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 A B S T R A C T

Natural materials, such as wood and bone, have a high fracture toughness and this is often attributed to 
their hierarchical microstructures. While previous studies have shown that hierarchy can increase the buckling 
strength of lattice materials, a detailed analysis of its impact on fracture toughness is missing. Here, we used 
analytical modeling and finite element simulations to predict the mode I and mode II fracture toughness of 
three hierarchical topologies: hexagonal, triangular, and Kagome lattices. Hierarchy significantly improved the 
fracture toughness of the bending-dominated hexagonal lattice. Notably, the hierarchical hexagonal lattice has 
a fracture toughness 𝐾𝐼𝐶 that scales linearly with relative density �̄�, whereas its non-hierarchical counterpart 
has 𝐾𝐼𝐶 ∝ �̄�2. In contrast, hierarchy did not improve the toughness of stretching-dominated triangular and 
Kagome lattices. Hierarchy did, however, modify the behavior of a Kagome lattice: its hierarchical design has 
a toughness that scales linearly with relative density, whereas 𝐾𝐼𝐶 ∝

√

�̄� for its non-hierarchical counterpart. 
This work presents scaling laws for the fracture toughness of hierarchical lattices, enabling the design of tough 
architectures at very low densities.

1. Introduction

Lattices materials are periodic cellular solids generated by tessel-
lating a unit cell in 2D or 3D (Fleck et al., 2010). Lattice materials 
allow for a wide range of mechanical properties and are often used 
in lightweight applications, such as aircraft fuselages (Kostopoulos and 
Vlachos, 2017). The strength and stiffness of lattice materials are, 
however, limited by theoretical upper bounds, and several topologies 
approaching these limits have already been identified (Berger et al., 
2017; Hsieh et al., 2019; Tancogne-Dejean et al., 2018). In contrast, the 
fracture toughness of lattices is theoretically unbounded, which leaves 
room for further improvements.

The relationship between the architecture of a lattice and its frac-
ture toughness has been investigated analytically, numerically, and 
experimentally (Berkache et al., 2022; Fleck and Qiu, 2007; Gu et al., 
2018; Lipperman et al., 2007; Luan et al., 2022; Maiti et al., 1984; 
Omidi and St-Pierre, 2023a,b; Romijn and Fleck, 2007; Seiler et al., 
2019; Tankasala et al., 2015). These studies have shown that the 
fracture toughness of an elastic-brittle lattice can be expressed in 
non-dimensional form as: 
𝐾𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 𝐷𝐼 �̄�

𝑑 and
𝐾𝐼𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 𝐷𝐼𝐼 �̄�

𝑑 , (1)

where 𝐾𝐼𝐶 and 𝐾𝐼𝐼𝐶 are the fracture toughness under modes I and II, 
respectively; 𝜎𝑡𝑠 is the tensile strength of the constitutive material; 𝐿
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is the length of the struts; �̄� is the relative density; whereas 𝐷𝐼 , 𝐷𝐼𝐼 , 
and 𝑑 are topology specific constants given in Table  1 for hexagonal, 
triangular, and Kagome lattices. The exponent 𝑑 has a strong effect on 
fracture toughness. Bending-dominated topologies, such as a hexagonal 
lattice, have an exponent 𝑑 = 2 and consequently, a low toughness. 
Stretching-dominated architectures, such as a triangular lattice, are 
significantly tougher, with a fracture toughness that scales linearly 
with relative density (𝑑 = 1). Surprisingly, some stretching-dominated 
topologies, like the Kagome lattice, exhibit a crack tip blunting phe-
nomenon, which leads to 𝑑 = 0.5 and results in an incredibly high 
fracture toughness (Fleck and Qiu, 2007; Omidi and St-Pierre, 2023b).

With the objective of developing tougher lattice materials, we turn 
to nature for inspiration. Natural materials, such as wood and bone, are 
exceptionally tough, and this is usually attributed to the hierarchical 
design of biological materials (Launey and Ritchie, 2009). The concept 
of hierarchy is easily transferable to lattices, where it can be integrated 
in two ways. One approach is to introduce scaled-down patterns at 
the joints to produce fractal-like self-similar honeycombs, leading to 
improvements in stiffness, strength, and toughness (Ajdari et al., 2012; 
Haghpanah et al., 2013; Ryvkin and Shraga, 2018). Another avenue to 
introduce hierarchy in a lattice is to replace each cell wall by a smaller 
scale lattice. Prior studies have shown that this can increase the elastic 
modulus (Ma et al., 2016; Qing and Mishnaevsky, 2009; Taylor et al., 
2011), buckling strength (Côte et al., 2009; Kazemahvazi et al., 2009; 
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Table 1
Scaling constants for the fracture toughness of planar lattices (Fleck and Qiu, 2007).
 Topology 𝐷𝐼 𝐷𝐼𝐼 𝑑  
 Hexagonal 0.80 0.37 2  
 Triangular 0.50 0.38 1  
 Kagome 0.21 0.13 0.5 

Kooistra et al., 2005; Qing and Mishnaevsky, 2011; Vigliotti and Pasini, 
2013; Wang et al., 2023; Yin et al., 2019), and energy absorption (Sun 
et al., 2016; Tran et al., 2014) of lattices. While these studies show that 
this form of hierarchy can be beneficial, a detailed analysis of its impact 
on fracture toughness is still missing.

This work aims to quantify the effect of hierarchy on the fracture 
toughness of planar lattices. Our scope is limited to three large-scale 
lattices: hexagonal, triangular, and Kagome lattices, as shown in Fig. 
1a. These topologies are selected as they exhibit three different fracture 
behaviors as described above.

This article has the following structure: analytical modeling is pre-
sented in Section 2 and then compared to Finite Element (FE) simula-
tions in Section 3. Then, further improvements are detailed in Section 4 
using a functional grading approach and, finally, conclusions are listed 
in Section 5.

