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We generalize the concept of parity-time symmetric structures with the goal to create meta-atoms exhibiting
extraordinary abilities to overcome the presumed limitations in the scattering of overall lossless particles, such
as nonzero forward scattering and the equality of scattering and extinction powers for all lossless particles.
Although the forward scattering amplitude and the extinction cross section of our proposed meta-atoms vanish,
they scatter incident energy into other directions, with controllable directionality. These meta-atoms possess
extreme electromagnetic properties not achievable for passive scatterers. As an example, we study meta-atoms
consisting of two or three small dipole scatterers. We consider possible microwave realizations in the form of
short dipole antennas loaded by lumped elements. The proposed meta-atom empowers extraordinary response of
a shadow-free scatterer and theoretically enables most unusual material properties when used as a building block
of an artificial medium.
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I. INTRODUCTION

The metamaterial paradigm is based on engineering elec-
trically (optically) small particles called meta-atoms and ex-
ploiting them as optimized ingredients of composites with
engineered electromagnetic properties (see, e.g., [1–9]). The
ultimate goal of the metamaterial technology development
would be to find means for realizations of any arbitrary
material properties, which would require creation of meta-
atoms with any arbitrary electromagnetic response. Basically,
within the idealistic scenario we would like to be able to
engineer and control the polarizabilities, the scattering cross
sections, and absorption cross sections of meta-atoms with full
freedom. For an arbitrary particle that is sufficiently small in
order to be described by a pair of the electric and magnetic
dipole moments p and m, the most general linear relations
between these moments and the local fields E and H read

p = αeeE + αemH, m = αmmH + αmeE. (1)

Here, αee, αmm, αem, and αme are, respectively, electric, mag-
netic, magnetoelectric, and electromagnetic polarizabilities of
the meta-atom, which are scalar values for an isotropic meta-
atom and dyadics (tensors) in an anisotropic case [5,10,11].
Notice that the last two polarizabilities, i.e., αem and αme,
describe the bianisotropic response of the meta-atom which is a
measure of coupling between the electric (magnetic) response
of the meta-atom and the magnetic (electric) excitation field.
The ultimate goal would be the full design control over the
values of the four dyadic polarizabilities of the meta-atom.

However, the design freedom is limited by fundamental
physics. For example, the conservation of energy imposes
nonzero radiation losses for all passive particles (scatterers).

*mohammad.albooyeh@gmail.com

Moreover, it dictates that four noted polarizabilities of a
meta-atom cannot be tuned independently from each other
[12]. By applying the energy conservation for the simplest
case of a lossless electric dipole polarizable meta-atom (when
αem = αme = αmm = 0) in an incident electromagnetic wave
one obtains [12–15]

1

αee
= Re

(
1

αee

)
+ j

k3

6πε0
, (2)

where k and ε0 are the ambient wave number and permittivity,
respectively (e.g., [14]). Condition (2) means that the imag-
inary part of the inverse polarizability of a lossless dipolar
particle is fixed and there is no freedom to engineer it.

Next, for a lossless isotropic scatterer both the coupling
coefficients αem and αme vanish if αeeαmm = 0 [16]. Thus,
it appears that in order to create magnetic polarization in
an applied electric field, one must obviously polarize the
meta-atom electrically and vice versa. Indeed, hypothetical
meta-atoms modeled by

p = αemH, m = αmeE, (3)

are forbidden if they are lossless. The existence of such meta-
atoms is not compatible with the classical limitations based
on the energy conservation principle. However, such meta-
atoms called purely bianisotropic particles would be extremely
interesting and practically useful [16].

Furthermore, energy conservation considerations lead to
the optical theorem which defines a connection between the
forward scattering amplitude and the total extinction cross
section that is valid for all passive particles. In particular, if
the particle is passive and absorptive, its forward scattering
cross section and the extinction cross section are not zero even
for meta-atoms with exotic properties (see, e.g., [17–21]). In
other words, if a particle receives some power from the incident
waves, it must create some shadow. This limitation does not
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allow us to realize an “invisible” meta-atom interacting with the
incident fields and extracting power from them while casting
no shadow.

Recently, a new concept of parity-time (PT) symmetric
structures gained a lot of attention in the literature (see, e.g.,
[22–24]). PT-symmetric structures possess properties which
are invariant with respect to the inversion of both spatial
coordinates and time. For example, dielectric objects are said
to be PT symmetric if the following symmetry relation for the
complex permittivity holds:

ε(r) = ε∗(−r), (4)

where ∗ denotes complex conjugation and r is the position
vector. For example, if we fill one-half of a sphere with a
dielectric with the permittivity ε = ε′ − jε′′ and the other half
with the material modeled by ε = ε′ + jε′′, this sphere will
be a PT-symmetric structure. PT-symmetric objects appear to
be overall lossless, and they seem to be able to overcome the
presumed limitations of nonzero forward scattering and the
equality of scattering and extinction powers for passive and
lossless scatterers.

Basically, one can create a structure where the lossy half
receives some power from the incident fields while the active
half re-radiates the same amount of power into the forward
direction, so that there is no shadow behind. This property
was demonstrated, both theoretically and experimentally, for
acoustic waves using two speakers [25]. Does it mean that
we are able to realize an “invisible medium” formed by
PT-symmetric meta-atoms? If yes, what would be a suitable
topology for meta-atoms composing such media? Perhaps, the
simplest overall lossless electromagnetic structure that would
apparently be shadow-free is depicted in Fig. 1.

