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Abstract. Real-time simultaneous tracking of hands manipulating and
interacting with external objects has many potential applications in aug-
mented reality, tangible computing, and wearable computing. However,
due to difficult occlusions, fast motions, and uniform hand appearance,
jointly tracking hand and object pose is more challenging than tracking
either of the two separately. Many previous approaches resort to complex
multi-camera setups to remedy the occlusion problem and often employ
expensive segmentation and optimization steps which makes real-time
tracking impossible. In this paper, we propose a real-time solution that
uses a single commodity RGB-D camera. The core of our approach is
a 3D articulated Gaussian mixture alignment strategy tailored to hand-
object tracking that allows fast pose optimization. The alignment energy
uses novel regularizers to address occlusions and hand-object contacts.
For added robustness, we guide the optimization with discriminative part
classification of the hand and segmentation of the object. We conducted
extensive experiments on several existing datasets and introduce a new
annotated hand-object dataset. Quantitative and qualitative results show
the key advantages of our method: speed, accuracy, and robustness.

1 Introduction

The human hand exhibits incredible capacity for manipulating external objects
via gripping, grasping, touching, pointing, caging, and throwing. We can use our
hands with apparent ease, even for subtle and complex motions, and with re-
markable speed and accuracy. However, this dexterity also makes it hard to track
a hand in close interaction with objects. While a lot of research has explored
real-time tracking of hands or objects in isolation, real-time hand-object tracking
remains unsolved. It is inherently more challenging due to the higher dimension-
ality of the problem, additional occlusions, and difficulty in disambiguating hand
from object. A fast, accurate, and robust solution based on a minimal camera
setup is a precondition for many new and important applications in vision-based
input to computers, including virtual and augmented reality, teleoperation, tan-
gible computing, and wearable computing. In this paper, we present a real-time
method to simultaneously track a hand and the manipulated object. We sup-
port tracking objects of different shapes, sizes, and colors. Previous work
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Fig. 1. Proposed real-time hand-object tracking approach: we use a single commodity
depth camera (left) to classify (top) and track the articulation of a hand and the rigid
body motion of a manipulated object (bottom)

has employed setups with multiple cameras [5, 17] to limit the influence of occlu-
sions which restricts use to highly controlled setups. Many methods that exploit
dense depth and color measurements from commodity RGB-D cameras [8, 13,
14] have been proposed. However, these methods use expensive segmentation
and optimization steps that make interactive performance hard to attain. At
the other end of the spectrum, discriminative one-shot methods (for tracking
only hands) often suffer from temporal instability [11, 33, 43]. Such approaches
have also been applied to estimate hand pose under object occlusion [24], but the
object is not tracked simultaneously. In contrast, the approach proposed here is
the first to track hand and object motion simultaneously at real-time rates using
only a single commodity RGB-D camera (see Fig. 1). Building on recent work in
single hand tracking and 3D pointset registration, we propose a 3D articulated
Gaussian mixture alignment strategy tailored to hand-object tracking. Gaussian
mixture alignment aligns two Gaussian mixtures and has been successfully used
in 3D pointset registration [10]. It can be interpreted as a generalization of ICP
and does not require explicit, error-prone, and computationally expensive cor-
respondence search [7]. Previous methods have used articulated 2.5D Gaussian
mixture alignment formulations [27] that are discontinuous. This leads to track-
ing instabilities because 3D spatial proximity is not considered. We also introduce
additional novel regularizers that consider occlusions and enforce contact points
between fingers and objects analytically. Our combined energy has a closed form
gradient and allows for fast and accurate tracking. For an overview of our ap-
proach see Figure 2. To further increase robustness and allow for recovery of the
generative tracker, we guide the optimization using a multi-layer random forest
hand part classifier. We use a variational optimization strategy that optimizes
two different hand-object tracking energies simultaneously (multiple proposals)
and then selects the better solution. The main contributions are:

– A 3D articulated Gaussian mixture alignment approach for jointly tracking
hand and object accurately.

