy more
clearly, we plot for l = 10 and 100 the kinetic and magnetic
energy as function of Re for all runs (see Fig. 8d). The kinetic
energy for l = 10 appears to decrease mildly with increasing Re.
Interestingly, this is not only the case for the M or S runs, but
also for the H runs and hence cannot be due to a suppression by
the magnetic field, as claimed in HK21. The magnetic energy at
l = 10 of the M runs seems to be independent of Re, except for a
mild decrease for the highest Re. A strong increase is seen only
for the S runs. The kinetic and magnetic energy at l = 100 in-
crease continuously. The kinetic energy alone seems to saturate
for the highest Re. For this scale, the strong SSD in the highest
Re runs has no marked influence on the kinetic energies.

When we compare our results with the spectra provided by
HK21 and HKS22, we find two main differences: They observed
superequipartition fields at small scales (l > 100) even for their
lowest resolution (similar to our Set 2). Additionally, the kinetic
energy at large scales is suppressed in their results at high Re
because of, as they interpreted it, their very strong SSD. We
observe a small decrease in the large-scale energy, but this is
also evident in the hydrodynamic runs. It is important to note
that HK21 and HKS22 only studied one purely hydrodynamic
run, and therefore, there is no Re dependence in their case. Fur-
thermore, their simulations only developed an SSD but no LSD,
which means that the influence of a large-scale field on the dy-
namics was not studied. The differences in the spectral properties
might also be related to these two main distinctions in the setup,
as discussed above.

3.5. Differential rotation and its generators

Next, we examined the profiles of differential rotation Ω =
Ω0 + uφ/r sin θ, as shown in Figs. 9 and 10, and investigated
the influence of the magnetic fields on their generation terms
(see Figs. 11 and 12). As observed from the energy analysis, the
differential rotation is most pronounced in the H runs and is sup-
pressed in the M and S runs.

In the H runs, the contours of constant angular velocity tend to
become more cylindrical toward the more turbulent regime, while
the maximum Ω values remain roughly constant across Runs 0H,
1H, and 2H. However, for the highest Re (Run 3H), the differen-
tial rotation is slightly weaker than in Run 1H. With increasing
Re, more jets of opposite sign become visible. Surprisingly, the
contours in Run 0H are far less cylindrical than in the H runs with
higher Re. We attribute this to the absence of Busse columns (or
banana cells) at the lowest Re, as illustrated in Fig. C.1.

As noted previously, the M runs consistently exhibit a
weaker differential rotation with Ω profiles strongly influenced
by the magnetic field. We observe a tendency for the isorotation
contours to become less cylindrical with higher Re. Except for
some local minima and maxima near the poles, the differential
rotation becomes much weaker in the highly turbulent regime
than in the less turbulent regime. Additionally, the differential ro-
tation profile in all cases with active SSD becomes increasingly
hemispherically asymmetric with rising Re. This is attributable
to the hemispherically asymmetric magnetic field. Notably, the
minimum of Ω at mid-latitudes nearly vanishes in the high-Re M
runs. For the S runs, the profiles at weak SSD (Run 2S) resemble
those of Run 2H. However, Run 3S with stronger SSD exhibits
a weaker differential rotation, similar to Run 3M. The profiles of
Runs 4S and 4M are almost the same. This might be related to
the issues of these runs discussed in Sect. 3.2.
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Fig. 9. Differential rotation Ω/Ω0, with Ω = Ω0 + uφ/r sin θ for all runs.

The changes in the differential profile with Re and the pres-
ence of the two dynamos become clearer in the plots of the
latitudinal distribution and Re dependence (Fig. 10) of Ω. It is
evident that it significantly decreases near the equator with in-
creasing Re and in the presence of a magnetic field. Moreover,
the jets present in the H runs at mid-latitudes are completely
suppressed in the M runs. Interestingly, the differential rotation
at the equator is already strongly suppressed in Run 2M, where
the SSD is relatively weak, indicating that the suppression is due
to the magnetic field generated by the LSD rather than the SSD.
However, the SSD in Run 4S is capable of suppressing and shap-
ing the differential rotation, similarly to its corresponding Run
4M.

The reduction of shear at high ReM was also reported by
Käpylä et al. (2017a). HK21 and HKS22 found that the differen-
tial rotation at high ReM is also strongly influenced by the mag-
netic field, which is consistent with our work. However, in their
cases, the magnetic field was solely due to an SSD, whereas in
our case, the change in differential rotation is mainly due to the
LSD.

Our modeling strategy prevented us from inspecting the ac-
tual generation process of the differential rotation profiles be-
cause we restarted from earlier models. We can therefore only
address the relaxed states reliably.

