
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Kerslake, Chris; Denny, Paul; Smith, David H.; Leinonen, Juho; MacNeil, Stephen; Luxton-
Reilly, Andrew; Becker, Brett A.
Exploring Student Reactions to LLM-Generated Feedback on Explain in Plain English
Problems

Published in:
SIGCSE TS 2025 - Proceedings of the 56th ACM Technical Symposium on Computer Science Education

DOI:
10.1145/3641554.3701934

Published: 18/02/2025

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Kerslake, C., Denny, P., Smith, D. H., Leinonen, J., MacNeil, S., Luxton-Reilly, A., & Becker, B. A. (2025).
Exploring Student Reactions to LLM-Generated Feedback on Explain in Plain English Problems. In SIGCSE TS
2025 - Proceedings of the 56th ACM Technical Symposium on Computer Science Education (Vol. 1, pp. 575-
581). ACM. https://doi.org/10.1145/3641554.3701934

https://doi.org/10.1145/3641554.3701934
https://doi.org/10.1145/3641554.3701934


Exploring Student Reactions to LLM-Generated Feedback on
Explain in Plain English Problems

Chris Kerslake
Simon Fraser University
Burnaby, BC, Canada
chris.kerslake@sfu.ca

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

David H. Smith IV
University of Illinois
Urbana, IL, USA

dhsmith2@illinois.edu

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

Stephen MacNeil
Temple University

Philadelphia, PA, USA
stephen.macneil@temple.edu

Andrew Luxton-Reilly
University of Auckland
Auckland, New Zealand

a.luxton-reilly@auckland.ac.nz

Brett A. Becker
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

Abstract
Code reading and comprehension skills are essential for novices
learning programming, and explain-in-plain-English tasks (EiPE)
are a well-established approach for assessing these skills. However,
manual grading of EiPE tasks is time-consuming and this has limited
their use in practice. To address this, we explore an approach where
students explain code samples to a large language model (LLM)
which generates code based on their explanations. This generated
code is then evaluated using test suites, and shown to students
along with the test results. We are interested in understanding
how automated formative feedback from an LLM guides students’
subsequent prompts towards solving EiPE tasks. We analyzed 177
unique attempts on four EiPE exercises from 21 students, looking
at what kinds of mistakes they made and how they fixed them.
We found that when students made mistakes, they identified and
corrected them using either a combination of the LLM-generated
code and test case results, or they switched from describing the
purpose of the code to describing the sample code line-by-line until
the LLM-generated code exactly matched the obfuscated sample
code. Our findings suggest both optimism and caution with the
use of LLMs for unmonitored formative feedback. We identified
false positive and negative cases, helpful variable naming, and
clues of direct code recitation by students. For most students, this
approach represents an efficient way to demonstrate and assess
their code comprehension skills. However, we also found evidence
of misconceptions being reinforced, suggesting the need for further
work to identify and guide students more effectively.

CCS Concepts
• Social and professional topics → Computing education.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701934

Keywords
formative feedback; misconceptions; explain in plain English; EiPE;
large language models; LLM; qualitative analysis
ACM Reference Format:
Chris Kerslake, Paul Denny, David H. Smith IV, Juho Leinonen, StephenMac-
Neil, Andrew Luxton-Reilly, and Brett A. Becker. 2025. Exploring Student
Reactions to LLM-Generated Feedback on Explain in Plain English Problems.
In Proceedings of the 56th ACM Technical Symposium on Computer Science Ed-
ucation V. 1 (SIGCSE TS 2025), February 26-March 1, 2025, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3641554.3701934

1 Introduction
Learning to read and comprehend code has long been an important
skill for novice programmers [16, 36]. In recent years, as generative
AI technologies such as large language models (LLMs) have become
capable of generating code automatically, the ability to understand
code is becoming increasingly important [7]. Traditional methods
for building and assessing code comprehension often involve “Ex-
plain in Plain English” (EiPE) tasks, where students are asked to
describe the functionality of a piece of code. These tasks help stu-
dents develop a deeper understanding of code semantics and logic,
but they are challenging to grade objectively and at scale [9, 14].

Recent advances in LLMs offer new approaches for generating
automated feedback on EiPE tasks [8, 25, 26]. In these methods, a
student’s explanation of a code snippet is used to generate new code,
which is then evaluated against a pre-written test suite to check
for functional equivalence with the original code. The feedback
provided to students typically includes the LLM-generated code and
the results of the test cases, indicating which tests passed and which
failed. This automated process can provide immediate feedback
to students, potentially enhancing their learning experience by
allowing them to identify and correct their mistakes in real-time.

Prior work in this area has primarily focused on quantitative
analyses that examine overall success rates of student attempts to
solve EiPE questions [8, 26]. These studies have demonstrated the
potential benefits of LLM-based feedback mechanisms but have
not thoroughly explored the quality or accuracy of the feedback

575

https://orcid.org/0000-0001-9860-941X
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0002-6572-4347
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0003-2781-6619
https://orcid.org/0000-0001-8269-2909
https://orcid.org/0000-0003-1446-647X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641554.3701934
https://doi.org/10.1145/3641554.3701934
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641554.3701934&domain=pdf&date_stamp=2025-02-18


SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Chris Kerslake et al.

provided to students. One critical aspect is the occurrence of false
positives and false negatives. A false positive occurs when a stu-
dent’s incorrect prompt results in correct code generated by the
LLM, while a false negative occurs when a student’s correct prompt
results in incorrect code generated by the LLM. Understanding
these error rates is crucial for evaluating the reliability of LLM-
generated feedback, as false positives in particular appear to be
measurably harmful to learning [15]. Thus, there is a need for addi-
tional qualitative analyses to ensure that LLM-generated feedback
is both accurate and helpful, and to identify areas where it can be
improved.