Assuming that the polarizabilities of the constituents of this
dimer of electric dipoles are such that the two induced dipoles
are equal in the amplitude and oscillate with opposite phases,
we see that the forward scattering amplitude is exactly zero
while the object scatters some power in other directions. Real-
ization of this regime is not possible for any passive scatterer,
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FIG. 1. (a) Two oppositely directed dipoles with induced mo-
ments p and −p separated by distance d = λ/10 (λ is the operational
wavelength) which are excited with a plane wave whose propagation
vector k is normal to the plane of two dipoles. (b) The scattering
pattern of the configuration in (a) which clearly shows two nulls both
in the forward and backward directions. The three-dimensional radi-
ation pattern of the system is calculated using full wave simulations
(COMSOL).

and this structure is not PT-symmetric either. Although the
forward scattering amplitude and the extinction cross section
are zero, the loss is not compensated by gain since the scattering
cross section is not zero. Clearly, the scattering pattern depicted
in Fig. 1(b) must be accompanied by scattering losses. Thus,
without a detailed analysis it remains unclear if a PT symmetric
structure in free space can be shadow-free.

Next, the limitation on the values of bianisotropic param-
eters, which forbids realization of particles obeying (3) also
comes from the basic properties of usual lossless particles.
Since the example in Fig. 1 shows that the limitation on
forward scattering can be overcome, can we find meta-atoms
which would be overall lossless but still violate the restrictive
conditions [12] realizing constitutive relations (3)? It would
be interesting to see how to realize in practice a shadow-free
lossless scatterer and a purely bianisotropic lossless scatterer.
These are the questions we address in this work.

II. PARITY-TIME SYMMETRY AND LOSS
COMPENSATION FOR FINITE-SIZE OBJECTS IN

UNBOUNDED SPACE

Since we are interested in engineered properties of small
particles in open space, we start with a general discussion of the
means to overcome the presumed limitations of zero forward
scattering and the equality of extinction and scattering by
passive and lossless scatterers using PT-symmetric objects. The
known theoretical and experimental work on PT-symmetric
structures which produce no shadow deal with scatterers in
a waveguide environment [25]. Recently, a similar scenario
for small scatterers in free space has been considered [26]
with the conclusion that PT-symmetric dimers enable unusual
scattering phenomena, including zero extinction and large
scattering. Here we discuss the concept of PT symmetry of
objects in open space in general, and show that they cannot
be PT symmetric in the strict sense, leading to definition of
shadow-free and loss-compensated scatterers.

The top three panels of Fig. 2 illustrate the conventional
scenario of a PT-symmetric object in a closed waveguide
environment. We denote the characteristic impedance of the
waveguide by η0. A PT-symmetric obstacle [for instance, a
double dielectric layer whose permittivity obeys relation (4)]
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FIG. 2. Conceptual illustration of the PT-symmetry concept in a
closed waveguide (a)–(c) and for a compact scatterer in free space
(d)–(f).
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is illuminated by a wave created by an ideal voltage source.
For simplicity we assume that there are no reflections from the
scatterer towards the source. Figure 2(b) shows this structure
after the operation of time reversal. The power propagation
direction is reversed, the active source becomes power sink,
and the source is replaced by a matched load. Next, we
apply the spatial coordinate inversion [see Fig. 2(c)]. This
operation brings the system to its initial state [i.e., Fig. 2(a)] and
obviously demonstrates that the system is symmetric under the
two successive operations of time reversal and space inversion
(i.e., it is a PT-symmetric system).

Let us now consider the same scenario for a compact
object (again, as the same example, a dielectric object whose
permittivity obeys relation (4)). This case is illustrated in
Figs. 2(d)–2(f). The fundamental difference with the previous
case is that polarizable objects scatter power into various
directions, which physically means that there is dissipation loss
at infinity (where the scattered power is eventually dissipated),
measured by the radiation resistance of the scatterer (denoted
by Rrad in Fig. 2). In the illustration in Fig. 2(d) we assume
that the scattering is symmetric with respect to left and right
half-spaces (it does not have to be symmetric, in general), and
conceptually indicate this dissipation loss at infinity as two
absorbing hemispheres with the respective distributed surface
resistance. The remaining two panels illustrate the results of
time inversion followed by space inversion. Obviously, PT
symmetry cannot be ensured because the symmetry relation
(4) must hold globally, that is, the environment at infinity must
have also symmetrically distributed and balanced gain and loss
properties.

On the other hand, the numerical example of Fig. 1 shows
that pairs of properly engineered active and lossy scatterers
in open space can show properties which are very similar to
those of PT-symmetric objects in waveguides, in particular,
zero forward scattering amplitude while the total scattering
cross section is not zero. We call these interesting objects
shadow-free dimers, and in the next section we consider their
properties in some detail.

The impossibility of achieving true PT-symmetric scattering
response using complex conjugate permittivities was noted in
the conference abstract [26]. In that work, the authors added
gain to both elements of the dimer to offset the radiation loss,
however, we note that even with this added gain, the structure
does not become PT symmetric. Scattering by cylinders obey-
ing (4) was studied in [27], where it was assumed that these
scatterers were PT symmetric.