2. Analytical modeling

The hierarchical lattices considered in this work are shown in Fig. 
1. They have two hierarchical levels, combining large- and small-
scale lattices. We consider three large-scale architectures: hexagonal, 
Kagome, and triangular lattices. In all cases, the small-scale topology is 
a two-layer triangular lattice, see Fig.  1. This architecture was selected 
because it is structurally efficient (Torquato et al., 1998) and allows 
seamless joints for all three large-scale lattices. The geometry of each 
hierarchical lattice is therefore defined by three parameters: the beam 
length 𝓁 and thickness 𝑡, as well as the large-scale cell size 𝐿, see Fig. 
1. The thickness of the hierarchical strut is related to the small-scale 
beam length via 𝑐 =

√

3𝓁.
The relative density of a hierarchical lattice is the product of the 

large- and small-scale relative densities. The large-scale relative density 
is given by: 
�̄�𝐿 = 𝐴 𝑐

𝐿
, (2)

where 𝐴 is a topology specific constant given in Table  2 for the three 
topologies examined in this study. Otherwise, the relative density of the 
small-scale triangular lattice is: 

�̄�𝓁 =
7
√

3
3

( 𝑡
𝓁

)

. (3)

Note that the constant above is different from the value of 𝐴 given 
in Table  2 for a triangular lattice. This discrepancy is to account for 
the fact that the small-scale lattice has only two cells in the transverse 
direction, whereas the value of 𝐴 in Table  2 is representative of an 
infinite lattice. Finally, the overall relative density of a hierarchical 
lattice can be expressed as: 
�̄� = �̄�𝐿�̄�𝓁𝑓 = 𝐴ℎ

𝑐
𝐿

⋅
𝑡
𝓁

[

1 − 𝛽ℎ
𝑐
𝐿

]

, (4)

where the constants 𝐴ℎ and 𝛽ℎ are given in Table  2, and the function 𝑓
(in brackets above) accounts for the overlap of material at the joints. In 
general, it is adequate to assume 𝑓 ≈ 1, except for large values of 𝑐∕𝐿. 
For example, when 𝑐∕𝐿 = 0.2 (the maximum value considered in this 
study), 𝑓 = 0.93, 0.80, and 0.87 for hexagonal, triangular, and Kagome 
lattices, respectively.

Analytical predictions for the fracture toughness of hierarchical 
lattices are presented below for each topology and for both modes I and 
II. To derive these predictions, we start from the scaling law of simple 
lattices given in (1), and extend them to account for the mechanical 

Table 2
Constants for the relative density of hierarchical lattices.
 Large-scale topology 𝐴 𝐴ℎ 𝛽ℎ  
 Hexagonal 2∕

√

3 14/3 4
√

3∕21 
 Triangular 2

√

3 14 4
√

3∕7  
 Kagome √

3 7 8
√

3∕21 

properties of hierarchical struts. Therefore, this approach assumes that 
the behavior of the large-scale lattice is unaffected by the introduction 
of hierarchy. In line with the predictions in (1), we will consider that all 
lattices are made from an elastic-brittle material with a tensile strength 
𝜎𝑡𝑠.

2.1. Hierarchical hexagonal lattice

A (non-hierarchical) hexagonal lattice is bending-dominated and 
therefore, its fracture toughness scales linearly with the maximum 
bending moment that the cell walls can support (Gibson and Ashby, 
1997). Introducing hierarchy will increase the maximum bending mo-
ment and this enhancement will be proportional to the improvement 
in fracture toughness. Accordingly, the fracture toughness of a hierar-
chical hexagonal lattice can be expressed as: 

𝐾𝐼𝐶 = 𝐷𝐼 �̄�
2
𝐿

(

𝑀ℎ
𝑓

𝑀𝑠
𝑓

)

𝜎𝑡𝑠
√

𝐿, (5)

where 𝑀ℎ
𝑓  and 𝑀𝑠

𝑓  are the bending moments at fracture for hierarchical 
and solid cell walls, respectively. The fracture moment of a hierarchical 
strut corresponds to the moment when the stress in the face sheets 
reaches the tensile strength of the solid 𝜎𝑡𝑠. Considering the hierarchical 
strut as a sandwich beam (see Fig.  1b), where 𝑐 ≫ 𝑡 and the core 
has negligible flexural rigidity, the fracture bending moment can be 
expressed as (Allen, 1969): 

𝑀ℎ
𝑓 = 𝑏𝑜𝑐𝑡𝜎𝑡𝑠, (6)

where 𝑏𝑜 is the out-of-plane dimension of the lattice. Otherwise, the 
fracture moment of a solid strut of thickness 𝑐 is given by Gibson and 
Ashby (1997): 

𝑀𝑠
𝑓 =

𝐼𝑠𝜎𝑡𝑠
𝑦

= 1
6
𝑏𝑜𝑐

2𝜎𝑡𝑠. (7)

Using the small-scale relative density �̄�𝓁 defined in (3), the ratio 
𝑀ℎ

𝑓 ∕𝑀
𝑠
𝑓  becomes: 

𝑀ℎ
𝑓

𝑀𝑠
𝑓

= 6𝑡
𝑐

= 6𝑡
√

3𝓁
= 6

7
�̄�𝓁 . (8)

Substituting this in (5), using expression (2), and assuming �̄� ≈ �̄�𝐿�̄�𝓁 , 
returns the mode I fracture toughness of a hierarchical hexagonal 
lattice: 
𝐾𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 0.79

( 𝑐
𝐿

)

�̄�. (9)

Otherwise, the mode II fracture toughness is obtained simply by replac-
ing 𝐷𝐼  by 𝐷𝐼𝐼  in (5) and this gives: 
𝐾𝐼𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 0.37

( 𝑐
𝐿

)

�̄�. (10)

The above equations show that introducing hierarchy can signif-
icantly increase the fracture toughness of a hexagonal lattice. First, 
hierarchy modifies the scaling with relative density from �̄�2 to �̄�. Sec-
ond, the fracture toughness of a hierarchical design increases linearly 
with the stockiness 𝑐∕𝐿 of the large-scale lattice, which allows to 
increase the fracture toughness while keeping the relative density fixed.
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Fig. 1. (a) Unit cells of hierarchical topologies. (b) Geometry of a single hierarchical strut. (c) Evolution of a hierarchical hexagonal lattice for three values of stockiness 𝑐∕𝐿.