In this work, we qualitatively analyse student attempts at solving
EiPE tasks and the corresponding feedback generated by an LLM.
We examine how students respond to this feedback, particularly
when their initial attempts are incorrect. Our over-arching goal is
to understand how automated formative feedback from an LLM
influences students’ subsequent attempts and to identify ways to
enhance the feedback to provide more accurate and useful guidance.
We address the following questions:

• RQ1: What rates are observed for false positives and false
negatives in LLM-generated feedback on EiPE tasks?

• RQ2: How do students react to LLM-generated feedback
when solving EiPE tasks?

• RQ3: When students make mistakes, what feedback do they
use to correct them?

2 Related Work
The skills required to program are often separated into distinct cate-
gories for the purposes of teaching and evaluation [11, 36]. Among
these are: code writing [34], tracing [12], and comprehension [1, 35].
There is evidence that code tracing and code comprehension pre-
dict code writing [31] performance, which supports the notion
that effective code writing subsumes tracing and comprehension.
Before the advent of LLMs and their code generation capabilities,
developing students’ abilities to write code independently was seen
as the primary goal of introductory programming courses. How-
ever, as we enter the age of AI-assisted programming an emerging
narrative within computer science education is that the priority
should shift from teaching students to code independently towards
instructing them to program with the assistance of LLMs [20, 30]
with some going as far as to suggest we should adopt a “Prompts
First” approach [22].

A commentary on CS2023: ACM/IEEE-CS/AAAI Computer Science
Curricula suggests that the skill of comprehending code should be
emphasized because students will be required to spend substan-
tial amounts of time evaluating the functionality of AI-generated
code [2]. Code comprehension is frequently assessed by asking
students to describe a code segment using natural language via
EiPE questions [16]. Though grading standards for these questions
vary [5, 32], ideal responses are often characterized by their abil-
ity to correctly describe the code’s purpose rather than its imple-
mentation [10]. To characterize student understanding, the SOLO
taxonomy (Structure of Observed Learning Outcomes [3]) is typi-
cally deployed, where a description of the code implementation is
aligned with the multi-structural level of SOLO and a description
of the purpose of the code is aligned with the relational level [23].

Despite the clear utility of EiPE questions, the adoption of these
questions at scale has been limited by the difficulty of automati-
cally grading natural language responses. Prior to the widespread
availability of large language models, the only automatic grading
approach developed and evaluated for EiPE questions was intro-
duced by Fowler et al. [9]. This approach utilizes a logistic classifier
trained on a large quantity (500-600) of human labeled EiPE re-
sponses. Though this approach achieves results similar to that of a
trained teaching assistant it suffers from several core limitations:
1) the overhead of human labeling needed for question authoring,
2) the inability to provide feedback beyond dichotomous, 3) the
limited transparency of the grading mechanism for students [14].

A more recent LLM-based approach for grading EiPE questions
introduced by Smith IV and Zilles [27] involves generating code
from a student’s EiPE response and grading the generated code via
unit tests to identify if the generated code is functionally equivalent
to the code the student was describing. This approach addresses
each of the limitations of the logistic classifier approach by: 1) re-
ducing the question authoring process to simply writing test cases,
2) providing students feedback through test cases and the generated
code, and 3) increasing the transparency of the standards by which
the students are being graded. An evaluation of these questions in
lab activities by Denny et al. [8] found that relational responses
were more successful than multistructural responses suggesting
something of an alignment between what makes effective prompts
and ideal EiPE responses. Follow-up work by Smith IV et al. [26]
found that students were largely positive and engaged with the feed-
back in two modes: (i) comparing the generated code to the code
they were describing to identify differences; and (ii) observing test
case output to identify edge cases they had missed in their prompt.
Many students explicitly stated that the feedback contributed to
their ability to comprehend the code and form successful responses.

3 Methods
The EiPE tasks used in this study were delivered to students dur-
ing the eighth week of an introduction to programming course
at the University of Auckland, a large research university in New
Zealand. The twelve-week course was split into two six-week mod-
ules that covered MATLAB and the C programming language. The
first module focused on typical CS1 topics, including variables,
arrays, conditionals, loops, functions, and common algorithms in
MATLAB. The second module revisited the same concepts using
the C programming language.

Following approval by the university’s human ethics committee,
data was collected from 861 students enrolled in the course. The
participants were first-year engineering students and were not
expected to have any formal programming experience

Table 1: List of the four EiPE questions and their descriptions.

Q# Task Description
Q1 FindSumBetween calculate sum between two values
Q2 CountEvensInArray count num. even values in an array
Q3 LastZeroInArray find index of last zero in an array
Q4 SumPositiveValues sum the positive values in an array

576



Exploring Student Reactions to LLM-Generated Feedback on EiPE Problems SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

3.1 Explain in Plain English (EiPE) Questions
During their lab for the eighth week of the course, students were
tasked to answer four code-related questions (Table 1) using the
online assessment platform PrairieLearn [33]. Following examples
from previous EiPE studies [10, 18], for each of the four questions,
students were presented with a single C function (named ‘foo’ with
deliberately obfuscated variable names) and asked to describe the
function in plain English. After submitting their answer, a prompt
to generate a solution was created and submitted to GPT-3.5. The
resulting C code was then evaluated against a set of test cases, and
both the code and the results from the test cases were shown to
the student. If the LLM-generated code successfully passed all test
cases, then the code was considered functionally equivalent, and
the question was marked as passed.