III. SHADOW-FREE DIMERS

A. Balance of loss and gain and zero forward scattering

As a simple conceptual example of a small meta-atom
with both lossy and active components we consider a pair
of two closely positioned electrically polarizable scatterers,
similarly to the scenario studied in [26]. Each of the scatterers
is approximated as a Hertzian dipole: an electric dipole antenna
with the electrically negligible length l and a uniform current
along the antenna. We assume that the two antennas are parallel
and the distance between them d is very small compared to the
wavelength λ (but still much larger than the negligibly small

length of each antenna l, i.e., l � d � λ). A uniform current
distribution in a short conducting wire can be approximately
realized using capacitive caps at the two ends of the wire.
Alternatively, we can work with ordinary short wire antennas,
replacing in all the following formulas the Hertzian dipole
length l by the length of one antenna arm l/2 as its effective
length [28].

In order to be able to control the currents induced in the
antennas by the incident fields, we load both antennas by
some lumped impedances Z1L and Z2L. In particular, we
will be interested in the situations when this pair forms a
loss-compensated structure. Thus, we allow the real parts of the
load impedances be positive or negative, so that the absorption
and scattering can be balanced with gain.

This system can be analyzed using the antenna theory and
the corresponding equivalent circuit. Let us assume that the
dimer is excited by an external electromagnetic plane wave,
propagating in the direction normal to the dimer plane. In
this case the amplitudes of the external electric fields at the
positions of the two antennas are equal (we denote the complex
amplitude of the incident electric fields as Einc). The currents
I1,2 induced on the two dipoles obey linear relations,

I1(Zinp + Z1L) + I2Zm = Eincl, (5)

I2(Zinp + Z2L) + I1Zm = Eincl. (6)

The source voltages are the products of the incident electric
fields at the positions of the two dipole antennas and the
effective length of the antennas. The impedances are the
sums of the input impedances of the dipole antennas Zinp

and the corresponding load impedances Z1,2L. Moreover, the
mutual impedance between the two dipoles is denoted by
Zm. Knowing all the parameters, we can easily solve for the
induced currents I1,2 and find the induced electric and magnetic
dipole moments in the dimer (induced dipole moments are
proportional to the currents flowing in the two wire antennas).

Let us study the most interesting scenario when the loads
are selected so that I2 = −I1, realizing the regime illustrated
in Fig. 1. In this situation, the total induced electric moment is
zero, but the induced magnetic moment is not zero. Apparently,
this dimer would also realize a purely bianisotropic particle,
as it obeys relations (3). The presumed limitation of nonzero
forward scattering is violated, at least in the dipole approxima-
tion, because the induced magnetic moment is directed along
the incidence direction and does not radiate in the forward
direction.

From (5) and (6) we can find the two currents,

I1 = Zinp + Z2L − Zm

(Zinp + Z1L)(Zinp + Z2L) − Z2
m

Eincl, (7)

I2 = Zinp + Z1L − Zm

(Zinp + Z1L)(Zinp + Z2L) − Z2
m

Eincl, (8)

and it is easy to derive the condition on the impedances under
which I2 = −I1:

2Zinp + Z1L + Z2L − 2Zm = 0. (9)
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If this condition is satisfied, the induced currents are equal to

I1 = −I2 = 2Eincl

Z1L − Z2L
= Eincl

Z1L − (Zm − Zinp)
. (10)

As noted above, the induced electric dipole of the pair is
zero, while the induced magnetic dipole equals m = 1

2

∫
r ×

J d3r = ( 1
2I1ld)n where n is the unit vector normal to the plane

of the dipole pair [29].
Since all the involved impedances are complex numbers,

(9) is in fact a set of two conditions for the respective real
and imaginary parts. The condition for the imaginary parts
(reactances) is always possible to satisfy for any dipole anten-
nas and any distance between them by properly choosing the
reactances of the loads. This is possible because reactances of
passive circuits can be either positive (inductance) or negative
(capacitance), and there is no fundamental limitation on how
small or large these reactances can be. However, in order to
satisfy the condition on the real parts of the impedances, we
have to allow for negative values of the load resistance in at
least one of the dipoles. This is obvious from the fact that the
real part of Zinp is always positive (it is the radiation resistance
of the corresponding dipole), and Re(Zm) < Re(Zinp), as long
as d > 0. This is an expected conclusion, because otherwise
we would be able to obtain zero extinction cross section,
and hence, acquire the unattainable regime of zero forward
scattering for a passive scatterer.

An exciting conclusion at this point is that we can overcome
this limitation in an overall lossless dimer, because the equality
of the total resistance to zero (9) means that all losses are
exactly compensated by gain.