The differential rotation follows the mean angular momen-
tum balance (see, e.g. Rüdiger 1989),

∂t

(
s2ρΩ

)
= −∇ · s

[
sρuΩ + (ρu)′u′φ − 2νρS · êφ
−µ−1

0

(
B Bφ + B′B′φ

)]
, (19)

where s = r sin θ is the lever arm. As usual, we neglected the
compressible term related to ρ′S′ in the equation above.

Fig. 10. Differential rotation of all runs near the surface (r = 0.98 R).
At the top we plot Ω/Ω0 as function of latitude. As before, the solid
lines show M runs, dotted lines show S runs and the dashed lines show
H runs, while the colors indicate the run sets with different Re. At the
bottom, we plot Ω/Ω0 at the equator (θ = π/2) as a function of Re.

Fig. 11. Time-averaged contributions to the differential rotation energy
evolution for Runs 0M and 3M, as given in Eqs. (21)–(25). The contri-
butions are shown in units of J/m3s.

To determine which part of the angular momentum flux con-
tributes significantly to the differential rotation, we calculated
the contributions to the evolution of differential rotation energy
density. This approach has the advantage that generating con-
tributions are shown as positive values, and destructing ones as
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Fig. 12. Contributions to the differential rotation energy evolution averaged in time and latitude for all run sets (0 – 4) as functions of r/R (see
Eqs. (21)–(25)). The bottom rightmost panel shows the contributions as functions of Re at r/R = 0.96 (the vertical line in the other panels).

negative,

∂tEdiff
kin = (uφ/s)∂t

(
s2ρΩ

)
= 1

2∂t

(
ρ u2

φ

)
= D. (20)

Using the right-hand side of Eq. (19) and also averaging over
time, we can divideD into five different contributions:

DMer = − (uφ/s)∇ ·
(
s2ρuΩ

)
meridional circulation, (21)

DRey = − (uφ/s)∇ ·
(
s(ρu)′u′φ

)
Reynolds stress, (22)

DMax = (uφ/s)∇ ·
(
sµ−1

0 B′B′φ
)

SS Maxwell stress, (23)

DBB = (uφ/s)∇ ·
(
sµ−1

0 B Bφ
)

LS Maxwell stress, (24)

Dvis = (uφ/s)∇ ·
(
2sνρS · êφ

)
viscous stress. (25)

Due to our choice of azimuthal averages written out at run time,
we calculatedDMer andDRey slightly differently. However, their
sum remains the same. ForDMer, we used

∇ ·
(
s2ρuΩ

)
≈ ∇ ·

(
s2ρu Ω

)
+ ∇ ·

(
s2ρ′u′Ω0

)
, (26)

where the second term was calculated by −s2Ω0∇ · (ρu
)

using
the conservation of mass flux,

∇ · (ρu) = ∇ ·
(
ρ′u′

)
+ ∇ · (ρu

)
= 0. (27)

ForDRey we used

∇ ·
(
s(ρu)′uφ′

)
≈ ∇ ·

(
sρuuφ

)
− ∇ ·

(
sρu uφ

)
. (28)

Our choice at the end means that the term ∇ ·
(
s ρ′u′ uφ

)
is in-

cluded inDRey instead of inDMer, and their sum is therefore the
same as in the definitions Eqs. (21) and (22).

We show the time-averaged contributions exemplarily for
Runs 0M and 3M as a meridional plot in Fig. 11 and for all
runs as a line plot from additional averaging over latitude in
Fig. 12. For all low Re runs, the main balance is between the con-
tributions of meridional circulation Dmer and Reynolds stresses
DRey, with a small contribution of Dvis. For most of the do-
main, DRey is generative, whereas Dmer is destructive. At high
Re, this balance still holds for the H runs, where Dvis becomes
increasingly smaller. For the M runs, we find two main channels
through which the magnetic field influences the angular momen-
tum. On one hand, the magnetic field suppressesDmer andDRey
to much lower levels, accompanied by some changes in the spa-
tial distribution. On the other hand, the contribution from small-
scale Maxwell stresses DMax becomes comparable to DRey, but
has mostly negative values. It therefore compensates for DRey.
Surprisingly, this already occurs at Re ∼ 60, where no SSD is
present. The direct influence of the large-scale magnetic field
(DBB) appears to be significant only near the surface at high Re,
where it has a destructive effect. For the S runs, the contribution
ofDRey is not as effectively quenched as in the corresponding M
runs. The magnetic influence primarily comes through theDMax
contribution, which has a destructive effect throughout most of
the convection zone. Together with the destructive contribution
ofDmer, it balancesDRey.