– Novel contact point and occlusion objective terms that were motivated by
the physics of grasps, and can handle difficult hand-object interactions.

– A multi-layered classification architecture to segment hand and object, and
classify hand parts in RGB-D sequences.
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Fig. 2. We perform classification of the input into object and hand parts. The hand
and object are tracked using 3D articulated Gaussian mixture alignment

– An extensive evaluation on public datasets as well as a new, fully annotated
dataset consisting of diverse hand-object interactions.

2 Related Work

Single Hand Tracking Single hand tracking has received a lot of attention
in recent years with discriminative and generative methods being the two main
classes of methods. Discriminative methods for monocular RGB tracking index
into a large database of poses or learn a mapping from image to pose space [3,
42]. However, accuracy and temporal stability of these methods are limited.
Monocular generative methods optimize pose of more sophisticated 3D or 2.5D
hand models by optimizing an alignment energy [9, 6, 15]. Occlusions and appear-
ance ambiguities are less problematic with multi-camera setups [5]. [41] use a
physics-based approach to optimize the pose of a hand using silhouette and color
constraints at slow non-interactive frame rates. [28] use multiple RGB cameras
and a single depth camera to track single hand poses in near real-time by combin-
ing generative tracking and finger tip detection. More lightweight setups with a
single depth camera are preferred for many interactive applications. Among sin-
gle camera methods, examples of discriminative methods are based on decision
forests for hand part labeling [11], on a latent regression forest in combination
with a coarse-to-fine search [33], fast hierarchical pose regression [31], or Hough
voting [43]. Real-time performance is feasible, but temporal instability remains
an issue. [19] generatively track a hand by optimizing a depth and appearance-
based alignment metric with particle swarm optimization (PSO). A real-time
generative tracking method with a physics-based solver was proposed in [16].
The stabilizaton of real-time articulated ICP based on a learned subspace prior
on hand poses was used in [32]. Template-based non-rigid deformation tracking
of arbitrary objects in real-time from RGB-D was shown in [45], very simple
unoccluded hand poses can be tracked. Combining generative and discrimina-
tive tracking enables recovery from some tracking failures [25, 39, 28]. [27] showed
real-time single hand tracking from depth using generative pose optimization un-
der detection constraints. Similarly, reinitialization of generative estimates via
finger tip detection [23], multi-layer discriminative reinitialization [25], or joints
detected with convolutional networks is feasible [36]. [34] employ hierarchical
sampling from partial pose distributions and a final hypothesis selection based
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on a generative energy. None of the above methods is able to track interacting
hands and objects simultaneously and in non-trivial poses in real-time.

Tracking Hands in Interaction Tracking two interacting hands, or a hand
and a manipulated object, is a much harder problem. The straightforward com-
bination of methods for object tracking, e.g. [4, 35], and hand tracking does
not lead to satisfactory solutions, as only a combined formulation can method-
ically exploit mutual constraints between object and hand. [40] track two well-
separated hands from stereo by efficient pose retrieval and IK refinement. In [18]
two hands in interaction are tracked at 4 Hz with an RGB-D camera by opti-
mizing a generative depth and image alignment measure. Tracking of interacting
hands from multi-view video at slow non-interactive runtimes was shown in [5].
They use generative pose optimization supported by salient point detection. The
method in [32] can track very simple two hand interactions with little occlusion.
Commercial solutions, e.g. Leap Motion [1] and NimbleVR[2], fail if two hands
interact closely or interact with an object. In [17], a marker-less method based
on a generative pose optimization of a combined hand-object model is proposed.
They explicitly model collisions, but need multiple RGB cameras. In [8] the most
likely pose is found through belief propagation using part-based trackers. This
method is robust under occlusions, but does not explicitly track the object. A
temporally coherent nearest neighbor search tracks the hand manipulating an
object in [24], but not the object, in real time. Results are prone to temporal jit-
ter. [13] perform frame-to-frame tracking of hand and objects from RGB-D using
physics-based optimization. This approach has a slow non-interactive runtime.
An ensemble of Collaborative Trackers (ECT) for RGB-D based multi-object
and multiple hand tracking is used in [14]. Their accuracy is high, but runtime
is far from real-time. [21] infer contact forces from a tracked hand interacting
with an object at slow non-interactive runtimes. [20] and [38] propose methods
for in-hand RGB-D object scanning. Both methods use known generative meth-
ods to track finger contact points to support ICP-like shape scanning. Recently,
[37] introduced a method for tracking hand-only, hand-hand, and hand-object
(we include a comparison with this method). None of the above methods can
track the hand and the manipulated object in real-time in non-trivial poses from
a single depth camera view, which is what our approach achieves.