2.2. Hierarchical triangular lattice

A simple triangular lattice is stretching-dominated, and its fracture 
toughness is dictated by the tensile strength 𝜎𝑡𝑠 of the cell walls (Fleck 
and Qiu, 2007). Therefore, we can estimate the fracture toughness of 
a hierarchical triangular lattice by replacing 𝜎𝑡𝑠 in (1) by the tensile 
strength of a hierarchical strut. This gives: 

𝐾𝐼𝐶 = 𝐷𝐼 �̄�𝐿𝜎
ℎ
𝑡𝑠

√

𝐿, (11)

where 𝜎ℎ𝑡𝑠 is the longitudinal tensile strength of a hierarchical strut. 
Assuming that the load is carried by the three longitudinal bars (see 
Fig.  1b), 𝜎ℎ𝑡𝑠 can be expressed as: 

𝜎ℎ𝑡𝑠 =
3𝑡
𝑐
𝜎𝑡𝑠 = 0.43�̄�𝓁𝜎𝑡𝑠. (12)

Note that this result is slightly higher than the strength of a triangular 
lattice because of size effects (Gu et al., 2018). We then substitute (12) 
in (11), and use the approximation �̄� ≈ �̄�𝐿�̄�𝓁 , to obtain the mode I 
fracture toughness of a hierarchical triangular lattice: 
𝐾𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 0.215�̄�. (13)

Repeating the same procedure for mode II (replace 𝐷𝐼  by 𝐷𝐼𝐼  in (11)) 
returns: 
𝐾𝐼𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 0.163�̄�. (14)

Comparing these predictions to (1) shows that hierarchy decreases the 
fracture toughness of a triangular lattice by 57% for both modes. This is 
not surprising since the tensile strength of a hierarchical strut is lower 
than that of a fully-dense cell wall, see (12). Nonetheless, both simple 
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Fig. 2. (a) Domain used in FE simulations. Location of the initial crack (dashed red line) for hierarchical (b) hexagonal, (c) triangular, and (d) Kagome lattices.

and hierarchical triangular lattices have a fracture toughness that scales 
linearly with relative density.

2.3. Hierarchical Kagome lattice

The Kagome lattice is also stretching-dominated; therefore, the 
fracture toughness of its hierarchical design can be estimated following 
the approach used in Section 2.2 for a triangular lattice. Replacing the 
tensile strength of a cell wall 𝜎𝑡𝑠 in (1) by the tensile strength of a 
hierarchical strut 𝜎ℎ𝑡𝑠 gives: 

𝐾𝐼𝐶 = 𝐷𝐼
√

�̄�𝐿𝜎
ℎ
𝑡𝑠

√

𝐿. (15)

Next, we substitute 𝜎ℎ𝑡𝑠 from (12), use the definition of �̄�𝐿 given in (2), 
and the approximation �̄� ≈ �̄�𝐿�̄�𝓁 to get the mode I fracture toughness 
of a hierarchical Kagome lattice: 
𝐾𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 0.069

√

𝑐∕𝐿
�̄�. (16)

Repeating the same procedure for mode II returns: 
𝐾𝐼𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 0.043

√

𝑐∕𝐿
�̄�. (17)

Comparing these expressions with (1) indicates that introducing hi-
erarchy changes the scaling from √�̄� to �̄�. In addition, the fracture 
toughness of a hierarchical Kagome lattice is predicted to increase when 
𝑐∕𝐿 decreases. It should be noted that the Kagome lattice brings a 
unique challenge when deriving analytical predictions because, even 
though its behavior is stretching-dominated, it exhibits a crack tip 
blunting phenomenon, which causes local bending deformations (Fleck 
and Qiu, 2007). The importance of this phenomenon in a hierarchical 
Kagome lattice will be discussed later in Section 3.4.

3. Finite element predictions

3.1. Description of the modeling approach

Finite Element (FE) simulations were conducted to verify the analyt-
ical expressions presented in Section 2. All simulations were preformed 
using the finite element package Abaqus; we used the implicit solver 
and assumed small strain theory. The fracture toughness was pre-
dicted using the boundary layer method, which was first introduced 
by Schmidt and Fleck (2001) and used extensively in subsequent stud-
ies (Fleck and Qiu, 2007; Omidi and St-Pierre, 2023a,b; Romijn and 
Fleck, 2007; Tankasala et al., 2015; Yang and Zhang, 2024). Using this 
approach ensures that our results are directly comparable to those of 
non-hierarchical topologies given in Table  1.

A square domain, with a side length of roughly 64𝐿, was created 
for each hierarchical lattice, see Fig.  2a. This domain contained an 
initial crack positioned along the negative 𝑥1-axis, with the precise 
location of the crack tip and orientation of the lattice given in Fig. 
2b–d. Preliminary simulations, reported in Appendix  A.1, showed that 
this domain is sufficiently large to ensure that the fracture toughness 
predictions are independent of the domain size. The influence of the 
lattice orientation was also investigated for all topologies, and we found 

that this had a negligible effect on the fracture toughness, see Appendix 
A.2. The straight initial cracks considered here are representative of 
those used in fracture toughness tests. In reality, cracks nucleating and 
propagating are likely to follow a tortuous path in these hierarchical 
lattices. While it is impossible to study all possibilities, we show, in 
Appendix  A.3, that changing the straight initial cracks to more realistic 
patterns has a negligible effect on our predictions.

All hierarchical lattices were meshed with Timoshenko beam ele-
ments (B21 in Abaqus). Ten elements per strut 𝓁 were used around the 
crack tip (𝑟 < 3𝐿, see Fig.  2a), and the number of elements per strut 
was gradually decreased to three on the outer boundary of the domain. 
A mesh convergence study showed that further mesh refinements had 
a negligible effect on the results, see Appendix  A.1. Simulations were 
performed for relative densities ranging from 0.005 to 0.1 and for large-
scale stockiness 𝑐∕𝐿 varying from 0.06 to 0.20, see Fig.  1c. This was 
done by changing the small-scale bar thickness 𝑡 and the large-scale 
cell size 𝐿, while keeping the small-scale strut length 𝓁 fixed. In all 
cases, the relative density was calculated with (4).

The three hierarchical lattices have a six-fold rotational symmetry; 
therefore, their elastic proprieties are transversely isotropic. Conse-
quently, each node on the boundary of the domain was prescribed a 
displacement (𝑢1, 𝑢2) and rotation 𝜔 in accordance with the crack tip 
field in an isotropic elastic solid (Fleck and Qiu, 2007): 

𝑢1 =
𝐾𝐼

2
√

2𝜋𝐺

√

𝑟(𝜅 − cos 𝜃) cos 𝜃
2
+

𝐾𝐼𝐼

2
√

2𝜋𝐺

√

𝑟(𝜅 + 2 + cos 𝜃) sin 𝜃
2
,

(18a)

𝑢2 =
𝐾𝐼

2
√

2𝜋𝐺

√

𝑟(𝜅 − cos 𝜃) sin 𝜃
2
−

𝐾𝐼𝐼

2
√

2𝜋𝐺

√

𝑟(𝜅 − 2 + cos 𝜃) cos 𝜃
2
,

(18b)

𝜔 = 1 + 𝜅

4
√

2𝜋𝐺

√

𝑟(𝐾𝐼 sin
𝜃
2
+𝐾𝐼𝐼 cos

𝜃
2
), (18c)

where (𝑟, 𝜃) are polar coordinates originating from the crack tip; 𝜅 =
(3 − 𝜈𝑝𝑠)∕(1 + 𝜈𝑝𝑠); 𝐺 is the effective shear modulus and 𝜈𝑝𝑠 is the plane 
strain Poisson’s ratio of the lattice, which is given in Appendix  B for 
each topology. Otherwise, 𝐾𝐼  and 𝐾𝐼𝐼  are the stress intensity factors 
for modes I and II, respectively.