To estimate the required dimensions and load impedances,
we can analytically calculate the input impedance and the
mutual impedance. Again we stress that we only need to
estimate the corresponding real parts (resistances). The input
impedance of a short dipole is well known, and it reads

Zinp = 1

jωC
+ Rloss + Rrad, (11)

where C is the input capacitance of one of the antennas, Rloss

is the dissipation loss resistance due to the final conductivity
of the antenna wires, and Rrad is the radiation resistance of the
dipole, which reads [30,31]

Rrad = η0
(kl)2

6π
, (12)

where η0 =
√

μ0

ε0
the free-space wave impedance and l is the

effective length of the dipole, i.e., for the case of Hertzian
dipole the effective and physical lengths are equal while for
the case of short dipole the effective length is half of that of
the total physical length. This expression for Rrad is valid for
electrically short dipoles, when l � λ. Also, the real part of
the mutual impedance reads [32]

Re(Zm) ≈ η0
(kl)2

6π

[
1 − 1

5
(kd)2

]
. (13)

Now we are ready to calculate the required dipole load
resistances which correspond to the regime of zero total

induced electric dipole and zero forward scattering amplitude
(I2 = −I1). Defining Z1,2L = R1,2L + jX1,2L, the result reads

η0
(k2ld)2

15π
+ R1L + R2L + 2Rloss = 0. (14)

Clearly, the total negative resistance of the two loads must
compensate the total dissipation and radiation loss in the
system. Note again that the compensation of total loss does
not correspond to a PT-symmetric system in the conventional
definition: The two-load resistance in the two dipoles are
not negative to each other. This is explained by the fact that
even in the absence of dissipation in the antenna wires, both
dipoles always exhibit radiation loss, which also needs to
be compensated by an active load. This is an example of
shadow-free scatterers defined above.

In this regime, incident plane waves excite two equal dipole
moments with the opposite directions, i.e., p1 = −p2 = p =
−j I1l

ω
z (z is the unit vector in the z direction). As is seen in

Fig. 1(b), the radiation pattern has a null in both forward and
backward directions. Apparently, the particle has zero radar
cross section as well as zero forward cross section. However,
it obviously scatters in directions other than the axial ones
(here φ = 0 and 180◦ according to Fig. 1). The scattered power
density can be analytically derived as [32]

Pscatt = η0

2

(
kI1l

4πr
kd sin2θsinϕ

)2

. (15)

We see that the scattered power density is zero only in the
directions along the incidence axis (φ = 0 and π ) and when
θ = 0 or π . The total scattering cross section of the system
reads [32]

σsc = d2 (kl)4

15π

η2
0

|Z1L − Z2L|2 . (16)

Next, the absorption cross section is found by normaliz-
ing the total power dissipated in the resistive parts of the
loads and lost in the conducting dipole arms, i.e, Pabs =
1
2 (R1L|I1|2 + R2L|I2|2 + Rloss|I1|2 + Rloss|I2|2) to the incident
power density. Since at least one of the loads is active (negative
resistance), this power can be zero or negative. Substituting the
current amplitudes from (10), we get

σabs = η0(2l)2 R1L + R2L + 2Rloss

|Z1L − Z2L|2 . (17)

Finally, the extinction cross section σext = σsc + σabs reads

σext = 4η0l
2

|Z1L − Z2L|2
(

η0k
4l2

15π
d2 + R1L + R2L + 2Rloss

)
.

(18)

Comparing the value in the brackets of Eq. (18) with Eq. (14),
one clearly observes that the extinction cross section equals
zero for our proposed shadow-free meta-atom. It means that
although the optical theorem is not violated (i.e., σ Total

ext =
σ Forward

sc = 0), the total scattering cross section is not zero and
the meta-atom scatters in the lateral directions rather than the
forward one (see, e.g., Figs. 1 and 3).

Let us next study the resonant dependence of the scattering
cross sections (16) on the load parameters. Equation (10) tells
that, counterintuitively, the currents in the two out-of-phase
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FIG. 3. (a) Schematic of two short dipole antennas with length l = λ/20 (λ is the operational wavelength) and radius r0 = l/50, separated
by distance d = 6l and loaded by impedances Z1L and Z2L. The plane of the two dipoles is normal to that of the exciting plane wave incidence
direction and the dipoles’ material is considered to be a perfect electric conductor (PEC). (b) Far-field scattering pattern of the configuration in
(a) which clearly shows nulls both in the forward and backward directions. (c) Electric near-field distribution of configuration (a).

dipoles tend to infinity when the two loads become identical:
i.e., when Z1L − Z2L → 0. Recall that the two dipole antennas
are identical, but the loads are chosen so that the currents
induced in the two dipoles by the same incident field are
opposite in phase. Actually, from Eqs. (7) and (8) we see
that if Z1L − Z2L → 0 and the condition for out-of-phase
currents (9) are satisfied together, the numerators of (7) and
(8) tend to zero. However, the denominators also tend to zero,
faster than the numerators. This can be seen by assuming that
Z1L = Z + a and Z2L = Z − a, where Z = Zm − Zinp [so
that for any complex value of parameter a we satisfy Eq. (9),
ensuring that the current mode is antisymmetric]. A simple
calculation shows that for a → 0,

I1,2 ∼ ±1

a
, (19)

which results from the ratio a/a2. The argument of the complex
parameter a determines the phase of the induced currents in
relation to the phase of the incident field. Thus, we see that in
the vicinity of this resonant point the current amplitudes can
take arbitrary high values and the particle cross sections have
no upper bound.