Model-based Tracking Approaches A common representation for model
tracking are meshes [5, 32]. Other approaches use primitives [14, 23], quadrics [29],
2.5D Gaussians [27], or Gaussian mixtures [10]. Gaussian mixture alignment has
been successfully used in rigid pointset registration [10]. In contrast, we propose
a 3D articulated Gaussian mixture alignment strategy. [44] relate template and
data via a probabilistic formulation and use EM to compute the best fit. Different
from our approach, they only model the template as a Gaussian mixture.
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a) Viewpoint selection b) Color-based object c) Two-layer hand part classification d) Final hand part
segmentation classification

Fig. 3. Three stage hand part classification: Stage 1: Viewpoint selection, stage 2:
color-based object segmentation, and stage 3: two-layer hand part classification

3 Discriminative Hand Part Classification

As a preprocessing step, we classify depth pixels as hand or object, and further
into hand parts. The obtained labeling is later used to guide the generative pose
optimization. Our part classification strategy is based on a two-layer random
forest that takes occlusions into account. Classification is based on a three step
pipeline (see Fig. 3). Input is the color Ct and depth Dt frames captured by the
RGB-D sensor. We first perform hand-object segmentation based on color cues
to remove the object from the depth map. Afterwards, we select a suitable two-
layer random forest to obtain the classification. The final output per pixel is a
part probability histogram that encodes the class likelihoods. Note, object pixel
histograms are set to an object class probability of 1. The forests are trained
based on a set of training images that consists of real hand motions re-targeted
to a virtual hand model to generate synthetic data from multiple viewpoints. A
virtual object is automatically inserted in the scene to simulate occlusions. To
this end, we randomly sample uniform object positions between the thumb and
one other finger and prune implausible poses based on intersection tests.

Viewpoint Selection We trained two-layer forests for hand part classification
from different viewpoints. Four cases are distinguished: observing the hand from
the front, back, thumb and little finger sides. We select the forest that best
matches the hand orientation computed in the last frame. The selected two-
layer forest is then used for hand part classification.

Color-Based Object Segmentation As a first step, we segment out the object
from the captured depth map Dt. Similar to many previous hand-object tracking
approaches [19], we use the color image Ct in combination with an HSV color
segmentation strategy. As we show in the results, we are able to support objects
with different colors. Object pixels are removed to obtain a new depth map D̂t,
which we then feed to the next processing stage.