3.2 Student Post-Lab Reflections
After completing all four of the EiPE questions, students were asked
to answer a set of feedback questions. One of the questions, Ques-
tion 10 asked students to describe their approach when their initial
response was unsuccessful. To evaluate these post-lab reflections,
the first author generated a set of inductive codes based on their
interpretation of how each student responded (see Table 4).

3.3 Sampling Procedures & Inter-Rater
Reliability

For this study, a subset of 21 students were randomly selected from
the larger group of 861 students in three rounds of sampling. In the
first round, ten students were randomly selected, and cases were
created for each student that covered their prompts, code, and test
results for each of the four lab questions, as well as their post-lab
feedback comments. After the initial ten cases were inductively
coded, two additional groups of students were targeted to broaden
the set of codes. Six students were randomly chosen from those who
had made at least one error, and five more students were chosen
from those who had made at least 11 attempts during their exercises.
In total, 177 prompts from 21 students were examined.

To validate the inductively generated codes by the first author,
cases were added until saturation was reached. After reaching satu-
ration, a second coder coded a subset of the data until a Cohen’s
kappa of .80 (strong agreement) was achieved.

3.4 False Positives & False Negatives
To evaluate student descriptions for false positives and false nega-
tives, an expert programmer read each student prompt to determine
what the prompt described. In most cases, the LLM-generated code
followed logically from the description provided. However, in some
cases, the description did not provide sufficient or correct infor-
mation but passed (false positive), or the description provided was
deemed sufficient but did not pass (false negative).

3.5 Student Reactions to LLM Feedback
To evaluate how students reacted to LLM-generated feedback when
solving EiPE tasks, the first author generated an inductive set of
codes based on their interpretation of what each prompt described.

4 Findings
4.1 False Positives & False Negatives
Of the 177 total prompts that were analyzed, 2 false positives were
identified, and 5 false negatives were identified (3.95% of prompts).
However, these false identifications were experienced by 5 of the
21 students analyzed (23.8%), and although the sample size is small,
the occurrence was greater than expected.

4.1.1 False Positives. False positives occur when the LLM gener-
ates code that satisfies the tests based on an incorrect problem
description. False positives have the effect of ‘passing’ a student’s
description when it should not have passed. As a result, a false
positive could accidentally reinforce an incorrect idea or concept.
We discovered two false positives: a vague answer resulted in a
pass, and the same prompt was presented twice, resulting in two
different answers, one of which passed.

In the first case, Student 103 provided a vague answer to Q3
(LastZeroInArray) for their second prompt (Prompt-103-Q3-02).
This resulted in code that passed all of the test cases. This was not
expected, and similar prompts that lacked explicit instruction on
what to return resulted in ‘failed’ rather than ‘success’ results with
similar prompts.

“takes an integer array and its length and gain an integer of the
index of the last occurrence of 0”

Prompt-103-Q3-02
Another type of false positive that was encountered resulted

from the non-deterministic nature of LLMs. The LLM generated
different answers for the same prompt in this second type. For
example, Student 112 provided a vague recitation of the sample
code in response to Q1 (FindSumBetween) (Prompt-112-Q1-07). As
expected, the resulting code (Code-112-Q1-07) failed two of the four
test cases. However, when they resubmitted the same prompt again
(Prompt-112-Q1-08), the generated code was completely different
(Code-112-Q1-08) and passed all of the test cases.

“takes an integer a and b and returns an updated x value by adding
the i value to it”

Prompt-112-Q1-07 & Prompt-112-Q1-08

int foo(int a, int b) {

int x = a + b;

return x;

}

Source Code 1: Code-112-Q1-07

int foo(int a, int b) {

int x = 0;

for (int i = a; i <= b; i++) {

x += i;

}

return x;

}

Source Code 2: Code-112-Q1-08

4.1.2 False Negatives. Unlike false positives, where students pass
when they should not, false negatives occur when the LLM fails
to generate code for a seemingly valid prompt. In these cases, the

577



SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Chris Kerslake et al.

student is misled that their prompt is invalid, and thus, they could
spend time looking for errors that do not exist, or it could cause
them to question their understanding unnecessarily. We discov-
ered two types of false negatives, one where the LLM failed to
consistently include a function parameter (thus breaking the test
cases), and one where the LLM was uncharacteristically literal in
its prompt interpretation.

For the first type of false negative, Student 102 described only the
first input parameter as an integer array but neglected to mention
its length as the second parameter. This was a common pattern, and
in the majority of cases, this omission had no ill effects. However, in
the case of 102’s answer to Q2 (CountEvensInArray), their prompt
(Prompt-102-Q2-01) resulted in the LLM omitting the unstated
length parameter , which resulted in four failed test cases. At first,
it seems reasonable that the LLM would not include the second
parameter. However, the hidden system prompt used by the EiPE
tool explicitly instructs the model to include them and when other
students failed to mention any of the input parameters, the LLM
automatically included both parameters. In 102’s case, the student
identified that the LLM had failed to include the second parameter
and adjusted their subsequent prompts to describe each parameter
explicitly. As a result, rather than this student moving towards an
abstract description with no function signature details, they instead
began to over-fit their description to the provided sample code.