In all cases, the lattices were considered to be made from an elastic-
brittle material, characterized by an elastic modulus 𝐸𝑠 and a Poisson’s 
ratio 𝜈𝑠. The simulations were performed under plane strain and this 
required to modify the material properties of each beam element as 
follows (Fleck and Qiu, 2007): 

𝐸′
𝑠 =

𝐸𝑠

1 − 𝜈2𝑠
and 𝜈′𝑠 =

𝜈𝑠
1 − 𝜈𝑠

. (19)

We adopted the point-wise failure criterion, which assumes that the 
fracture toughness 𝐾𝐼𝐶 (or 𝐾𝐼𝐼𝐶 ) corresponds to the value of 𝐾𝐼
(or 𝐾𝐼𝐼 ) when the maximum local tensile stress reaches the strength 
𝜎𝑡𝑠 of the solid (Tankasala et al., 2015). The point-wise failure cri-
terion is suitable for lattices made from an elastic-brittle material, 
which fractures immediately after the tensile stress reaches a critical 
value (Mangipudi and Onck, 2011; Onck et al., 2004).
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Fig. 3. Normalized fracture toughness as a function of relative density for a hierarchical hexagonal lattice under (a) mode I and (b) mode II. Likewise, results are given for a 
hierarchical triangular lattice under (c) mode I and (d) mode II; and a hierarchical Kagome lattice under (e) mode I and (f) mode II. In each plot, the toughness of a simple, 
non-hierarchical lattice is included for comparison.

3.2. Comparison between finite element and analytical predictions

The normalized fracture toughness is plotted in Fig.  3 as a function 
of relative density for the three hierarchical designs considered in this 
work and for both modes I and II. In each plot, FE simulations are 
compared to analytical predictions for three selected values of 𝑐∕𝐿. 
Since both our analytical and numerical modeling rely on beam theory, 
we limited our attention to slender geometries where 𝑡∕𝓁 < 0.125. 
This restriction explains why data for low values of 𝑐∕𝐿 does not span 

the entire range of relative densities (see, for example, the results for 
𝑐∕𝐿 = 0.060 in Fig.  3a). Each plot also includes, for comparison, the 
fracture toughness of a non-hierarchical topology given by (1). Finally, 
we emphasize that the fracture toughness of both non-hierarchical and 
hierarchical lattices is normalized by the large-scale cell size 𝐿 to 
ensure a fair comparison between both designs.

The fracture toughness of a hierarchical hexagonal lattice is shown 
in Fig.  3a and b for mode I and II, respectively. Clearly, hierarchical 
designs are significantly tougher than a conventional hexagonal lattice. 
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Fig. 4. Location of the first cell wall to fracture in a hierarchical hexagonal lattice under (a) mode I and (b) mode II. Likewise, results are given for a hierarchical triangular 
lattice under (c) mode I and (d) mode II; and a hierarchical Kagome lattice under (e) mode I and (f) mode II. All lattices have �̄� = 0.05 and 𝑐∕𝐿 ≈ 0.09, and the deformed meshes 
have exaggerated displacements to emphasize the deformation mode.

This increase in toughness is more important at low relative densities 
since the toughness of a hierarchical design scales linearly with relative 
density whereas that of a simple hexagonal lattice scales as �̄�2, see 
Table  1. The fracture toughness of a hierarchical hexagonal lattice also 
increases linearly with the large-scale stockiness 𝑐∕𝐿. This is consistent 
with the fact that increasing 𝑐∕𝐿 increases the bending strength of 
hierarchical cell walls. For both modes I and II, there is a very good 
agreement between analytical and FE predictions.

Results for a hierarchical triangular lattice are shown in Fig.  3c for 
mode I and in Fig.  3d for mode II. Here, introducing hierarchy decreases 

the fracture toughness by about 50% for both modes I and II. Despite 
this reduction, both simple and hierarchical triangular lattices maintain 
a toughness that scales linearly with relative density. Again, there is an 
excellent agreement between FE simulations and analytical predictions, 
and this holds true for both modes I and II.

The fracture toughness of a hierarchical Kagome lattice is given in 
Fig.  3e and f for mode I and mode II, respectively. Introducing hierarchy 
significantly lowers the toughness of a Kagome lattice, and this is more 
important at low relative densities. This is due to the fact that the 
toughness of a simple Kagome lattice scales as √�̄� whereas that of its 
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Fig. 5. Evolution of the failure location in a hierarchical Kagome lattice for three selected values of large-scale stockiness 𝑐∕𝐿. Results are given for both modes I and II. The 
fracture site in a simple, non-hierarchical Kagome lattice (taken from Fleck and Qiu (2007)) is also included for comparison.

hierarchical counterpart scales as �̄�. While this change in the scaling 
law is predicted by our analytical model (see Section 2.3), it is clear 
from Fig.  3e,f that the effect of 𝑐∕𝐿 is not captured accurately in our 
analytical predictions. Our analytical model predicts a 70% increase in 
fracture toughness when the stockiness 𝑐∕𝐿 is changed from 0.17 to 
0.058, but our FE simulations show a modest increase of 20% only. 
The mechanisms leading to this discrepancy are investigated below, in 
Section 3.4.

3.3. Deformed meshes and fracture locations

The location of the first cell wall to fracture is given in Fig.  4 for 
each hierarchical lattice and for both modes I and II. Results are shown 
for 𝑐∕𝐿 ≈ 0.09 and �̄� = 0.05, but the failure location is insensitive to 
�̄�. Both hierarchical hexagonal and triangular lattices have a fracture 
location that is close to the crack tip under both modes I and II, see 
Fig.  4a–d. For these two topologies, the fracture site is independent of 
𝑐∕𝐿 and corresponds to the same failure location as in their simple, 
non-hierarchical counterparts, see Fleck and Qiu (2007). This indicates 
that the large-scale behavior of hexagonal and triangular lattices is 
unaffected by the introduction of hierarchy. In contrast, the failure 
location in a hierarchical Kagome lattice is sensitive to the large-scale 
stockiness 𝑐∕𝐿. This is shown in Fig.  5, where the fracture site is given 
for three selected values of 𝑐∕𝐿. The failure location in a simple, non-
hierarchical Kagome lattice (taken from Fleck and Qiu (2007)) is also 
included for comparison. For both modes I and II, the fracture site in a 
hierarchical Kagome lattice moves away from the crack tip (and closer 
to the failure site in a simple Kagome lattice) when 𝑐∕𝐿 decreases.