This shadow-free particle can be classified as a reciprocal
bianisotropic particle with the omega type of magnetoelectric
coupling [10]. More specifically, the property of having zero
co-polarizabilities is similar to the property of omega nihility
composite materials [34], although here we study single meta-
atoms while in [34], effectively homogeneous materials are
considered. It is interesting to compare these results to the
conclusions of Ref. [35], where passive or active particles have
been studied. In that paper it is shown that zero forward and
back scattering from a single omega particle is possible only
if the particle is active. Here we see that it is possible also for
overall lossless particles, provided that the loss is balanced
with gain. On the other hand, it is important to stress that
the gain compensates the total loss, including scattering loss
(radiation damping). Thus, as discussed above, the loads are
not exactly symmetric: The load resistances of the two dipoles
are not exactly negative with respect to each other, as is usually
required in the definition of PT-symmetric systems (4). We
expect that the symmetry of loads will be exact in the case
of a periodical subwavelength array of such dimers, where

the scattering loss is compensated by particle interactions
[14,36], or in waveguide setups, where scattering is prevented
by waveguide walls (as in the acoustical experiments described
in [25]).

B. Numerical example: Finite-size strongly coupled
shadow-free dimers

Next we study a particular system of two electrically
small but finite-length loaded dipole antennas and drop the
assumption that the distance between the two antennas is large
compared with the dipole length (Fig. 3).

In this case we can bring the two antennas very close to
each other, so that the pair can be treated as a single composite
meta-atom, whose transverse size is of the same order as the
height. First we use the approximate formulas derived in the
previous section to find a suitable pair of loading resistances for
a given pair of short wire dipoles of length l at distance d. Note
that for a short dipole antenna the effective length is equal to the
half-length of the antenna, and in our definition, we can directly
use Eq. (14) where l is the half-length. To estimate the needed
reactive loads, we use the known approximate formula for the
input reactance capacitance of a short wire dipole [33,37],

Xinp = −η0
ln(l/r0) − 1

π tan 2πl
λ

, (20)

(r0 is the wire radius and l is the effective length of the antenna).
Moreover, the mutual reactance reads [32]

Im(Zm) ≈ η0
(kl)2

4π (kd)3

[
−1 + (kd)2

2
− 3(kd)4

8

]
. (21)

In order to realize the zero forward scattering regime we
need to satisfy condition (9). It is a complex-valued equation,
therefore, we need to solve it for both real and imaginary parts.
We can freely choose the length and radius of each dipole,
staying within the assumptions of a small scatterer. To stay
within the short-dipole approximation, we choose l = λ/20
and r0 = l/50 for both dipoles. Then, by using (12), (13),
(20), and (21), we find the input and mutual impedances
Zinp = (1.9740 − j1075.5)� and Zm = (0.816 − j1.141)�,
respectively. To verify the results, we have also calculated these
impedances using full-wave simulations (COMSOL) which
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TABLE I. The required impedances for negligible forward scat-
tering in the case of a finite-size strongly coupled loss-compensated
dimer. The distance between the dipoles is chosen to be three times
the dipole length.

Impedance Initially chosen values After fine-tuning

Z1L(�) −2.816 + j1074.4 −2.4850 + j997.07
Z2L(�) 0.5 + j1074.4 0.5012 + j997.07

leads to Zinp = (1.7107 − j1000.2)� and Zm = (0.7182 −
j2.093)�, showing good agreements with the analytical for-
mulas.

Next, we need to find the required load impedances Z1L

and Z2L. We may freely choose one of the impedances and
calculate the other one. It may seem to be enough to set
one load impedance to zero and find the other one, however,
it is not a wise selection because to bring the dipole to
resonance (without a reactive load) we ought to go beyond
the short-dipole regime. Thus, to find the required values
for load impedances we calculate the induced currents and
scattering patterns numerically and fine-tune the loads to
realize the regime with zero forward scattering. The results
for the required impedances are summarized in Table I before
and after numerical tuning.

The radiation pattern and the local electric field distribution
for the chosen load impedance of Table I are shown in Fig. 3.
Note that in the exact numerical solution the regime of zero
forward scattering does not imply that the total electric dipole
moment of the pair is zero, because higher-order modes also
contribute to scattering in all directions. From Fig. 3(b), one
clearly observes the nulls in both forward and backward
directions: the pair of a lossy [Re(Z2L) > 0] and an active
dipole [Re(Z1L) < 0] obviously allows us to realize a shadow-
free meta-atom. Figure 3(c) presents the local electric field
distribution in the vicinity of the two dipoles. As it is clear from
this figure, the electric-field vectors around the two dipoles are
equal but have opposite directions which leads to a nonzero curl
of the electric fields that essentially demonstrates the presence
of an equivalent magnetic dipole moment. That is, with the
proper design, we have suppressed the electric dipole moment
of the meta-atom while we have kept its magnetic dipole. This
leads to the extraordinary scattering in the lateral direction
from an overall lossless meta-atom.

Next, we illustrate the resonant enhancement of scattering
close to the point where Z1L − Z2L → 0. We introduce devia-
tions Z1L = Z + a and Z2L = Z − a, where Z = Zm − Zinp

from the optimized values of the load impedances and plot
the dependence of the total scattering cross section on the
absolute value of a. The results are shown in Fig. 4. Numerical
simulations do not show unbounded growth of the scattering
amplitude: Coming very close to the resonant point, the
numerical solution becomes not accurate.