“takes an integer array and returns the amount of even numbers
there are in the array”

Prompt-102-Q2-01

“takes an integer array and the length of the array, and then returns
the amount of even numbers there are in the array”

Prompt-102-Q2-02
For the second type of false negative, Student 111 provided a

reasonable answer for Q2 (CountEvensInArray) (Prompt-111-Q2-
02) that resulted in a literal interpretation of the answer where
each item in the array was first divided by two and then their new
value was checked if it was divisible by two. Again, the student
compared the generated code, noticed the literal interpretation,
and correctly adjusted their prompt (Prompt-111-Q2-03). Although
traditional programming requires precision and specificity, in this
case, the LLM’s literal interpretation of the prompt was not con-
sistent with the goal of providing a high-level explanation rather
than a recitation of the code.

“takes an array of integers and divides each number in the array
by 2 and checks how many numbers have a remainder of 0”

Prompt-111-Q2-02

“takes an array of integers and determines how many are divisible
by 2 with no remainder”

Prompt-111-Q2-03

Table 2: Student 111 Q3 Prompts. F - Failed; S - Success

Tries F/S Prompt
Q3-01 F takes an array of integers and determines how

many values are equal to 0
Q3-02 F takes an array of integers and determines which

numbers are equal to 0
Q3-03 F takes an array of integers, starting with a counter

at -1 and checks to see if the values are 0. If so
then it will assign the counter to the position of
the value that is equal to zero.

Q3-04 F takes an array of integers, starting with a counter
at -1 and checks to see if the values are 0. If so,
then it will assign the counter to the position of
the value that is equal to zero, returning the count.

Q3-05 S takes an array of integers and outputs an integer
that represents the position of the last zero in the
array, if there are no zeros output -1

4.2 Student Reactions to LLM Feedback
Students predominately exhibited one of two approaches to explain-
ing the code samples, either at an abstract high-level or by directly
reciting the code in detail to reverse engineer the prompt from the
code. This section explores how two students reacted to feedback
when their initial prompt failed.

As an example of a student who provided predominately high-
level descriptions, Student 111 (shown in Table 2) started off with
an incorrect description (Q3-01) for Q3 (LastZeroInArray), misiden-
tifying the code as counting how many zeros rather than finding
the index of the last zero in the array. As a result, their first prompt
refers to the number of zeros. This results in the LLM generating
code that counts the zeros and a variable named “count” (Code-111-
Q3-01). As expected, all four test cases failed.
int foo(int arr[], int size) {

int count = 0;

for (int i = 0; i < size; i++) {

if (arr[i] == 0) {

count++;
}

}

return count;
}

Source Code 3: Code-111-Q3-01

In their post-lab feedback, Student 111 stated that they “didn’t
really use the feedback given by the system.” Instead, they “just
looked at the code it outputted and what I needed to do to fix
that code.” This is supported by their next prompt (Q3-02) where
they switch from counting with “how many” into “which” numbers
are equal to 0. Again, their second prompt also fails, but this time
in a more dramatic fashion by first breaking the function type
declaration from int to void and not returning “which numbers are
equal to 0” but instead printing them to the screen.

In response, the student switches from a high-level description to
describing lines from the sample code in an effort to get the LLM to
generate the same code (Q3-03). Of particular interest is that rather
than referring to the variable “x” from the sample code, they use the

578



Exploring Student Reactions to LLM-Generated Feedback on EiPE Problems SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

name “counter” from their description and the originally generated
code (Code-111-Q3-01). Also, after the function definition switched
from int to void, the student switched to explicitly describing at
least the input array for the function. Note that they did not also
include the second function parameter “size”, but the LLM included
it anyway (in contrast to the false negative results discussed in
the previous section). The resulting code for their third attempt
incorrectly determined the first position of a zero in the array and
also accidentally passed the first test case.

For their fourth attempt (Q3-04), the student explicitly added a
return statement (again, not required by most other prompts), but
the LLM unexpectedly dropped the implicit second parameter of
“size” resulting in a compilation error due to a function definition
mismatch and all tests failing.

We had expected them to add the second function parameter for
their fifth (and final) attempt (Q3-05), but they did not. However,
they determined that the code was looking for the last zero rather
than counting zeros, so they changed their prompt to describe that.
As a result, the LLM generated the correct function signature, and
the code passed all four test cases.

In contrast to the high-level descriptions provided by Student 111,
Student 128 directly recited the sample code for their explanations.
As a result, they reacted more to the generated code and adjusted
their prompts in response to specific mismatched lines of code, as
shown in Table 3.

Table 3: Student 128 Q1 Prompts. F - Failed; S - Success

Tries F/S Prompt
Q1-01 F Passes two inputs which are both integers named

’a’ and ’b’. Return the amount of values that are
less than or equal to ’b’ but greater than or equal
to ’a’.

Q1-03 F Passes two inputs which are both integers named
’a’ and ’b’. An integer called ’x’ is created which
is equal to 0. In a for loop where ’i’ equals to ’a’
add 1 to ’x’ if the current value of i is less than or
equal to ’b’. if it is less than or equal to then add 1
to ’i’ and repeat the test. Return ’x’.