3.4. Discussion on the toughness of a hierarchical Kagome lattice

The comparison between analytical and FE results in Fig.  3 showed 
that, while there is a good agreement for hierarchical hexagonal and 
triangular lattices, an important discrepancy exists for the Kagome 
topology. This section aims to find the cause of this deviation and revise 

our analytical predictions for the fracture toughness of hierarchical 
Kagome lattices.

A simple, non-hierarchical Kagome lattice has a very peculiar frac-
ture behavior: its deformation is stretching-dominated far from the 
crack tip, whereas there is a combination of bar bending and stretching 
closer to the crack tip, and this area is referred to as the blunting 
zone (Fleck and Qiu, 2007). Therefore, we first investigate if a crack tip 
blunting zone exists in hierarchical Kagome lattices by inspecting the 
deformed meshes for two values of stockiness 𝑐∕𝐿, see Fig.  6. Clearly, 
𝑐∕𝐿 has a huge effect on the blunting zone: the stocky construction with 
𝑐∕𝐿 = 0.17 shows almost no blunting (see Fig.  6a), whereas the slender 
design with 𝑐∕𝐿 = 0.058 has a pronounced blunting zone emanating 
from the crack tip (see Fig.  6b).

We can quantify the extent of the blunting zone with the metric 
proposed by Fleck and Qiu (2007). They measured the blunting zone as 
the radial distance 𝑟𝑒𝑙 from the crack tip over which the absolute node 
rotation |𝜔| exceeds 𝐾𝐼∕(𝐸

√

𝐿) (where 𝐸 is the elastic modulus of the 
lattice given in Appendix  B; for mode II, simply replace 𝐾𝐼  by 𝐾𝐼𝐼 ). 
The normalized blunting zone 𝑟𝑒𝑙∕𝐿 is plotted in Fig.  7 as a function of 
�̄�𝐿 for hierarchical Kagome lattices. The data for both modes I and II 
collapses on a single trendline given by: 
𝑟𝑒𝑙
𝐿

= 1
4 �̄� 1.5

𝐿

. (20)

The normalized blunting zone for a simple, non-hierarchical Kagome 
lattice is also included in Fig.  7 for comparison. These results are 
reproduced from Fleck and Qiu (2007), and �̄� = �̄�𝐿 for a simple, 
non-hierarchical lattice. Clearly, introducing hierarchy slightly reduces 
the size of the blunting zone, but 𝑟𝑒𝑙 ∝ 𝐿∕�̄� 1.5

𝐿  for both simple and 
hierarchical designs.

Next, we shall make use of the blunting zone in (20) to revise 
our analytical prediction for the fracture toughness of a hierarchical 
Kagome lattice. Our approach is similar to that used by Fleck and Qiu 
(2007) for a simple, non-hierarchical Kagome lattice: we assume that 
the fracture toughness is governed by the bending strength of a cell 
wall located at a distance 𝑟𝑒𝑙 from the crack tip. Consider a hierarchical 
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Fig. 6. Deformed meshes for hierarchical Kagome lattices with �̄� = 0.05 and a large-scale stockiness ratio (a) 𝑐∕𝐿 = 0.17 and (b) 𝑐∕𝐿 = 0.058. This shows that the blunting zone 
decreases with increasing 𝑐∕𝐿.

Fig. 7. Hierarchical and simple Kagome normalized crack tip deformation zone with 
�̄� = 0.02, where simple Kagome data is from Fleck and Qiu (2007).

strut that is fixed on one end and subjected to a displacement 𝛿 at the 
other end. The maximum bending stress at the root of the cantilever 
is then given as 𝜎𝑏 ≈ 𝛿𝐸𝑠𝑐∕𝐿2. Setting 𝜎𝑏 = 𝜎𝑡𝑠 and the displacement 
𝛿 = 𝐾𝐼𝐶

√

𝑟𝑒𝑙∕𝐸, where 𝐸 ≈ �̄�𝐿�̄�𝓁𝐸𝑠, gives a revised prediction for the 
mode I fracture toughness of a hierarchical Kagome lattice: 
𝐾𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 𝐶1

( 𝑐
𝐿

)−0.25
⋅ �̄� ⋅ 𝑓−1 =

𝐶1(𝑐∕𝐿)−0.25

1 − 𝛽ℎ(𝑐∕𝐿)
�̄�, (21)

where 𝐶1 is a constant of proportionality, whereas 𝑓 and 𝛽ℎ = 8
√

3∕21
were introduced earlier in (4). To verify this prediction, 𝐾𝐼𝐶∕(�̄�𝜎𝑡𝑠

√

𝐿)
is plotted as a function of 𝑐∕𝐿 in Fig.  8. The FE simulations are in good 
agreement with (21) when the constant of proportionality 𝐶1 = 0.16. 
Repeating the analysis for mode II gives the same scaling as in (21), 
but with a slightly lower constant of proportionality, see Fig.  8. Note 
that for 𝑐∕𝐿 < 0.08, it is reasonable to assume 𝑓 ≈ 1 in (21), which 
returns a simpler scaling law: 𝐾𝐼𝐶 ∝ (𝑐∕𝐿)−0.25 �̄� 𝜎𝑡𝑠

√

𝐿. However, this 
assumption is not valid for higher values of 𝑐∕𝐿 and this introduces an 
additional term in the prediction.

In summary, both simple and hierarchical Kagome lattices exhibit 
a similar behavior: they both have a blunting zone 𝑟𝑒𝑙 that decreases 

Fig. 8. Normalized fracture toughness as a function of 𝑐∕𝐿 for hierarchical Kagome 
lattices. Results are shown for both modes I and II.

with increasing �̄�𝐿. Hierarchy, however, slightly reduces 𝑟𝑒𝑙 (see Fig.  7) 
and leads to a different scaling than that previously obtained by Fleck 
and Qiu (2007). Those differences explain the discrepancy between 
analytical and FE predictions introduced earlier in Fig.  3e,f.

4. Functional grading of hierarchical hexagonal lattice

The results in Fig.  3 demonstrate that hierarchy can significantly in-
crease the fracture toughness of a hexagonal lattice. This enhancement 
is due to the fact that hierarchical struts have a higher bending strength 
than fully-dense cell walls, when compared on an equal mass basis. The 
benefits of hierarchy can be increased further by re-distributing mass 
from the core to the faces of the hierarchical strut, which is quantified 
below.