From this differential rotation energy balance, we can de-
duce why the differential rotation is mostly quenched by the
LSD and not the SSD alone. The quenching of DRey appears to
play an important role here. Only the large-scale field can effec-
tively quench this contribution, thus preventing the development
of strong differential rotation. Additionally, the small-scale mag-
netic field, whether generated by tangling or by an SSD, creates a
destructive term, DMax, which further suppresses the generation
of differential rotation.
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Bφ(r = 0.98 R) Bφ(r = 0.71 R) Bφ(θ = 25◦)

Fig. 13. Time evolution of the mean toroidal magnetic field Bφ for all M runs (except 4M and 4M2). We show time-latitude (butterfly) diagrams at
r = 0.98 R (first column) and at r = 0.71 R (second column), and the time-radius diagram at 25◦ latitude (north). We note that the timescale for the
first three rows is the same, but is different for the last one. The vertical dashed lines indicate the starting point from which we use a time interval
to compute the time averages used in the analysis throughout this paper. The vertical stripes in Run 3M are due to data loss. The mean field is in
units of kG.

In theory, Maxwell stresses could also act similarly to
Reynolds stresses in generating differential rotation; we found
that their contribution is always destructive, however. Previous
studies by Käpylä et al. (2017a) showed that the contribution of
the Reynolds stress is balanced by the contribution of meridional
circulation, and that this balance shifts to a balance of Reynolds
and Maxwell stress contributions. This finding was confirmed by
HK21 and HKS22. However, the latter authors mostly attributed
this change in balance to the presence of an SSD, whereas we
find that this is already the case at moderate ReM, where no SSD
is present.

The finding that large-scale magnetic fields suppress dif-
ferential rotation dates back to early magnetoconvection mod-
els (e.g. Gilman 1983), but also to many theoretical calcula-
tions. Quenching of the Λ effect by magnetism was intensively
studied in mean-field models (e.g. Kitchatinov et al. 1994a;
Kitchatinov 2016; Pipin 2017) and was also confirmed by nu-
merical simulations (Käpylä et al. 2004; Käpylä 2019b). How-
ever, the magnetic field will also affect the turbulent viscosity
in these mean-field models (e.g. Kitchatinov et al. 1994b), and
therefore, differential rotation can also be enhanced (Kitchatinov
2016). Quenching of the Λ effect by SSD was found to be milder
than by a corresponding large-scale magnetic field with the same
strength in simplified numerical simulations (Käpylä 2019c).

The importance of Busse columns (or banana cells) for the
generation of differential rotation was previously pointed out by

other authors (e.g. Hotta et al. 2015; Featherstone & Hindman
2016; Matilsky et al. 2020; Bekki et al. 2022; Käpylä 2023).
One of their interpretations is that the prominent presence of
these large-scale convective structures in simulations hinders the
reproduction of the differential rotation of the Sun. Our results
are in line with this interpretation because the banana cells seem
to cause the differential rotation profile to become more cylindri-
cal, whereas the contours of the Sun’s differential rotation are ra-
dial over a considerable range of mid-latitudes (e.g. Schou et al.
1998).

3.6. Magnetic field generation

Next, we studied the evolution of the mean toroidal magnetic
field Bφ. We plot in Fig. 13 the butterfly diagrams of Runs 0M,
1M, 2M and 3M; for Run 4M, the time series is too short to
form a meaningful diagram. Run 0M shows a very similar mean
field evolution as the run of Käpylä et al. (2016): a regular cy-
cle with equatorward migration throughout the convection zone,
a fast cycle with poleward migration near the surface close to
the equator, and a long cycle that is most pronounced at the bot-
tom of the domain and capable of disturbing the other cycles.
This is expected as 0M has the same parameters as the run of
Käpylä et al. (2016), except for the use of a Kramers-based heat
conduction instead of a prescribed conductivity profile. The dy-
namo mode with equatorward migration that was first reported
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Fig. 14. Radial profile of the differential rotation Ω/Ω0 of all M runs.
We show the radial profile at 25◦ latitude, which coincides with the
local minimum of Ω, causing the equatorward migrating magnetic field
pattern in Run 0M.

in Käpylä et al. (2011b) and further discussed in Käpylä et al.
(2013) can clearly be explained by an αΩ Parker dynamo wave
(e.g. Warnecke et al. 2014, 2018). However, to obtain the exact
period, many other turbulent transport coefficients have to be
considered (Warnecke et al. 2021). The fast poleward dynamo
mode could be identified as being of α2 type (Käpylä et al. 2016;
Warnecke et al. 2021), while the type of the long-period mode is
currently unclear (Käpylä et al. 2016; Gent et al. 2017).

When Re and ReM are increased, the dynamo solutions are
affected: The clear equatorward migration vanishes for all runs
starting from 1M. This is most likely due to changes in the dif-
ferential rotation profile (see the discussion below). The two
other modes still exist in the higher ReM regime, however. For
the highest values of ReM (4M), the time series is unfortunately
too short to identify the dynamo cycles safely. The fast dynamo
mode is clearly visible in the 1M and 2M runs as well, and even
in the 3M run. That this mode is still visible in Run 3M as well
supports our interpretation that this is an α2 type dynamo be-
cause, as discussed in Sect. 3.5, the differential rotation becomes
very weak at these high ReM. The long-cycle dynamo mode is
rather irregular and mostly pronounced in field strength, but it
also develops polarity reversals. Comparing the butterfly dia-
grams of 1M and 2M, we find that they look very similar, in par-
ticular near the bottom of the domain and at higher latitudes. In
summary, an increase in the Reynolds numbers does not strongly
affect the short and long cycles, which still generate significant
mean magnetic fields, but it causes the equatorward migrating
medium-length mode to vanish.