IV. SHADOW-FREE DIMER IN THE INCIDENCE PLANE

Next, let us study the same dimer as in Sec. III but excited
by a plane wave traveling in the dimer plane, orthogonal to
the dipole axes. We are interested in the regime where the

| | (Ω)

sc
(m

2
)

FIG. 4. Total scattering cross section obtained from Eq. (16),
showing the resonant response of a shadow-free dimer when Z1L −
Z2L → 0. The values for the impedances are Z1L − a = Z2L + a =
−0.9975 + j997.075�, and a is considered to be a real-valued
variable.

forward scattering is absent, while the currents in the dipoles
are different from zero. Now the external fields exciting the two
dipole are different in phase, and the equations for the induced
currents take the form,

I1(Zinp + Z1L) + I2Zm = Eincl, (22)

I2(Zinp + Z2L) + I1Zm = Eince
−jkd l. (23)

Here we assume that the incident plane wave propagates along
the line from dipole 1 to dipole 2. The condition for zero
forward scattering reads in this case,

I1 = −I2e
jkd = 2l

Z1L − Z2L + 2jZm sin kd
Einc, (24)

which corresponds to the following relation between the
impedances,

2Zinp + Z1L + Z2L − 2Zm cos kd = 0. (25)

Next, we find the condition for the required load resistances,
i.e,

η0
7

30π
(k2ld)2 + R1L + R2L + 2Rloss = 0. (26)

To analyze this structure, we consider the same example as in
the previous case, only assuming that the wave vector k is in
the plane of the two dipoles and the polarization of the incident
electric field matches the orientation of the two antennas. The
results for the required load impedances are summarized in
Table II.

The far-field radiation pattern and the electric field distri-
bution in the vicinity of the considered scatterer are shown in
Figs. 5(b) and 5(c). As it is clear, we again observe the regime
of zero forward scattering while the scattering cross section
is not zero. It can be shown that the scattered power of the
proposed system of coupled dipoles when I2 = −I1e

jkd reads
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TABLE II. The required impedances for negligible forward scat-
tering when the loss-compensated dimer and the incidence direction
are in the same plane.

Impedance Analytically found values After fine-tuning

Z1L(�) −4.952 + j1075.9 −4.339 + j998.69
Z2L(�) 0.5 + j1075.9 0.5 + j998.69

[32]

Pscat = η0

2

[
kI1l

4πr
kd sin θ (1 − sin θ sin ϕ)

]2

. (27)

This is exactly what is observed from the full-wave simulations
in Fig. 5(b), i.e., a null of the scattered power in the forward
direction φ = 90◦and θ = 90◦ (a shadow-free meta-atom) and
a maximum in the backward direction φ = −90◦and θ = 90◦.
Moreover, when θ = 0 or θ = 180◦ the radiation pattern
in Eq. (27) experiences two nulls which again are clearly
observable from the full-wave simulations in Fig. 5(b) which
are due to the presence of a quadrupole in the coupled system of
dipoles. This system is analogous to the one studied in [25] in
the acoustical case, but the difference is that in [25] the passive
and active parts were in a closed waveguide, while in our case
we consider an isolated dimer scatterer in free space.

The total scattering and extinction cross sections read

σsc = 7

30π
(k2ld)2

∣∣∣∣η0I1

Einc

∣∣∣∣
2

, (28)

and

σext = η0

∣∣∣∣ I1

Einc

∣∣∣∣
2[

η0
7

30π
(k2ld)2 + R1L + R2L + 2Rloss

]
,

(29)

respectively, and I1 is defined in (24). Similar to the previous
scenario in Sec. III B, the extinction cross section is zero in
this case [compare Eqs. (29) and (26)]. This means that the
scattering losses are fully compensated by the introduction of
the resistive (active and passive) load impedances. Although
the present dimer still possesses a shadow-free characteristic,

it mainly backscatters unlike the previous scenario which was
scattering laterally (with respect to the incidence direction).

V. SHADOW-FREE TRIMERS: SUBWAVELENGTH
SUPERDIRECTIVE SCATTERERS

In Sec. III we have symmetrically redirected the incident
power into the lateral directions (with respect to the incident
wave direction) by using shadow-free dimers (see Figs. 1
and 3). In those cases, as we show next, although the field
amplitude was symmetrically redirected to the two opposite
lateral directions, the phases of the fields were opposite in
sign. In this section, we go beyond the limit of symmetrical
power distribution and show that the power amplitude can
be tuned asymmetrically in the opposite lateral directions
[the y direction; see, e.g., Fig. 1]. In particular, we present
the extreme case of a subwavelength superdirective scat-
terer where all the received power is redirected into one
side only.

A. Symmetrical pattern of shadow-free dimers

We first consider the dimer example and prove that it is
impossible to asymmetrically tune the pattern in the lateral
directions while the forward and backward scatterings are
canceled. That is, when one imposes the simultaneous zero
forward and backward scattering condition, then the lateral
distribution of power is unconditionally symmetric. To demon-
strate that, let us consider the vector potential of a dimer as is
discussed in [32], i.e.,

Az = μ0l

4π

e−jkr

r
(I1e

jkd1 sin θ sin ϕ + I2ejkd2 sin θ sin ϕ). (30)

Notice that d1 and d2 are the distances of the two dipoles
from the origin of the coordinate system and, in our previ-
ous examples, we had always considered d1 = d2 = d/2 for
simplicity while, here, we consider them to be unequal for
generality. Next, if we impose the condition of simultaneous
zero forward (φ = 0) and backward (φ = π ) scattering, we

|E| (V/m)