Two-Layer Hand Part Classification We use a two-layer random forest
for hand part classification. The first layer classifies hand and arm pixels while
the second layer uses the hand pixels and further classifies them into one of
several distinct hand parts. Both layers are per-pixel classification forests [26].
The hand-arm classification forest is trained on N = 100k images with diverse
hand-object poses. For each of the four viewpoints a random forest is trained
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on N = 38k images. The random forests are based on three trees, each trained
on a random distinct subset. In each image, 2000 example foreground pixels
are chosen. Split decisions at nodes are based on 100 random feature offsets
and 40 thresholds. Candidate features are a uniform mix of unary and binary
depth difference features [26]. Nodes are split as long as the information gain is
sufficient and the maximum tree depth of 19 (21 for hand-arm forest) has not
been reached. On the first layer, we use 3 part labels: 1 for hand, 1 for arm and
1 to represent the background. On the second layer, classification is based on 7
part labels: 6 for the hand parts, and 1 for the background. We use one label for
each finger and one for the palm, see Fig. 3c. We use a cross-validation procedure
to find the best hyperparameters. On the disjoint test set, the hand-arm forest
has a classification accuracy of 65.2%. The forests for the four camera views had
accuracies of 59.8% (front), 64.7% (back), 60.9% (little), and 53.5% (thumb).

4 Gaussian Mixture Model Representation

Joint hand-object tracking requires a representation that allows for accurate
tracking, is robust to outliers, and enables fast pose optimization. Gaussian mix-
ture alignment, initially proposed for rigid pointset alignment (e.g. [10]), satisfies
all these requirements. It features the advantages of ICP-like methods, without
requiring a costly, error-prone correspondence search. We extend this approach
to 3D articulated Gaussian mixture alignment tailored to hand-object tracking.
Compared to our 3D formulation, 2.5D [27] approaches are discontinuous. This
causes instabilities, since the spatial proximity between model and data is not
fully considered. We quantitatively show this for hand-only tracking (Section 8).

5 Unified Density Representation

We parameterize the articulated motion of the human hand using a kinematic
skeleton with |Xh| = 26 degrees of freedom (DOF). Non-rigid hand motion is
expressed based on 20 joint angles in twist representation. The remaining 6 DOFs
specify the global rigid transform of the hand with respect to the root joint.
The manipulated object is assumed to be rigid and its motion is parameterized
using |Xo| = 6 DOFs. In the following, we deal with the hand and object in a
unified way. To this end, we refer to the vector of all unknowns as X . For pose
optimization, both the input depth as well as the scene (hand and object) are
expressed as 3D Gaussian Mixture Models (GMMs). This allows for fast and
analytical pose optimization. We first define the following generic probability
density distributionM(x) =

∑K
i=1 wiGi(x|µi, σi) at each point x ∈ R3 in space.

This mixture contains K unnormalized, isotropic Gaussian functions Gi with
mean µi ∈ R3 and variance σ2

i ∈ R. In the case of the model distribution, the
positions of the Gaussians are parameterized by the unknowns X . For the hand,
this means each Gaussian is being rigidly rigged to one bone of the hand. The
probability density is defined and non-vanishing over the whole domain R3.
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Hand and Object Model The three-dimensional shape of the hand and object
is represented in a similar fashion as probability density distributions Mh and
Mo, respectively. We manually attach Nh = 30 Gaussian functions to the kine-
matic chain of the hand to model its volumetric extent. Standard deviations are
set such that they roughly correspond to the distance to the actual surface. The
object is represented by automatically fitting a predefined number No of Gaus-
sians to its spatial extent, such that the one standard deviation spheres model
the objects volumetric extent. No is a user defined parameter which can be used
to control the trade-off between tracking accuracy and runtime performance. We
found that No ∈ [12, 64] provides a good trade-off between speed and accuracy
for the objects used in our experiments. We refer to the combined hand-object
distribution as Ms, with Ns = Nh + No Gaussians. Each Gaussian is assigned
to a class label li based on its semantic location in the scene. Note, the input
GMM is only a model of the visible surface of the hand/object. Therefore, we
incorporate a visibility factor fi ∈ [0, 1] (0 completely occluded, 1 completely
visible) per Gaussian. This factor is approximated by rendering an occlusion
map with each Gaussian as a circle (radius equal to its standard deviation). The
GMM is restricted to the visible surface by setting wi = fi in the mixture. These
operations are performed based on the solution of the previous frame Xold.