Q1-05 S Passes two inputs which are both integers named
’a’ and ’b’. An integer called ’x’ is created which is
equal to 0. In a for loop where ’i’ equals to ’a’ add
the value of ’i’ to ’x’ if the current value of ’i’ is
less than or equal to ’b’. If it is less than or equal
to then add 1 to ’i’ and repeat the test. Return ’x’.

4.3 Student Post-Lab Reflections
At the end of the lab, students were asked to describe what infor-
mation or techniques they used to fix their failed prompts.

For students who provided the correct answer the first time or
succeeded on all of the tests, they reported not using any of the
feedback. The rest of the students, as shown in Table 4, reported
using both the generated code and the failed test cases to guide
their subsequent changes after failing. Thus, the generated code did
help guide them, and the addition of the test cases was beneficial.

Table 4: Answers to the post-lab feedback survey. “What
information or technique(s) do they report using to fix failed
prompts?” (N=21 students)

Code Information Source Reported %
READ Re-read own explanation for mistakes. 13.3%
TESTS Compared against test cases. 13.3%
CODE Compared against generated code. 26.7%
BOTH Used both CODE & TESTS. 46.7%

Tables 5 & 6 report specific student quotes about each of the two
feedback sources.

Table 5: Feedback from students who used generated code

S# Quote
14 I would look at the code output and then re-adjust my answer.
100 I tried to use the code generated to identify what keywords

within my prompt were causing it to generate code in that
specific way and then tried to isolate those words and change
them in order to fit the intended purpose within my prompt.

140 My approach was to look at the code that I got and the
original code and compare how similar they were (or how
they could work the same if they did not look similar).

Table 6: Feedback from students who used test cases

S# Quote
12 I just checked each component of my request after looking

at what test cases failed until I found the problem.
102 I would check whether the test cases match what i was ex-

pecting from my response to fix it.
150 I used test cases as my main feedback only using generated

code if I was failing multiple times because often my gen-
erated code and the code provided didn’t look the same but
had the same functionality.

As a counter-point to using the feedback productively, one stu-
dent (510) noted that they got all of their questions correct on their
first attempt, so they did not use the feedback. As a result, they
did not look at the generated code. However, when looking at the
student’s prompts, it was noted that they used a combination of
over-explaining and high-level answering. Although the student
did provide a sufficient answer, they did not discover that their
answer was over-complicated and longer than was necessary for
the LLM. Thus, they were actually less efficient, prompt-wise, than
they needed to be. Their explanations were still well articulated
and seemed aimed at other programmers more so than an LLM,
but from an LLM perspective, they were unnecessarily specific and
complicated, resulting in the student not learning that they could
be less verbose to achieve the same goal.

4.4 Unexpectedly Helpful Variable Names
Students who gave a valid description of the code at a high-level
received additional feedback from the LLM in the form of useful

579



SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Chris Kerslake et al.

variable names that reflected their description. For example, if they
discussed counting something, then the return variable was often
“count”, similar to summing or adding together. However, for stu-
dents who directly recited the code, the variable names used by the
LLM were those recited in the description. Hence, if they noted the
variable x, the LLM used x, and the return value was x, the same as
the sample code. This has two implications. First, this may be a way
of detecting code recitation by parsing the variable names from
the LLM-generated code. Second, this indicates that the student
is probably not operating at a high-level and is only describing or
seeing the syntax rather than the functionality of the sample code.

5 Discussion
The integration of generative AI into the workflows of computing
professionals and students is having a big impact on coding and
debugging. Effective use of these tools hinges on the ability to
prompt AI models and interpret their responses accurately. Prior
research indicates that the benefits of these tools are not uniformly
distributed among students, largely due to differences in students’
prompting and interpretation skills [13, 21].

Our study contributes to this discourse by offering insights into
the challenges students encounter when prompting AI models, par-
ticularly focusing on the rates of false positives and false negatives
in AI-generated feedback. False positives can give students un-
warranted confidence in their abilities, while false negatives may
mislead students into thinking they made a mistake, potentially
leading students to question their abilities. However, false negatives
may also allow students to further refine and better articulate their
explanations, as prompts that do not reliably produce correct code
can signify explanations that could be made more robust. This ex-
perience of dealing with non-deterministic outputs and debugging
model responses is also arguably a competency that computing
professionals will need in the future.

Although code reading tasks are typically designed with familiar
code structures to build students’ confidence, AI-generated code
exposes students to novel approaches they can use to learn. Re-
search suggests that it is beneficial [28, 29] to expose learners to
‘critical variations’ [17], which are carefully selected examples that
highlight key differences in a phenomenon. Our findings show ev-
idence of critical variations that can help students deepen their
understanding of code structures, which is consistent with vari-
ation theory. However, because AI examples are generated prob-
abilistically rather than selected intentionally, students’ learning
experiences may vary widely. Future work may consider ways to
intentionally include variation in critical dimensions of generated
code to leverage the benefits of being exposed to key variations.
Future work may also wish to replicate our study in other natural
language contexts, given the potential for LLM-powered pedagogies
to extend beyond English [24].

We found evidence that the level of precision students use im-
pacts the quality of the code generated, often by including mean-
ingful variable names that helped reinforce the student’s under-
standing. The precision required during prompting also helped

expose when students were mixing up concepts with superficial
similarities, such as loops used for counting versus summing.