Consider the functionally graded, hierarchical hexagonal lattice 
shown in Fig.  9, where the faces have a thickness 𝑡𝑓  and the bars in 
the core, a thickness 𝑡𝑐 . In this design, the joints are made from bars 
with a thickness 𝑡𝑓  to prevent localized deformation. The small-scale 
relative density of this functionally graded design is given by: 

�̄�𝓁 =
2𝑡𝑓 + 5𝑡𝑐
√

3𝓁
=

(2𝑡 + 5)
√

3𝑡

𝑡𝑓
𝓁
, (22)
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Fig. 9. A functionally graded hierarchical hexagonal lattice where the bars in red have 
a thickness 𝑡𝑓  and those in black, a thickness 𝑡𝑐 .

where the ratio 𝑡 = 𝑡𝑓∕𝑡𝑐 . Otherwise, the large-scale relative density 
remains unchanged, see (2), and the overall relative density becomes: 

�̄� = �̄�𝐿�̄�𝓁 𝑓 = 2
3
(2𝑡 + 5)

𝑡
𝑐
𝐿

𝑡𝑓
𝓁

[

1 − 2
√

3

(5 − 3𝑡)
(5 + 2𝑡)

𝑐
𝐿

]

. (23)

In this case, the bending moment causing fracture of a hierarchical 
strut is given by: 
𝑀ℎ

𝑓 = 𝑏𝑜𝑐𝑡𝑓𝜎𝑡𝑠, (24)

and the enhancement ratio 𝑀ℎ
𝑓 ∕𝑀

𝑠
𝑓  (where 𝑀𝑠

𝑓  is defined in (7)) 
becomes: 
𝑀ℎ

𝑓

𝑀𝑠
𝑓

=
6𝑡𝑓
𝑐

= 6𝑡
2𝑡 + 5

�̄�𝓁 . (25)

Substituting this in (5), and assuming �̄� ≈ �̄�𝐿�̄�𝓁 , gives the mode I 
fracture toughness of a graded hierarchical hexagonal lattice: 
𝐾𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 5.54 𝑡

(2𝑡 + 5)

( 𝑐
𝐿

)

�̄�. (26)

Similarly, the mode II fracture toughness is obtained by replacing 𝐷𝐼
by 𝐷𝐼𝐼  in (5) and this gives: 
𝐾𝐼𝐼𝐶

𝜎𝑡𝑠
√

𝐿
= 2.56 𝑡

(2𝑡 + 5)

( 𝑐
𝐿

)

�̄�. (27)

Additional FE simulations were conducted to corroborate these 
analytical predictions. These simulations were done using the same 
modeling approach outlined in Section 3.1, but the elastic properties 
of the graded lattice (𝐺 and 𝜈𝑝𝑠) were obtained from separate FE 
simulations using a periodic unit cell. Analytical and FE predictions 
are compared in Fig.  10 for 𝑡 = 1, 2, and 4. The fracture toughness 
of a panel with 𝑐∕𝐿 = 0.091 is given in Fig.  10a and b for modes I 
and II, respectively. Likewise, results for 𝑐∕𝐿 = 0.060 are given in Fig. 

10c for mode I and in Fig.  10d for mode II. In each plot, FE results 
are reported for two different fracture criteria: LTS and ATS. Since 
beam elements are used, they have a linear distribution of stresses 
through the thickness, characterized by an average 𝜎𝐴 and a maximum 
tensile value 𝜎𝑇  on the outermost fiber. The maximum local stress 
(LTS) criterion assumes that fracture occurs when 𝜎𝑇 = 𝜎𝑡𝑠 (this is the 
approach used previously in this paper). In contrast, the average tensile 
stress (ATS) criterion considers that failure occurs when 𝜎𝐴 = 𝜎𝑡𝑠. A 
similar approach was used previously by Tankasala et al. (2015), and 
it is useful here to distinguish if the critical element is loaded primarily 
in tension or with a combination of tensile and bending stresses.

The results in Fig.  10 show that fracture toughness roughly doubles 
as 𝑡 is increased from 1 to 4. In general, there is a good agreement 
between analytical predictions and FE simulations, especially those 
relying on the ATS criterion. At low relative densities, the LTS and 
ATS criteria yield similar predictions, indicating that the critical ele-
ment is loaded primarily in tension, with negligible bending stresses. 
Bending stresses, however, increase with increasing �̄� and 𝑡, leading to 
significant differences between the LTS and ATS criteria at high relative 
densities and 𝑡 = 4. Note that the failure location is not sensitive to 𝑡
or the choice of fracture criterion. Even though the LTS predictions are 
below those obtained with the ATS criterion, the results demonstrate 
that increasing 𝑡 can significantly increase fracture toughness under 
both modes I and II.

5. Conclusion

The mode I and mode II fracture toughness of hierarchical hexag-
onal, triangular, and Kagome lattices was investigated using FE simu-
lations and analytical modeling. Our findings indicate that hierarchy 
provides significant benefits to the fracture toughness of the hexagonal 
lattice, which is bending-dominated. This is attributed to the increase 
in bending strength of the cell walls. In addition, hierarchy causes an 
important change in scaling: the fracture toughness of a hierarchical 
hexagonal lattice scales linearly with relative density, whereas 𝐾𝐼𝐶 ∝
�̄�2 for its non-hierarchical counterpart. This change in scaling leads to 
a substantially higher fracture toughness, particularly at low relative 
densities. The fracture toughness of a hierarchical hexagonal lattice can 
be improved further by functional grading: moving mass from the core 
to the faces of the hierarchical cell walls. This approach can double 
the fracture toughness if the faces are four times thicker than the core 
members.

In contrast, hierarchy did not improve the fracture toughness of 
stretching-dominated topologies such as triangular and Kagome lat-
tices. Hierarchy has a fairly small effect on the performances of a 
triangular lattice, as both simple and hierarchical designs have a frac-
ture toughness that scales linearly with relative density. Hierarchy, 
however, has a more pronounced effect on the Kagome lattice: it 
slightly reduces the crack tip blunting phenomenon and affects the frac-
ture location. This leads to a change in scaling: the fracture toughness 
𝐾𝐼𝐶 ∝ �̄� for a hierarchical Kagome lattice, whereas it scales with √�̄�
for its simple, non-hierarchical counterpart.