To investigate why this mode vanishes, we inspected the
changes in the differential rotation profile in more detail roughly at
the latitudinal and radial locations at which the previously found
equatorward migrating dynamo mode is generated (see Fig. 14).
The minimum of Ω at r = 0.9 and 25◦ latitude is very pronounced
in the 0M run, it is already much weaker in 1M and 2M, but it
has vanished completely in the run with the highest ReM (3M).
This fits our hypothesis well that the negative shear in this re-
gion generates the equatorward migrating dynamo mode seen in
0M (Warnecke et al. 2014, 2018); accordingly, when the shear is
sufficiently weakened, this dynamo mode vanishes. To determine
which dynamo is at work in these simulations, we need to measure
the turbulent transport coefficients as in Warnecke et al. (2018)
and analyze them via a mean-field model as in Warnecke et al.
(2021). This analysis is currently under development and will be
presented in a possible follow-up study.

To inspect at which locations the LSD and the SSD oper-
ate in our runs, we show in Fig. 15 meridional plots of the az-
imuthally averaged magnetic energy density of the mean and
fluctuating fields separately. We recall that the magnetic fluctua-
tions in Runs 0M and 1M are entirely generated by the tangling
of the large-scale field, because no SSD operates in these runs.
In Run 0M, the large-scale field is mostly generated at medium
to high latitudes near the middle of the convection zone, which
is consistent with earlier findings of runs with similar parameters
(Warnecke et al. 2014, 2018; Käpylä et al. 2016). The weaker
field near the bottom of the domain causes the long-term vari-
ation shown in Fig. 13. The corresponding small-scale field is
also located at medium to high latitudes, as to be expected from
the large-scale field. However, near the bottom of the domain,
no small-scale field is generated because the convective motions
in this area are weak (see Sect. 3.3). For the M runs with higher
ReM, the mean field at medium latitudes gradually vanishes and
instead becomes dominant near the bottom of the domain. The
small-scale field for small ReM is mostly located at high lati-
tudes, but it gradually becomes stronger near the equator. This
increase is partly due to tangling as in 1M, but in particular for
higher ReM because the SSD operates in this area, as seen in
Runs 2S and 3S. At the locations where the small-scale field
is strong, the enthalpy flux and the kinetic energy also reach a
maximum, as shown in Fig. 16 for the enthalpy flux Fenth. Such
a concentration of Fenth near the equator was also observed in
Käpylä et al. (2019) and Viviani & Käpylä (2021). The maxi-
mum of the small-scale field in these areas is therefore probably
due to the enhanced convective motions. However, this is only
true for the S runs. In the M runs, the situation is slightly dif-
ferent. In Run 2M, where an SSD is already present, we indeed
see a concentration of small-scale field near the equator, similar
to 2S, but also at higher latitudes, where the large-scale field is
strong. The small-scale field still seems to be connected with the

entropy flux, as the distribution of B′2 resembles the distribution
of Fenth.

For the high-ReM runs (3M and 4M), the small-scale field
is not concentrated near the equator, as might be expected from

their corresponding S runs. However, the distribution of B′2 here
also somewhat resembles the distribution of Fenth, at least in
terms of a minimum near the equator.

Furthermore, even though the mean field is very strong near
the bottom of the domain, the small-scale field is nearly zero.
This is most likely due to the lack of strong convective motions
there. Wes can explain the strong mean field at the bottom with
the possibility that the field is generated above and then trans-
ported down by turbulent pumping or diffusion, and it finally
slowly diffuses into this nearly turbulence-free zone, where it
can survive for a long time because of the lack of strong turbu-
lent diffusion. As another possibility, the field can be generated
locally by the very strong shear flow, which only needs a weak
α counterpart to form a dynamo loop.

In Runs 4M, 4M2, and 4S, both the mean field and the small-
scale field are mostly concentrated in the northern hemisphere.
This is probably due to the short integration time. However, even
in these runs, a band of weak small-scale magnetic field appears
near the bottom of the domain. Compared to Runs 2S and 3S,
the SSD in 4S has a larger volume-filling factor in the northern
hemisphere that spreads to higher latitudes and outside the tan-
gent cylinder. To summarize, the SSD is mostly active near the
equator in the S runs and 2M, but not in 3M and 4M. The Fenth
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Fig. 15. Time-averaged mean magnetic energy of the mean fields B
2
/2 (top row) and fluctuating fields B′2 (bottom) for all M and S runs in units

of 105 J/m3 for all magnetic runs (M+S). We disregard 7◦ near the latitudinal boundaries for determining the minimum and maximum values of
the color range.