Input Depth Data We first perform bottom-up hierarchical quadtree cluster-
ing of adjacent pixels with similar depth to convert the input to the density based
representation. We cluster at most (2(4−1))2 = 64 pixels, which corresponds to a
maximum tree depth of 4. Clustering is performed as long as the depth variance
in the corresponding subdomain is smaller than εcluster = 30 mm. Each leaf node
is represented as a Gaussian function Gi with µi corresponding to the 3D center
of gravity of the quad and σ2

i = (a
2 )2, where a is the backprojected side length of

the quad. Note, the mean µi ∈ R3 is obtained by backprojecting the 2D center
of gravity of the quad based on the computed average depth and displacing by a
in camera viewing direction to obtain a representation that matches the model
of the scene. In addition, each Gi stores the probability pi and index li of the best
associated semantic label. We obtain the best label and its probability by sum-
ming over all corresponding per-pixel histograms obtained in the classification
stage. Based on this data, we define the input depth distribution Mdh

(x) for
the hand and Mdo

(x) for the object. The combined input distribution Md(x)
has Nd = Ndo

+ Ndh
Gaussians. We set uniform weights wi = 1 based on the

assumption of equal contribution. Nd is much smaller than the number of pixels
leading to real-time hand-object tracking.

6 Multiple Proposal Optimization

We optimize for the best pose X ∗ using two proposals X ∗i , i ∈ {0, 1} that are
computed by minimizing two distinct hand-object tracking energies:

X ∗0 = argmin
X

Ealign(X ), X ∗1 = argmin
X

Elabel(X ) . (1)
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Ealign leverages the depth observations and the second energy Elabel incorporates
the discriminative hand part classification results. In contrast to the optimization
of the sum of the two objectives, this avoids failure due to bad classification and
ensures fast recovery. For optimization, we use analytical gradient descent (10
iterations per proposal, adaptive step length) [30]. We initialize based on the
solution of the previous frame Xold. Finally, X ∗ is selected as given below, where
we slightly favor (λ = 1.003) the label proposal to facilitate fast pose recovery:

X ∗ =

{
X ∗1 if

(
Eval(X ∗1 ) < λEval(X ∗0 )

)
X ∗0 otherwise

. (2)

The energy Eval(X ) = Ea(X ) +wpEp(X ) is designed to select the proposal that
best explains the input, while being anatomically correct. Therefore, it considers
spatial alignment to the input depth map Ea and models anatomical joint angle
limits Ep, see Section 7. In the following, we describe the used energies in detail.

7 Hand-Object Tracking Objectives

Given the input depth distribution Md, we want to find the 3D modelMs that
best explains the observations by varying the corresponding parameters X . We
take inspiration from methods with slow non-interactive runtimes that used re-
lated 3D implicit shape models for full-body pose tracking [22, 12], but propose
a new efficient tracking objective tailored for real-time hand-object tracking.
In contrast to previous methods, our objective operates in 3D (generalization
of ICP), features an improved way of incorporating the discriminative classifi-
cation results, and incorporates two novel regularization terms. Together, this
provides for a better, yet compact, representation that allows for fast analytic
pose optimization on the CPU. To this end, we define the following two objective
functions. The first energy Ealign measures the alignment with the input:

Ealign(X ) = Ea + wpEp + wtEt + wcEc + woEo . (3)

The second energy Elabel incorporates the classification results:

Elabel(X ) = Ea + wsEs + wpEp . (4)

The energy terms consider spatial alignment Ea, semantic alignment Es, anatom-
ical plausibility Ep, temporal smoothness Et, contact points Ec, and object-hand
occlusions Eo, respectively. The priors in the energies are chosen such that they
do not hinder the respective alignment objectives. All parameters wp = 0.1,
wt = 0.1, ws = 3 · 10−7, wc = 5 · 10−7 and wo = 1.0 have been empirically
determined and stay fixed for all experiments. We optimize both energies simul-
taneously using a multiple proposal based optimization strategy and employ a
winner-takes-all strategy (see Section 6). We found empirically that using two
energy functions resulted in better pose estimation and recovery from failures
than using a single energy with all terms. In the following, we give more details
on the individual components.
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Spatial Alignment We measure the alignment of the input density function
Md and our scene model Ms based on the following alignment energy:

Ea(X )=

∫
Ω

[(
Mdh(x)−Mh(x)

)2
+
(
Mdo(x)−Mo(x)

)2]
dx . (5)

It measures the alignment between the two input and two model density distri-
butions at every point in space x ∈ Ω. Note, this 3D formulation leads to higher
accuracy results (see Section 8) than a 2.5D [27] formulation.

Semantic Alignment In addition to the alignment of the distributions, we
also incorporate semantic information in the label energy Elabel. In contrast
to [27], we incorporate uncertainty based on the best class probability. We use
the following least-squares objective to enforce semantic alignment:

Es(X ) =

Ns∑
i=1

Nd∑
j=1

αi,j · ||µi − µj ||22 . (6)

Here, µi and µj are the mean of the ith model and the jth image Gaussian,
respectively. The weights αi,j switch attraction forces between similar parts on
and between different parts off:

αi,j =

{
0 if (li 6= lj) or (di,j > rmax)

(1− di,j

rmax
) · pi else

. (7)

Here, di,j = ||µi − µj ||2 is the distance between the means. li is the part label
of the most likely class, pi its probability and rmax a cutoff value. We set rmax

to 30cm. li can be one of 8 labels: 6 for the hand parts, 1 for object and 1 for
background. We consider all model Gaussians, independent of their occlusion
weight, to facilitate fast pose recovery of previously occluded regions.

Anatomical Plausibility The articulated motion of the hand is subject to
anatomical constraints. We account for this by enforcing soft-constraints on the
joint angles Xh of the hand:

Ep(X ) =
∑

xi∈Xh


0 if xli ≤ xi ≤ xui
‖xi − xli‖

2
if xi < xli

‖xui − xi‖
2

if xi > xui

. (8)

Here, Xh are the DOFs corresponding to the hand, and xli and xui are the lower
and upper joint limit that corresponds to the ith DOF of the kinematic chain.

Temporal Smoothness We further improve the smoothness of our tracking
results by incorporating a temporal prior into the energy. To this end, we include
a soft constraint on parameter change to enforce constant speed:

Et(X ) = ‖∇X −∇X (t−1)‖22 . (9)

Here, ∇X (t−1) is the gradient of parameter change at the previous time step.
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Contact Points We propose a novel contact point objective, specific to the
hand-object tracking scenario:

Ec(X ) =
∑

(k,l,td)∈T

(
||µk − µl||2 − t2d

)2
. (10)

Here, (k, l, td) ∈ T is a detected touch constraint. It encodes that the fingertip
Gaussian with index k should have a distance of td to the object Gaussian with
index l. We detect the set of all touch constraints T based on the last pose Xold.
A new touch constraint is added if a fingertip Gaussian is closer to an object
Gaussian than the sum of their standard deviations. We then set td to this sum.
This couples hand pose and object tracking leading to more stable results. A
contact point is active until the distance between the two Gaussians exceeds the
release threshold δR. Usually δR > td to avoid flickering.

Occlusion Handling No measurements are available in occluded hand regions.
We stabilize the hand movement in such regions using a novel occlusion prior:

Eo(X ) =

Nh∑
i=0

∑
j∈Hi

(1− f̂i) · ||xj − xoldj ||22 . (11)

Here, Hi is the set of all DOFs that are influenced by the i-th Gaussian. The
global rotation and translation is not included. The occlusion weights f̂i ∈ [0, 1]
are computed similar to fi (0 occluded, 1 visible). This prior is based on the
assumption that occuded regions move consistently with the rest of the hand.