Z2L
Z1L

d

2l

E

k

(a) (b)

E

k

z
x

y (c)

FIG. 5. (a) Schematic of two short dipole antennas with the length l = λ/20 (λ is the operational wavelength) and the radius r0 = l/50,
separated by the distance d = 6l and loaded by impedances Z1L and Z2L. The dimer is located in the incidence plane and the dipoles are
normal to the wave vector k. (b) Far-field scattering pattern of the configuration in (a) which clearly shows three nulls, in the forward direction
(i.e., φ = 90◦and θ = 90◦), and also along θ = 0 or θ = 180◦. Moreover, the pattern shows a maximum in the backward direction (i.e.,
φ = −90◦and θ = 90◦) which is in agreement with Eq. (27). (c) Electric near-field distribution of the arrangement shown in (a).
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|E| (V/m)

E
k

z

d
x

y

P3

d

P2

P1

FIG. 6. (a) Schematic of the trimer system of dipoles with induced
moments p1, p2, and p3 separated by distances d = λ/20 (λ is the
operational wavelength) which are excited with a plane wave whose
propagation vector k is normal to the plane of two dipoles. The
scattering pattern of the configuration clearly shows three nulls in
the forward, backward, and one lateral direction.

require I1 = −I2 = I , as we discussed earlier, and therefore

Az = μ0lI

4π

e−jkr

r
(ejkd1 sin θ sin ϕ − ejkd2 sin θ sin ϕ). (31)

Our goal is to obtain asymmetric patterns in the oppo-
site lateral directions φ = π/2 and φ = −π/2 at θ = π/2.
From (31), while the pattern in the φ = π/2 direction is
proportional to (ejkd1 − ejkd2 ), that of φ = −π/2 is pro-
portional to (e−jkd1 − e−jkd2 ). Therefore, the amplitudes of
the pattern in the opposite lateral directions φ = ±π/2 are
equal, i.e., |ejkd1 − ejkd2 | = |e−jkd1 − e−jkd2 | while the phases
are not, i.e., ∠(ejkd1 − ejkd2 ) 	= ∠(e−jkd1 − e−jkd2 ). More-
over, the phases only differ by sign, i.e., ∠(ejkd − e−jkd ) =
−∠(e−jkd − ejkd ), if we consider d1 = −d2 = d. Note that
in Refs. [38,39], asymmetric scattering patterns for dimers
operating close to the PT-symmetry point were predicted,
however, such asymmetry is only possible when the induced
polarizations in the two dimer elements are different (which
is the case in Refs. [38,39]), and the loss and gain are not
fully balanced. Next, we present an alternative approach to
overcome this limitation.

B. Asymmetrical scattering patterns
of loss-compensated trimers

We expect that one of the exciting possibilities for control-
ling scattering fields using loss-compensated scatterers will be
a possibility to send the scattered power into a specific lateral
direction, orthogonal to the illumination direction. The dimers
considered above exhibit full control over scattering in the
forward and backward directions, but in the regime of zero
forward scattering the energy is symmetrically scattered in the
lateral directions (see Fig. 1).

Here we show that it is possible to tune the amplitudes
of the waves scattered in the opposite lateral directions. The
shadow-free dimers have a symmetric scattering pattern in the
lateral plane because the two dipoles were required to have
electric dipoles with equal amplitudes and opposite phases
(i.e., p1 = −p2 = p) to cancel out the overall electric dipole
moment while generating a pure magnetic dipole moment in
the system, corresponding to simultaneously zero forward and
backward scattering amplitudes. In order to overcome this
limitation, we add one more dipole to the system, creating
possibilities to tune the total dipole moment of the system to
zero (i.e., p1 + p2 + p3 = 0) in an asymmetric system. Here
we consider the extreme case where the ratio of the scattering
amplitudes along the two opposite lateral directions (φ = π/2
and φ = −π/2) is infinite or zero. This corresponds to total
cancellation of scattering into one of the side half-spaces. In
terms of the antenna theory, such an object is a subwavelength
superdirective scatterer. Without loss of generality and for sim-
plicity, we consider three equispaced dipoles (see Fig. 6). As
shown in [32], the scattered power of this trimer system reads

Pscatt = η0

2
(
kI3l

4πr
)2(kd)6

(
sin2 θ sin ϕ

)2
(1 − sin θ sin ϕ)2. (32)

As is proven in [32], to obtain such scattered power, we need
to satisfy the conditions,

I1 = e−jkdI3, I2 = −(1 + e−jkd )I3, (33)

for the trimer currents. The radiation pattern of this system
is plotted in Fig. 6. As is clear from this figure, the pattern
has three nulls in θ = π/2,φ = 0,π/2,π with the main beam
directed along θ = π/2,φ = −π/2. This behavior is also
inferred from Eq. (32).