Natural lightweight materials, like wood and bone, have a high 
toughness, which is usually attributed to their hierarchical construc-
tion. These natural materials are bending-dominated and therefore, 
hierarchy is an excellent strategy to increase their fracture tough-
ness, as demonstrated in this study. Future work should explore other 
potential benefits of hierarchical lattices. For example, at low rela-
tive densities, elastic buckling may occur before tensile fracture in 
stretching-dominated lattices (Shaikeea et al., 2022). Hierarchy can 
delay this transition and increase the performances of lattices at low 
relative densities. Hierarchy could also provide additional resistance 
to crack propagation by activating crack bridging and microcracking, 
which are not present in simple, non-hierarchical lattices (Hsieh et al., 
2020; Tankasala and Fleck, 2020; Hedvard et al., 2024).
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Fig. 10. Normalized fracture toughness as a function of relative density for a functionally graded, hierarchical hexagonal lattice with 𝑐∕𝐿 = 0.091 under (a) mode I and (b) mode 
II. Likewise, results are given for 𝑐∕𝐿 = 0.060 under (c) mode I and (d) mode II. FE results are reported for two different fracture criteria: the maximum local stress (LTS) and the 
average tensile stress (ATS).
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Appendix A. Modeling considerations

A.1. Influence of domain and mesh sizes

Finite Element predictions were conducted to verify that the domain 
and mesh sizes were adequate. These simulations were done for a 

hierarchical hexagonal lattice with a stockiness 𝑐∕𝐿 = 0.091 and a 
relative density �̄� = 0.05. The normalized fracture toughness is plotted 
in Fig.  A.1a as a function of the normalized domain width 𝑊 ∕𝐿. Recall 
that 𝑊  is the width of the square domain (see Fig.  2a) and 𝐿 is 
the length of a hierarchical strut. Here, the small-scale struts 𝓁 were 
meshed with 10 beam elements at the crack tip. It is clear from Fig. 
A.1a that the fracture toughness is fairly insensitive to the domain size; 
predictions vary by less than one percent when 𝑊 ∕𝐿 is increased from 
64 to 128. Based on these results, we selected a size 𝑊 ∕𝐿 = 64 for all 
our simulations.

A mesh convergence study was then performed (with a domain 
𝑊 ∕𝐿 = 64) and the results are plotted in Fig.  A.1b. Refining the mesh 
at the crack tip from 10 to 30 elements per strut 𝓁 results in a 2% 
change only in fracture toughness. As a compromise between accuracy 
and computational efficiency, we decided to use 10 elements per strut 
in all our simulations.

A.2. Influence of lattice orientation

Additional simulations were conducted to assess the effect the lat-
tice orientation on its fracture toughness. Three orientations, 0◦, 15◦, 
and 30◦, were considered and these are shown in Fig.  A.2 for a hi-
erarchical hexagonal lattice. Note that the 0◦ orientation is the one 
considered in this study and it is sufficient to examine rotations up to 
30◦ only because of the six-fold rotational symmetry of each lattice. The 
effect of orientation for hierarchical hexagonal, triangular, and Kagome 
lattices with a stockiness of 𝑐∕𝐿 ≈ 0.09 is shown in Fig.  A.3. Clearly, 
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Fig. A.1. Normalized fracture toughness for a hierarchical hexagonal lattice with �̄� = 0.05 and 𝑐∕𝐿 = 0.091 as a function of (a) normalized domain width, and (b) mesh size. The 
domain and mesh sizes employed in all our simulations are circled.

Fig. A.2. A hierarchical hexagonal lattice in the (a) 0◦, (b) 15◦, and (c) 30◦ orientations.

Fig. A.3. Effect of the lattice orientation on the normalized fracture toughness. Results are shown for hierarchical (a) hexagonal, (b) triangular, and (c) Kagome lattices with 
𝑐∕𝐿 ≈ 0.09.

all three hierarchical topologies are fairly insensitive to orientation; 
the maximum change in fracture toughness is 8% for the range of 
orientations considered.

A.3. Influence of initial crack path

Cracks propagating in lattices do not break their joints (Lipperman 
et al., 2007); therefore, cracks are unlikely to be straight like those 
considered in Fig.  2. To quantify this effect, three alternative, more 
realistic, initial crack paths were considered, see Fig.  A.4. For the 
hexagonal 30◦ lattice, the initial crack breaks the inclined bars instead 

of splitting the horizontal member (compare Figs.  A.4a with A.2c). 
Otherwise, the initial crack paths for triangular and Kagome lattices 
are modified to avoid going through the joints (compare Figs.  A.4b 
with 2c, and Figs.  A.4c with 2d). These additional simulations were 
performed for lattices with 𝑐∕𝐿 ≈ 0.09 and �̄� = 0.02. Changing 
the straight crack to a tortuous path sightly decreased the fracture 
toughness, with reductions of 0.6%, 1.3% and 1.0% for hexagonal 30◦, 
triangular, and Kagome lattices, respectively. This indicates that the 
initial crack pattern has a negligible effect on the predicted fracture
toughness.

International Journal of Solids and Structures 316 (2025) 113374 

11 



A. Leraillez and L. St-Pierre

Fig. A.4. Alternative initial crack paths for (a) hexagonal 30◦, (b) triangular, and (c) Kagome lattices.

Table B.1
In-plane elastic constants for simple, non-hierarchical lattices.
Source: Data collected from Wang and McDowell (2004).
 Topology 𝐵 𝑏 𝜈  
 Kagome 1∕3 1 1/3 
 Hexagonal 3∕2 3 1  
 Triangular 1∕3 1 1/3 

Appendix B. In-plane elastic properties

The in-plane elastic properties of hierarchical lattices are derived 
analytically in this section. This work relies on the elastic properties of 
simple, non-hierarchical lattices, which are reviewed below.

B.1. Simple lattices

The elastic modulus of any lattice can be expressed in a non-
dimensional form as (Fleck et al., 2010): 
𝐸
𝐸𝑠

= 𝐵�̄�𝑏, (B.1)

where 𝐵 and 𝑏 are topology specific constants given in Table  B.1 for 
simple hexagonal, triangular, and Kagome lattices. Their Poisson’s ratio 
𝜈 is also included in Table  B.1. For these three topologies, 𝜈 is a function 
of topology only, and is independent of the parent material.

B.2. Hierarchical lattices

The three hierarchical lattices considered in this work have a 
six-fold rotational symmetry; therefore, their behavior is transversely 
isotropic and characterized by two elastic constants: the elastic modulus 
𝐸 and Poisson’s ratio 𝜈. Analytical predictions for 𝐸 are presented 
below based on the assumption that the behavior of the large-scale 
lattice is unaffected by introducing hierarchy. Otherwise, we anticipate 
that simple and hierarchical lattices will have the same Poisson’s ratio, 
and this is also verified below.