Fig. 16. Time-averaged radial enthalpy flux Fenth normalized by the input flux F tot for all magnetic runs (M+S). For the color range see remark at
Fig. 15.

and B′2 distributions are similar, which indicates that SSD and
tangling are both strong where the convection is strong.

3.7. Kinetic and current helicities
One of the most important turbulent dynamo processes is the α
effect (Steenbeck et al. 1966). Its strength can be estimated by
the kinetic helicity density Hkin = ω′ · u′, ω′ = curl u′, and the
magnetic influence on it by the current helicity density Hcurr =

J ′ · B′/µ0 ρ (e.g. Pouquet et al. 1976), here defined with a 1/ρ
factor,

α ≈ −Hkin/3τc + Hcurr/3τc, (29)

where τc is the turbulent correlation time, which in general does
not need to be the same for the first and second term. In this
work, we only studied these proxies (Figs. 17 and 18) and left
the detailed analysis of the α tensor and other turbulent transport
coefficients to a future study.

As usual in rotating convection simulations, Hkin is predomi-
nantly negative in the upper half of the convection zone and pos-
itive below in the northern hemisphere while having the same
pattern but opposite sign in the southern hemisphere (see
Fig. 17). We find that the profile of Hkin is not much influenced
by the increase in Re, nor does it show a large difference between

the S and M runs. Only the peak values of Hkin show a tendency
to increase with increasing Re, and in Run 0M, the maxima near
the equator extend farther into the convection zone.

The current helicity Hcurr exhibits a different behavior. Sim-
ilar to earlier results (e.g., Warnecke & Käpylä 2020), it is posi-
tive near the surface in the northern hemisphere, negative in the
bulk, and again positive near the bottom of the domain for most
of the M runs while having an analogous profile but with the op-
posite sign in the southern hemisphere. When Re is increased, it
leaves the profile mostly unchanged, but leads to an increase in
the peak values, at least when we compare 0M and 1M with 2M
and 3M.

Interestingly, the current helicity Hcurr (see Fig. 18) from
the pure SSD runs follows the pattern of Hkin rather than that
of Hcurr of the corresponding M runs. The fact that the sign of
Hcurr is opposite in the cases with and without LSD is in line
with the results of Warnecke et al. (2012), who explained this
sign change from simulations (Warnecke et al. 2011) and obser-
vations (Brandenburg et al. 2011) by a simple model. This sug-
gests that a sign change in Hcurr is to be expected when an LSD
is absent compared to when it is present.

Hcurr generated by the SSD is clearly lower than the one gen-
erated by an LSD. Furthermore, |Hcurr| is always (except for 4M)
lower than |Hkin|, and it is therefore not expected to influence the
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Fig. 17. Time-averaged kinetic helicity Hkin = ω′ · u′ in units of 10−3 m/s2 for the M and S runs. The white contours indicate zero values. We
smoothed the data over 100 neighboring points for runs A4M and A4S for noise reduction.

Fig. 18. Time-averaged current helicity Hcur = J ′ · B′/µ0 ρ in units of 10−3 m/s2 for the M and S runs. The white contours indicate zero values. For
data smoothing, see remark at Fig. 17.

α effect much, following Eq. (29). However, Warnecke & Käpylä
(2020) showed that this approximation does not hold when com-
paring with α determined by the test-field method when the mag-
nitudes of Hcurr and Hkin become comparable.

4. Conclusions

We have conducted global convective dynamo simulations of
solar-like stars, wherein we varied the viscosity, magnetic diffu-
sivity, and SGS heat diffusivity to examine how the solutions de-
pend on the fluid and magnetic Reynolds numbers. This enabled
us to investigate the interaction between SSD and LSD and their
effects on the overall dynamics. As a novel approach, we addi-
tionally investigated SSD in LSD-capable systems in isolation
by suppressing the large-scale magnetic field.

As an outcome of these simulations, we identified the fol-
lowing results: Magnetic runs with ReM ≥ 140 can excite an
SSD, and its magnetic energy becomes comparable to that of the
LSD at ReM ≈ 550. The total magnetic field energy appears to
reach a maximum at ReM = 120 and decreases for runs with
higher ReM. Although the SSD becomes stronger at higher ReM,
the energy in the fluctuating field decreases mildly. As the mean
field decreases by more than half compared to Runs 2M and 3M,
the total magnetic energy is significantly weaker.