Students used feedback to support reflection on their own ex-
planations, test cases, and generated code. They tended to review
the generated code or a combination of the code and tests most
frequently to fix problems with their explanations. Based on this
feedback, students were able to switch between prompting strate-
gies, often from an initial high-level description, to other strategies,
such as including code orwriting pseudo code. This iterative process
of revising prompts has been linked to improved outcomes [6, 19].
Additionally, an interview study highlighted that the willingness
to iterate on prompts distinguishes those who successfully use
generative AI from those who do not [13].

6 Limitations
We had students complete EiPE tasks to improve their ability to
explain code. However, the task is not strictly an EiPE task. Prompt
engineering techniques have the potential to affect generated code.
For example, prior work has shown how including gratitude within
prompts or offering bribes can improve the model’s performance
[4], but these prompts would not constitute better explanations.
This paper shows that non-deterministic model responses also af-
fect performance. So these are two aspects that affect performance,
but neither relates to the quality of the explanation. Essentially,
we have two reasons to say that prompting and explaining aren’t
exactly the same thing. While that is a limitation, previous evi-
dence shows that high-performing prompts appear to correlate
with aspects of high-quality explanations [8]. So while EiPE and
prompting are synonymous, this paper further demonstrates some
of the learning benefits associated with EiPE tasks. The feedback
appears to encourage students to review their explanations, test
cases, and resulting code; activities we hope students engage in
when writing and explaining their code. Additionally, prior work
investigating success rates with prompting has shown that initial
success rates are typically lower than eventual success rates [19].

7 Conclusion
Understanding code is becoming increasingly important with the
advent of generative AI, because programmers are increasingly
encountering and dealingwith AI-generated code.We analyzed how
students utilized feedback for Explain in Plain English tasks that
were auto-graded with the help of LLMs. We found that although
LLM-generated code did result in false positive and false negative
answers, they were relatively rare. Also, while there were rare
cases where misconceptions might have been reinforced due to
false feedback, the vast majority of students were able to effectively
use feedback from the generated code and test cases to reach the
correct solution. These findings describe some current challenges
but also provide insights for using LLMs to support student learning
effectively in computing courses.

Acknowledgments
This research was partially supported by the Research Council of
Finland (Academy Research Fellow grant number 356114).

580



Exploring Student Reactions to LLM-Generated Feedback on EiPE Problems SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

References
[1] Sushmita Azad. 2020. Lessons learnt developing and deploying grading mechanisms

for EiPE code-reading questions in CS1 classes. Ph. D. Dissertation. University of
Illinois at Urbana-Champaign.

[2] Brett A Becker, Michelle Craig, Paul Denny, Hieke Keuning, Natalie Kiesler, Juho
Leinonen, Andrew Luxton-Reilly, Lauri Malmi, James Prather, and Keith Quille.
2023. Generative AI in Introductory Programming. https://csed.acm.org/large-
language-models-in-introductory-programming/

[3] John B Biggs and Kevin F Collis. 2014. Evaluating the quality of learning: The
SOLO taxonomy (Structure of the Observed Learning Outcome). Academic Press,
New York, NY, USA.

[4] Sondos Mahmoud Bsharat, Aidar Myrzakhan, and Zhiqiang Shen. 2024. Prin-
cipled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4.
arXiv:2312.16171 [cs.CL] https://arxiv.org/abs/2312.16171

[5] Binglin Chen, Sushmita Azad, Rajarshi Haldar, Matthew West, and Craig Zilles.
2020. A Validated Scoring Rubric for Explain-in-Plain-English Questions. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE ’20). ACM, New York, NY, USA, 563–569. https://doi.org/10.1145/
3328778.3366879

[6] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Prompt Problems: A
New Programming Exercise for the Generative AI Era. In Proc. of the 55th ACM
Tech. Sym. on CS Ed V. 1 (SIGCSE 2024). ACM, New York, NY, USA, 296–302.
https://doi.org/10.1145/3626252.3630909

[7] Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2024. Computing Education in the Era of Generative AI. Commun.
ACM 67, 2 (Jan 2024), 56–67. https://doi.org/10.1145/3624720

[8] Paul Denny, David H. Smith, Max Fowler, James Prather, Brett A. Becker, and Juho
Leinonen. 2024. Explaining Code with a Purpose: An Integrated Approach for
Developing Code Comprehension and Prompting Skills. In Proceedings of the 2024
on Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2024).
ACM, New York, NY, USA, 283–289. https://doi.org/10.1145/3649217.3653587

[9] Max Fowler, Binglin Chen, Sushmita Azad, Matthew West, and Craig Zilles. 2021.
Autograding "Explain in Plain English" questions using NLP. In Proceedings of
the 52nd ACM Technical Symposium on Computer Science Education (SIGCSE ’21).
ACM, New York, NY, USA, 1163–1169. https://doi.org/10.1145/3408877.3432539

[10] Max Fowler, Binglin Chen, and Craig Zilles. 2021. How should we ‘Explain in
plain English’? Voices from the Community. In Proc. of the 17th ACM Conf. on
Int. Computing Education Research. ACM, New York, NY, USA, 69–80. https:
//doi.org/10.1145/3446871.3469738