A hexagonal lattice is bending-dominated and therefore, its elastic 
modulus scales linearly with the bending stiffness of the cell walls. 
Knowing that, and with the values in Table  B.1, the elastic modulus 
of a hierarchical hexagonal lattice can thus be expressed as: 

𝐸 = 3
2
�̄�3𝐿

(

𝐼ℎ
𝐼𝑠

)

𝐸𝑠, (B.2)

where 𝐼ℎ and 𝐼𝑠 are the second moment of area of hierarchical and solid 
struts, respectively. Keeping only the contribution of the outermost 
bars, the second moment of area for a hierarchical strut simplifies to: 

𝐼ℎ =
𝑡𝑐2𝑏𝑜
2

, (B.3)

Otherwise, for a simple strut of thickness 𝑐, we have: 

𝐼𝑠 =
𝑐3𝑏𝑜
12

. (B.4)

With these two expressions, the ratio 𝐼ℎ∕𝐼𝑠 becomes: 
𝐼ℎ
𝐼𝑠

= 6𝑡
𝑐

= 6𝑡
√

3𝓁
= 6

7
�̄�𝓁 , (B.5)

where the small-scale relative density �̄�𝓁 was defined earlier in (3). 
Substituting this in (B.2) and using the definition in (2) and the 
approximation �̄� ≈ �̄�𝐿�̄�𝓁 , returns the elastic modulus of a hierarchical 
hexagonal lattice: 
𝐸
𝐸𝑠

= 12
7

( 𝑐
𝐿

)2
�̄�. (B.6)

Simple triangular and Kagome lattices are both stretching-dominated 
and have the same elastic modulus, see Table  B.1. Therefore, the elastic 
modulus of their hierarchical counterparts can be expressed as: 

𝐸 = 1
3
�̄�𝐿 𝐸ℎ

𝑠 , (B.7)

where 𝐸ℎ
𝑠  is the longitudinal elastic modulus of a hierarchical cell wall. 

Assuming that the axial load is carried by the three longitudinal bars, 
𝐸ℎ
𝑠  becomes: 

𝐸ℎ
𝑠 = 3𝑡

𝑐
𝐸𝑠 = 0.43�̄�𝓁𝐸𝑠, (B.8)

which is slightly stiffer than a simple triangular lattice due to size 
effects (Gu et al., 2018). Substituting (B.8) in (B.7), and using �̄� ≈
�̄�𝐿�̄�𝓁 , gives the elastic modulus of hierarchical triangular and Kagome 
lattices: 
𝐸
𝐸𝑠

= 0.143�̄�. (B.9)

Finite Element simulations were performed to verify these analytical 
expressions. The in-plane elastic properties were predicted using a 
single unit cell (see Fig.  1a) with periodic boundary conditions, as 
described in Markou and St-Pierre (2022). Analytical predictions of the 
elastic modulus are compared to FE simulations in Fig.  B.1 for all three 
hierarchical designs.

For the hierarchical hexagonal lattice, there is a very good agree-
ment between (B.6) and FE predictions, see Fig.  B.1a. Clearly, the 
elastic modulus of a hierarchical hexagonal lattice scales (i) linearly 
with relative density (in contrast with its simple counterpart where it 
scales as �̄�3) and (ii) with (𝑐∕𝐿)2, making stocky configurations much 
stiffer. There is a small deviation between analytical and FE results 
when 𝑐∕𝐿 = 0.19 because shear and axial deformations of the small-
scale lattice become more important, while they are neglected in our 
analytical modeling.

Our analytical modeling for the hierarchical triangular and Kagome 
lattices predicts that their elastic modulus should be independent of 
𝑐∕𝐿, see (B.9). Numerical predictions, however, show a slight reduction 
in 𝐸 when stockiness 𝑐∕𝐿 decreases, and this is more apparent for the 
triangular lattice (Fig.  B.1b) than the kagome topology (Fig.  B.1c). This 
is attributed to the calculation of relative density: FE simulations are 
relying on the full expression in (4), whereas our analytical predictions 
are using 𝑓 = 1 for simplicity. This introduces an error, which increases 
with 𝑐∕𝐿 and is larger for the hierarchical triangular lattice (since 27 
bars are overlapping at the joints instead of 16 in a kagome lattice.).
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Fig. B.1. Comparison between analytical and FE predictions for the elastic modulus of hierarchical (a) hexagonal, (b) triangular, and (c) Kagome lattices.

Table B.2
Poisson’s ratio 𝜈 of hierarchical lattices. Results are given for selected values of 𝑐∕𝐿.
 Topology 𝑐∕𝐿

 0.06 0.09 0.18 
 Hexagonal 0.97 0.94 0.85 
 Triangular 0.33 0.33 0.33 
 Kagome 0.33 0.33 0.33 

The Poisson’s ratio of hierarchical lattices was also obtained from 
these FE simulations. The values of 𝜈, given in Table  B.2, confirm 
that introducing hierarchy does not affect the Poisson’s ratio of the 
lattice. There is, however, a small reduction in 𝜈 with increasing 𝑐∕𝐿
for a hierarchical hexagonal lattice, see Table  B.2. This reduction is 
not a consequence of hierarchy, but instead due to the high stockiness 
of the cell walls. The same effect has been documented for simple, 
non-hierarchical hexagonal lattices (Gibson and Ashby, 1997).

Finally, recall that the elastic properties detailed above are neces-
sary as they are part of the displacement field applied to each lattice, 
see (18). This field, however, is not given as a function of 𝐸 and 𝜈, but 
instead expressed with the shear modulus and plane strain Poisson’s 
ratio. Since all topologies are in-plane isotropic, the shear modulus is 
given by: 

𝐺 = 𝐸
2(1 + 𝜈)

, (B.10)

whereas the plane strain Poisson’s ratio is (Romijn and Fleck, 2007): 

𝜈𝑝𝑠 =
𝜈 + 𝐵𝜈2𝑠
1 − 𝐵𝜈2𝑠

, (B.11)

where 𝜈𝑠 is the Poisson’s ratio for the parent material, whereas 𝐵 =
0.143 for hierarchical triangular and Kagome lattices, and
𝐵 = 12 (𝑐∕𝐿)2 ∕7 for hierarchical hexagonal topologies. Note that 𝐵
is simply the constant of proportionality obtained above in (B.6) and 
(B.9).

Data availability

Data will be made available on request.
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