The scale of large-scale convective cells, also known as ba-
nana cells, does not depend on Re or on the presence of LSD
or SSD. The depth of the subadiabatic layers is mostly indepen-
dent of Re, except at mid-latitudes. However, the Deardorff zone
becomes thinner, allowing for a thicker overshoot and radiative
zone for higher Re. The turbulent velocity u′rms increases with
Re until Re = 120, after which it slightly decreases, even in the

H runs. This indicates that the decrease at high Re is not due to
SSD or LSD, as found by HK21 and HKS22. The magnetic field
in our simulations does not reach strong superequipartition with
respect to turbulent kinetic energy. Additionally, at small scales,
the magnetic field is mostly at subequipartition. Furthermore, the
energy in the large convective scales mildly decreases with Re,
but this occurs in the H runs as well, suggesting that it cannot be
attributed to the effects of SSD or LSD.

Differential rotation is strongly quenched in M runs with
high Re, primarily due to the magnetic field of LSD rather than
of SSD. This agrees with many earlier analytical and numerical
results (e.g. Gilman 1983; Kitchatinov et al. 1994a; Käpylä et al.
2004; Kitchatinov 2016; Pipin 2017; Käpylä 2019b). The mag-
netic field affects the angular momentum distribution via the
suppression of the Reynolds stresses and the emergence of
strong Maxwell stresses. The effects of the Maxwell stresses
are dominated by the contributions of the small-scale fields,
which are mostly due to tangling of the large-scale field and
not the SSD, however. This contradicts the recent findings of
(Hotta & Kusano 2021; Hotta et al. 2022), who argued that SSD
is the most important driver of fluctuations and that through
them, it affects the angular momentum balance.

The evolution of large-scale fields only shows a weak depen-
dence on ReM, with the equatorward migrating field mode disap-
pearing for ReM ≥ 60 due to the weaker shear at mid-latitudes.
The irregular low-frequency mode at the bottom of the domain
persists, and even the high-frequency mode near the surface is
present in all relevant M runs. SSD is strongest in areas where the
enthalpy flux is maximum, typically near the equator, where the
turbulent energy reaches its peak. The profiles of kinetic and cur-
rent helicity do not vary much with ReM, but there is a tendency
for a mild increase in their peak values with ReM. Interestingly,
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the current helicity generated by pure SSD has the opposite sign
to that of LSD. Our work showed that it is important to study the
SSD-LSD interaction to fully understand the dynamics in the
Sun and other stars.
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Appendix A: Diffusivity profiles

To avoid numerical artifacts near the latitudinal boundaries, we
apply a profile for the diffusivities ν and η, increasing towards
these boundaries. The profiles’ shape is shown in Fig. A.1, it is
determined by its width ∆θν and ∆θη, respectively, and the ratio
between the boundary value and the value at the equator,

∆νη ≡ ν (θ = Θ0, π − Θ0)
ν (θ = π/2)

=
η (θ = Θ0, π − Θ0)

η (θ = π/2)
. (A.1)

We choose the minimal possible values for ∆θν, ∆θη, and ∆νη,
which keep the runs stable. It turns out that these adjustments
are needed for runs with Re ≥ 61, see Table 1 for details.

Furthermore, for high resolution simulations (Re ≥ 260),
the runs have a tendency to produce vortex-like structures at
high latitudes. They are as such an interesting phenomenon
(Käpylä et al. 2011a; Mantere et al. 2011), but they decrease the
time step significantly. Hence, we decided to suppress them in
this work by choosing ∆θν = 17◦ and postpone their detailed
study to the future.

Fig. A.1. Latitudinal diffusivity profiles shown for viscosity ν with
width ∆θν = 5◦ (solid line) and 17◦ (dashed), indicated by vertical red
lines. νm is the equatorial value of ν.

Appendix B: Slope-limited diffusion

Besides the constant diffusivity ν, the H runs need additional ex-
plicit numerical diffusion to be stable. Our choice of using an
enhanced luminosity at the bottom boundary, (see Käpylä et al.
2013, for details), causes the local Mach number Ma = |u|/cs to
increase near the surface to unusually high values. In the H runs,
this can lead to numerical instabilities whereas the M and S runs
are stable enough due to the presence of the magnetic field and
hence do not need any additional diffusion. To let the numeri-
cal diffusion act only in regions, where it is needed, we employ
slope-limited diffusion (SLD), newly implemented to the Pencil
Code. It turns out that with our choice of parameters as speci-
fied below, we are able to stabilize the runs without influencing
the overall dynamics much. In the following, we will briefly de-
scribe implementation and parameter choice. Thereby, we follow
roughly Rempel et al. (2009) and Rempel (2014).