[11] Max Fowler, David H. Smith IV, Mohammed Hassan, Seth Poulsen, MatthewWest,
and Craig Zilles. 2022. Reevaluating the relationship between explaining, tracing,
and writing skills in CS1 in a replication study. Computer Science Education 32, 3
(July 2022), 355–383. https://doi.org/10.1080/08993408.2022.2079866

[12] Matthew Hertz and Maria Jump. 2013. Trace-based teaching in early program-
ming courses. In Proc. of the 44th ACM Technical Symp. on Computer Science
Education (Denver, Colorado, USA) (SIGCSE ’13). ACM, New York, NY, USA,
561–566. https://doi.org/10.1145/2445196.2445364

[13] Irene Hou, Sophia Mettille, Owen Man, Zhuo Li, Cynthia Zastudil, and Stephen
MacNeil. 2024. The Effects of Generative AI on Computing Students’ Help-
Seeking Preferences. In Proc. of the 26th Australasian Computing Education Conf.
(ACE ’24). ACM, New York, NY, USA, 39–48. https://doi.org/10.1145/3636243.
3636248

[14] Silas Hsu, Tiffany Wenting Li, Zhilin Zhang, Max Fowler, Craig Zilles, and Karrie
Karahalios. 2021. Attitudes Surrounding an Imperfect AI Autograder. In Proceed-
ings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI
’21). ACM, New York, NY, USA, 1–15. https://doi.org/10.1145/3411764.3445424

[15] Tiffany Wenting Li, Silas Hsu, Max Fowler, Zhilin Zhang, Craig Zilles, and Karrie
Karahalios. 2023. Am IWrong, or Is the Autograder Wrong? Effects of AI Grading
Mistakes on Learning. In Proceedings of the 2023 ACM Conference on International
Computing Education Research - Volume 1 (Chicago, IL, USA) (ICER ’23). ACM,
New York, NY, USA, 159–176. https://doi.org/10.1145/3568813.3600124

[16] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and Chris-
tine Prasad. 2006. Not seeing the forest for the trees: novice programmers
and the SOLO taxonomy. SIGCSE Bull. 38, 3 (jun 2006), 118–122. https:
//doi.org/10.1145/1140123.1140157

[17] Ference Marton and Shirley Booth. 2013. Learning and awareness. Routledge,
New York.

[18] Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2012. ‘Explain in plain
English’ questions: implications for teaching. In Proc. of the 43rd ACM Tech. Sym.
on CS Ed (Raleigh, NC, USA) (SIGCSE ’12). ACM, New York, NY, USA, 385–390.
https://doi.org/10.1145/2157136.2157249

[19] Sydney Nguyen, Hannah McLean Babe, Yangtian Zi, Arjun Guha, Carolyn Jane
Anderson, and Molly Q Feldman. 2024. How Beginning Programmers and Code
LLMs (Mis)read Each Other. In Proceedings of the CHI Conference on Human

Factors in Computing Systems (CHI ’24). ACM, New York, NY, USA, 1–26. https:
//doi.org/10.1145/3613904.3642706

[20] Leo Porter and Daniel Zingaro. 2024. Learn AI-assisted Python programming: with
GitHub Copilot and ChatGPT (first edition ed.). Manning Publications, Shelter
Island, New York.

[21] James Prather, Brent N Reeves, Juho Leinonen, Stephen MacNeil, Arisoa S Ran-
drianasolo, Brett A. Becker, Bailey Kimmel, Jared Wright, and Ben Briggs. 2024.
The Widening Gap: The Benefits and Harms of Generative AI for Novice Pro-
grammers. In Proc. of the 2024 ACM Conf. on Int. Comp. Ed. Research - Volume
1 (Melbourne, VIC, Australia) (ICER ’24). ACM, New York, NY, USA, 469–486.
https://doi.org/10.1145/3632620.3671116

[22] Brent N. Reeves, James Prather, Paul Denny, Juho Leinonen, Stephen MacNeil,
Brett A. Becker, and Andrew Luxton-Reilly. 2024. Prompts First, Finally. https:
//doi.org/10.48550/arXiv.2407.09231 arXiv:2407.09231 [cs].

[23] Judy Sheard, Angela Carbone, Raymond Lister, Beth Simon, Errol Thompson,
and Jacqueline L. Whalley. 2008. Going SOLO to assess novice programmers.
In Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education (Madrid, Spain) (ITiCSE ’08). ACM, New York, NY,
USA, 209–213. https://doi.org/10.1145/1384271.1384328

[24] David H. Smith, Viraj Kumar, and Paul Denny. 2024. Explain in Plain Language
Questions with Indic Languages: Drawbacks, Affordances, and Opportunities.
arXiv:2409.20297 [cs.CY] https://arxiv.org/abs/2409.20297

[25] David H. Smith and Craig Zilles. 2024. Code Generation Based Grading: Eval-
uating an Auto-grading Mechanism for "Explain-in-Plain-English" Questions.
In Proceedings of the 2024 on Innovation and Technology in Computer Science
Education V. 1 (Milan, Italy) (ITiCSE 2024). ACM, New York, NY, USA, 171–177.
https://doi.org/10.1145/3649217.3653582

[26] David H. Smith IV, Paul Denny, and Max Fowler. 2024. Prompting for Com-
prehension: Exploring the Intersection of Explain in Plain English Questions
and Prompt Writing. In Proceedings of the Eleventh ACM Conference on Learn-
ing @ Scale (Atlanta, GA, USA) (L@S ’24). ACM, New York, NY, USA, 39–50.
https://doi.org/10.1145/3657604.3662039

[27] David H. Smith IV and Craig Zilles. 2023. Code Generation Based Grading:
Evaluating an Auto-grading Mechanism for "Explain-in-Plain-English" Questions.
https://doi.org/10.48550/arXiv.2311.14903 arXiv:2311.14903 [cs].