Next, similarly to what we have performed to obtain (9),
we derive the condition required for an overall lossless trimer

|E| (V/m)

Z1LZ2L

d

E
k(a) (b)

E
k

z
x

y

Z3L

d

2l

FIG. 7. (a) Schematic of three short dipole antennas with the length l = λ/20 (λ is the operational wavelength) and the radius r0 = l/50,
separated by the distance d = 3l and loaded by bulk impedances Z1L, Z2L, and Z3L. The structure is excited by a plane wave. (b) Far-field
scattering pattern of the configuration in (a) which clearly shows a unidirectional pattern in a lateral direction. (c) Electric near-field distribution
of the scheme in (a).
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TABLE III. The required load impedances for the simultaneous
absence of forward and backward scattering and unidirectional pattern
in the lateral direction in the case of a loss-compensated trimer.

Impedance Analytically estimated values After fine-tuning

Z1L(�) 0 + j997.511 0.1094 + j1000.41
Z2L(�) −0.665 + j998.541 −0.8472 + j999.37
Z3L(�) 1.456 + j999.274 1.1231 + j1001.15

system of loaded dipoles with both active and passive loads
(loss-compensated, shadow-free trimers) to generate such su-
perdirective patterns. By using the required currents of Eq. (33)
and considering the mutual impedances of Zm,d and Zm,2d

between the closer (with distance d) and farther (with distance
2d) dipoles, respectively, the system of three equations for
induced currents in the loaded trimer system of dipoles results
in two conditions,

e−jkdZ1L − Z3L = (1 − e−jkd )(Zinp − Zm,2d), (34)

e−jkdZ1L + (1 + e−jkd )Z2L

= 2(1 + e−jkd )Zm,d − (1 + 2e−jkd )Zinp − Zm,2d, (35)

which imply simultaneous absence of forward and backward
scattering and a unidirectional scattering pattern in the lateral
plane. Notice that Zm,d and Zm,2d can be derived from (13)
and (21). Similarly to the analysis in Sec. III it is possible to
derive the required active-passive loads for the trimer system
to realize these properties.

As a particular example, we consider three short dipole
antennas of equal length loaded by three bulk impedances Z1L,
Z2L, and Z3L, as shown in Fig. 7. We assume similar physical
parameters for the antennas as in the previous case, i.e., l =
λ/20 and r0 = l/50 for all the dipoles, and d = 0.15λ. Next, by
using (12), (13), (20), and (21), we find the mutual impedances
Zm,d = (1.639 − j2.929)� and Zm,2d = (0.816 − j1.141)�,
respectively. To verify the analytical estimations, we also cal-
culated these impedances using full-wave simulations (COM-
SOL) which leads to Zm,d = (1.418 − j2.068)� and Zm,2d =
(0.703 − j0.974)�. These values from full-wave simulations
show weaker agreement with the analytical formulas compar-
ing to the previous case of a dimer. The reason is that in the
full-wave simulations of this structure, the mutual coupling
between the two antennas is calculated at the presence of the
third dipole. Next, by applying conditions (34) and (35), we
can find the required load impedances for the simultaneous
absence of forward and backward scatterings and for creation
of a unidirectional pattern in the lateral direction. The results
are summarized in Table III.

Obviously, since we control the lateral scattering pattern of
a shadow-free meta-atom, we need simultaneous presence of
both active [Re(Z2L) < 0] and passive [Re(Z1L,3L) > 0] loads.
The radiation pattern and the local electric field distribution for
the chosen load impedances of Table III are shown in Fig. 3.
From Fig. 7(b), one clearly observes scattering nulls in the
forward, backward, and one lateral direction. That is, our loss
[Re(Z1L,3L) > 0] and gain [Re(Z2L) < 0] scheme is obviously
granting superdirective lateral radiation. Figure 7(c) presents
the local electric field distribution around this triplet scatterer.
The general formulation for arbitrary tuning of the scattering
pattern is given in [32].

VI. DISCUSSION AND CONCLUSION

We have introduced the concept of shadow-free or loss-
compensated meta-atoms enabling extraordinary control over
scattering properties. We have demonstrated on numerical
examples that the scattering response control freedom of
these meta-atoms is not limited by the commonly adopted
restrictions. We have benefited from the combination of lossy
and active impedances as the loads for two closely spaced
dipole antennas to compensate the loss of one scatterer with
the gain of another and, hence, to suppress the forward
scattering of the overall lossless meta-atoms while preserving
nonzero radiation towards other directions. Moreover, we have
demonstrated that within this paradigm it becomes possible to
create purely bianisotropic meta-atoms, where the only exist-
ing polarization mechanism is the magnetoelectric coupling.
Furthermore, generalizing the proposed scenario to dipole
trimers, it becomes possible to shape the scattering pattern
in the lateral plane, pushing the scattered power aside from
the propagation direction of the incident waves and providing
end-fire superdirective radiation properties.

The proposed meta-atoms can be employed in the design
of engineered materials with extraordinary electromagnetic
and optical properties, where, for instance, magnetic response
is created by external high-frequency electric fields, or as
another example, materials with unity permittivity and per-
meability and nonzero and resonant chirality coefficient or
omega coupling parameter. The extreme values of optical
parameters are realized by exploiting combinations of passive
and active impedances which serve as the loads in our coupled-
dipole systems. The introduced shadow-free meta-atom is
hopefully defining a new paradigm in engineering materials
with extraordinary properties which are otherwise impossible
to achieve. Indeed, due to the advent of new techniques in the
compact and efficient design of active networks, the realization
of our proposed scheme is a straightforward task at radio and
microwave frequencies, although special cares should be taken
to ensure stability of the active components [40,41].
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