The main idea is to define the diffusive flux f of a velocity
component u based on a slope limiter. At the cell interface k +
1/2, it is given by

fk+1/2 = − 1
2 csld

k+1/2 Qk+1/2 (uR
k+1/2 − uL

k+1/2), (B.1)

where the subscript k indicates the cell or grid-point in one par-
ticular coordinate direction, uR

k+1/2 and uL
k+1/2 are the right and

left values at the cell interface of the velocity component and csld

Fig. B.1. Visualization of Eq. (B.9): Q as function of the slope ratio R
for various hsld (colored lines) with nsld=1 (solid) and nsld=2 (dashed).

is the characteristic speed, defined below. uR and uL are defined
via

uL
k−1/2 = uk−1 + ∆uk−1 (B.2)

uR
k−1/2 = uk − ∆uk (B.3)

uL
k+1/2 = uk + ∆uk (B.4)

uR
k+1/2 = uk+1 − ∆uk+1 (B.5)

with the estimated slopes

∆uk = minmod (uk − uk−1, uk+1 − uk), (B.6)

where the minmod function is defined as

minmod (a, b) = 1
2 sgn (a) max

[
0,min

(|a|, sgn (a) b
)]
, (B.7)

meaning

minmod
(
a, b

)
=


+ 1

2 min
(|a|, |b|)

0
0
− 1

2 min
(|a|, |b|)

 for


a > 0, b > 0
a < 0, b > 0
a > 0, b < 0
a < 0, b < 0

.

(B.8)

The diffusive flux is additionally adjusted by the factor

Qk+1/2(Rk+1/2) =
[
min(1, hsld Rk+1/2)

]nsld , (B.9)

which controls its non-linearity by the power nsld and has values
between 0 and 1. The parameter hsld sets the strength of the diffu-
sion for a given slope. If hsld = ∞, i.e. Q = 1, Eq. (B.1) represent
a linear 2-order Lax-Friedrichs-scheme. The lower hsld, the less
diffusive is the scheme. The power nsld can reduce the diffusion
even further for small slopes. The slope ratio R is defined as

Rk+1/2 =
|uR

k+1/2 − uL
k+1/2|

|uk+1 − uk | . (B.10)

It relates the u difference at the cell interface to the differ-
ence between the cell centers, therefore indicating the rela-
tive slope strength. Equation B.9 implies that in regions where
Rk+1/2 ≥ 1/hsld, the diffusive flux is maximal and for regions,
where Rk+1/2 < 1/hsld the diffusive flux is reduced, see Fig. B.1
for an illustration. In this work, we use hsld = 2 and nsld = 1 for
the density and hsld = 1 and nsld = 2 for all velocity components.
We note here that in Rempel et al. (2009) a similar scheme is
used, which corresponds to hsld = 1 and nsld = 2. In the work
of Rempel (2014), a different expression for Q(R) is used – see
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their Eq. (10), employing only one parameter instead of two. De-
tailed tests indicate no significant differences between his and
our scheme.

The characteristic speed is derived from the signal (advection
and wave) speeds in the system:

csld = wsld
hyd|u| + wsld

soundcs + wsld
magvA, (B.11)

where vA is the Alfvén speed, and the weights wsld
∗ can be chosen

depending on the nature of the problem. In this work, we set
wsld

hyd = 1 and wsld
sound = 0.001; there is no magnetic contribution

because we use SLD only for purely hydrodynamic runs. The
intercell values of csld are calculated by linear interpolation:

csld
k+1/2 =

csld
k + csld

k+1

2
. (B.12)

Connecting the strength of the SLD term to the signal speeds via
csld makes an extra time step constraint unnecessary.

The calculation of the diffusive fluxes is now performed at
each grid point for all three directions separately. With these
three fluxes we can for a scalar quantity form a diffusive flux
vector f sld = ( fq), where q indicates the coordinate direction. If
the diffusive fluxes are calculated for a vector quantity, then each
vector component builds its own flux vector and these together
form a diffusive flux tensor F sld.

Finally, the diffusive fluxes are added to the momentum and
continuum equations via

Du
Dt

= . . . − ∇2nd · F u
sld,

D ln ρ
Dt

= . . . − ∇2nd · f ρsld, (B.13)

where F u
sld is the SLD tensor for the velocity and f ρsld is the SLD

vector for the density. For simplicity, we use 2nd order finite
differences for the divergence (∇2nd):

∇
2nd · f sld =

∑
q

∂2nd
q fq =

∑
q

fq(qk+
) − fq(qk− )

qk+
− qk−

, (B.14)

where f sld stands for f ρsld or for one of the column vectors of
F

u
sld and q signifies the coordinate, i.e. x, y or z. qk denotes the

grid point under consideration in the direction of the coordinate
q and qk+

and qk− are short for qk+1/2 and qk−1/2, respectively.
For brevity, we show only that argument of fq, with respect to
which the derivation is performed. For F u

sld, we calculate the
divergence analogously for each component.