[28] Jarkko Suhonen, Janet Davies, Errol Thompson, and Kinshuk. 2007. Applications
of variation theory in computing education. In Proceedings of the Seventh Baltic
Sea Conference on Computing Education Research - Volume 88 (Koli National Park,
Finland) (Koli Calling ’07). Australian Computer Society, Inc., AUS, 217–220.

[29] Michael Thuné and Anna Eckerdal. 2009. Variation theory applied to students’
conceptions of computer programming. European Journal of Engineering Educa-
tion 34, 4 (2009), 339–347.

[30] Annapurna Vadaparty, Daniel Zingaro, David H. Smith IV, Mounika Padala,
Christine Alvarado, Jamie Gorson Benario, and Leo Porter. 2024. CS1-LLM:
Integrating LLMs into CS1 Instruction. In Proceedings of the 2024 on Innovation
and Technology in Computer Science Education V. 1 (ITiCSE 2024). ACM, New York,
NY, USA, 297–303. https://doi.org/10.1145/3649217.3653584

[31] Anne Venables, Grace Tan, and Raymond Lister. 2009. A closer look at tracing,
explaining and code writing skills in the novice programmer. In Proceedings
of the Fifth International Workshop on Computing Education Research Workshop
(Berkeley, CA, USA) (ICER ’09). ACM, New York, NY, USA, 117–128. https:
//doi.org/10.1145/1584322.1584336

[32] Renske Weeda, Cruz Izu, Maria Kallia, and Erik Barendsen. 2020. Towards an
Assessment Rubric for EiPE Tasks in Secondary Education: Identifying Quality
Indicators and Descriptors. In Proceedings of the 20th Koli Calling International
Conference on Computing Education Research (Koli Calling ’20). ACM, New York,
NY, USA, 1–10. https://doi.org/10.1145/3428029.3428031

[33] MatthewWest, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn: Mastery-
based Online Problem Solving with Adaptive Scoring and Recommendations
Driven by Machine Learning. In 2015 ASEE Annual Conference & Exposition.
American Society for Engineering Education (ASEE), Seattle,WA, USA, 26.1238.1–
26.1238.14. https://doi.org/10.18260/p.24575 ISSN: 2153-5965.

[34] Jacqueline Whalley and Nadia Kasto. 2014. A qualitative think-aloud study of
novice programmers’ code writing strategies. In Proceedings of the 2014 Conference
on Innovation & Technology in Computer Science Education (Uppsala, Sweden)
(ITiCSE ’14). ACM, New York, NY, USA, 279–284. https://doi.org/10.1145/2591708.
2591762

[35] J. Whalley, R. Lister, E. Thompson, T. Clear, P. Robbins, P. K. A. Kumar, and C.
Prasad. 2006. An Australasian Study of Reading and Comprehension Skills in
Novice Programmers, Using the Bloom and SOLO Taxonomies. In Proceedings of
the 8th Australasian Conference on Computing Education, Denise Tolhurst and
Samuel Mann (Eds.), Vol. 52. Australian Computer Society, Inc., Hobart, Australia,
243–252. https://hdl.handle.net/10292/15405

[36] Benjamin Xie, Dastyni Loksa, Greg L Nelson, Matthew J Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205–253. https://doi.org/10.1080/08993408.2019.1565235

581

https://csed.acm.org/large-language-models-in-introductory-programming/
https://csed.acm.org/large-language-models-in-introductory-programming/
https://arxiv.org/abs/2312.16171
https://arxiv.org/abs/2312.16171
https://doi.org/10.1145/3328778.3366879
https://doi.org/10.1145/3328778.3366879
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.1145/3624720
https://doi.org/10.1145/3649217.3653587
https://doi.org/10.1145/3408877.3432539
https://doi.org/10.1145/3446871.3469738
https://doi.org/10.1145/3446871.3469738
https://doi.org/10.1080/08993408.2022.2079866
https://doi.org/10.1145/2445196.2445364
https://doi.org/10.1145/3636243.3636248
https://doi.org/10.1145/3636243.3636248
https://doi.org/10.1145/3411764.3445424
https://doi.org/10.1145/3568813.3600124
https://doi.org/10.1145/1140123.1140157
https://doi.org/10.1145/1140123.1140157
https://doi.org/10.1145/2157136.2157249
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3632620.3671116
https://doi.org/10.48550/arXiv.2407.09231
https://doi.org/10.48550/arXiv.2407.09231
https://doi.org/10.1145/1384271.1384328
https://arxiv.org/abs/2409.20297
https://arxiv.org/abs/2409.20297
https://doi.org/10.1145/3649217.3653582
https://doi.org/10.1145/3657604.3662039
https://doi.org/10.48550/arXiv.2311.14903
https://doi.org/10.1145/3649217.3653584
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1145/3428029.3428031
https://doi.org/10.18260/p.24575
https://doi.org/10.1145/2591708.2591762
https://doi.org/10.1145/2591708.2591762
https://hdl.handle.net/10292/15405
https://doi.org/10.1080/08993408.2019.1565235