For spherical coordinates, Eq. (B.14) is modified and reads
for an SLD vector such as f ρsld

∇
2nd · f sld

=
r2

k+
fr(rk+

) − r2
k−

fr(rk− )

r2
k (rk+

− rk− )
+

sin(θk+
) fθ(θk+

) − sin(θk− ) fθ(θk− )
rk sin(θk)(θk+

− θk− )

+
fφ(φk+

) − fφ(φk− )
rk sin(θk)(φk+

− φk− )
(B.15)

(B.16)

for an SLD tensor such as F u
sld

[∇2nd · F sld]r =
r2

k+
f r
r (rk+

) − r2
k−

f r
r (rk− )

r2
k (rk+

− rk− )

+
sin(θk+

) f r
θ (θk+

) − sin(θk− ) f r
θ (θk− )

rk sin(θk)(θk+
− θk− )

+
f r
φ(φk+

) − f r
φ(φk− )

rk sin(θk)(φk+
− φk− )

(B.17)

− f θθ (θk+
) + f θθ (θk− )
2rk

−
f φφ (φk+

) + f φφ (φk− )

2rk
,

[∇2nd · F sld]θ =
r2

k+
f θr (rk+

) − r2
k−

f θr (rk− )

r2
k (rk+

− rk− )

+
sin(θk+

) f θθ (θk+
) − sin(θk− ) f θθ (θk− )

rk sin(θk)(θk+
− θk− )

(B.18)

+
f θφ (φk+

) − f θφ (φk− )

rk sin(θk)(φk+
− φk− )

− f r
θ (θk+

) + f r
θ (θk− )

2rk

−
cot (θk)

(
f φφ (φk+

) + f φφ (φk− )
)

2rk
,

[∇2nd · F sld]φ =
r2

k+
f φr (rk+

) − r2
k−

f φr (rk− )

r2
k (rk+

− rk− )

+
sin(θk+

) f φθ (θk+
) − sin(θk− ) f φθ (θk− )

rk sin(θk)(θk+
− θk− )

(B.19)

+
f φφ (φk+

) − f φφ (φk− )

rk sin(θk)(φk+
− φk− )

−
f r
φ(φk+

) + f r
φ(φk− )

2rk

−
cot (θk)

(
f θφ (φk+

) + f θφ (φk− )
)

2rk
,

where the superscripts of f indicate the quantity the diffusive
flux is calculated for, e.g. r for ur.

The viscous heat due to SLD,H sld, is defined at grid point k
as

H sld = 1
2

∑
p,q

{
f p
q (qk− )

ρ(qk)up(qk) − ρ(qk−1)up(qk−1)
qk − qk−1

(B.20)

+ f p
q (qk+

)
ρ(qk+1)up(qk+1) − ρ(qk)up(qk)

qk+1 − qk

}
.

where p, q denote the Cartesian coordinates. In spherical coor-
dinates, this expression will be modified taking into account the
appropriate derivatives. We note here that the viscous heating
implementation in MURAM (Rempel et al. 2009; Rempel 2014)
only takes into account the derivative of the velocity and not the
momentum, i.e. it neglects the changes in the density.

Using a mass diffusion introduces an additional mass flux,
for which we compensated in the momentum and energy equa-
tions.

Appendix C: Spectra of banana cells

To investigate how the scales of the banana cells depend on the
Reynolds numbers, we calculate the power spectra of the ki-
netic energy density of the radial flow, Er

kin, near the surface
(r = rs ≡ 0.98 R). For this, we cut out a thin latitudinal band
around the equator (± 7.5◦) and calculate the power spectrum of
Er

kin, averaged over latitude and time, as a function of the angular
order m for each run. We rely on the definition∑

m

Ẽr
kin(m) = 1

2

∑
m

〈∣∣∣ FFT
[(

ur
√
ρ
)
(rs)

]
(m)

∣∣∣2〉
θt

(C.1)

=
rs

2

〈(
u2

rρ
)

(rs)
〉
θφt
,
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Fig. C.1. Longitudinal power spectra of the radial kinetic energy den-
sity, Ẽr

kin, near the surface r=0.98 R for a narrow latitudinal band around
the equator (± 7.5◦). The colors indicate the run sets and the line
styles/symbols the run type: solid/asterisk (M), dashed/diamonds (H)
and dotted/triangles (S). The spectra are averaged over the θ bands and
time. The inlay shows the m value of the maxima as a function of Re for
all runs. The errors are calculated using an 80% range around the peak.
The values m = 32 and m = 40 are indicated by black vertical and (in
inlay) red horizontal lines, respectively.

where the tilde and the operator FFT indicate the Fourier trans-
form. The spectra are shown in Fig. C.1 for all runs, including
the Re dependence of the m of their maxima. Only a weak Re de-
pendence is visible. The spectra of the M runs, except M0, peak
around m = 40, whereas those of the H runs peak at slightly
lower m ≈ 32. The S run spectra peak at m = 32 for moderate
ReM and at m = 40 for high ReM.
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