8 Experiments and Results

We evaluate and compare our method on more than 15 sequences spanning
3 public datasets, which have been recorded with 3 different RBG-D cameras.
Additional live sequences (see Fig. 8 and supplementary materials) show that
our method handles fast object and finger motion, difficult occlusions and fares
well even if two hands are present in the scene. Our method supports commodity
RGB-D sensors like the Creative Senz3D, Intel RealSense F200, and Primesense
Carmine. We rescale depth and color to resolutions of 320×240 and 640×480
respectively, and capture at 30 Hz. Furthermore, we introduce a new hand-object
tracking benchmark dataset with ground truth fingertip and object annotations.

Comparison to the State-of-the-Art We quantitatively and qualitatively
evaluate on two publicly available hand-object datasets [37, 38] (see Fig. 8 and
also supplementary material). Only one dataset (IJCV [37]) contains ground
truth joint annotations. We test on 5 rigid object sequences from IJCV. We
track the right hand only, but our method works even when multiple hands
are present. Ground truth annotations are provided for 2D joint positions, but
not object pose. Our method achieves a fingertip pixel error of 8.6px, which is
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(a) We achieve low errors on each of the 6
sequences in our new benchmark dataset

(b) Tracking consistency of the best,
worst and average case

Fig. 4. Quantitative hand-object tracking evaluation on ground truth data. The object
contributes a higher error

comparable (difference of only 2px) to that reported for the slower method of
[37]. This small difference is well within the uncertainty of manual annotation
and sensor noise. Note, our approach runs over 60 times faster, while producing
visual results that are on par (see Fig. 8). We also track the dataset of [38] (see
also Fig. 8). While they solve a different problem (offline in-hand scanning), it
shows that our real-time method copes well with different shaped objects (e.g.
bowling pin, bottle, etc.) under occlusion.

New Benchmark Dataset With the aforementioned datasets, evaluation of
object pose is impossible due to missing object annotations. We therefore intro-
duce, to our knowledge, the first dataset1 that contains ground truth for both
fingertip positions and object pose. It contains 6 sequences of a hand manipulat-
ing a cuboid (2 different sizes) in different hand-object configurations and grasps.
We manually annotated pixels on the depth image to mark 5 fingertip positions,
and 3 cuboid corners. In total, we provide 3014 frames with ground truth anno-
tations. As is common in the literature [25, 33, 27, 23, 32], we use the average 3D
Euclidean distance E between estimated and ground truth positions as the error
measure (see supplementary document for details). Occluded fingertips are ex-
cluded on a per-frame basis from the error computation. If one of the annotated
corners of the cuboid is occluded, we exclude it from that frame. In Fig. 4a we
plot the average error over all frames of the 6 sequences. Our method has an
average error (for both hand and object) of 15.7 mm. Over all sequences, the
average error is always lower than 20 mm with standard deviations under 12 mm.
Average error is an indicator of overall performance, but does not indicate how
consistent the tracker performs. Fig. 4b shows that our method tracks almost
all frames with less than 30 mm error. Rotate has the highest error, while Pinch
performs best with almost all frames below 20 mm. Table 1 shows the errors for
hand and object separately. Both are in the same order of magnitude.

Ablative Analysis Firstly, we show that the articulated 3D Gaussian mixture
alignment formulation is superior (even for tracking only hand) to the 2.5D for-
mulation of [27]. On the Dexter dataset [28], [27] report an average fingertip

1 http://handtracker.mpi-inf.mpg.de/projects/RealtimeHO/
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Table 1. Average error (mm) for hand and object tracking in our dataset

Rigid Rotate Occlusion Grasp1 Grasp2 Pinch Overall (mm)

Fingertips 14.2 16.3 17.5 18.1 17.5 10.3 15.6

Object 13.5 26.8 11.9 15.3 15.7 13.9 16.2

Combined (E) 14.1 18.0 16.4 17.6 17.2 10.9 15.7

Fig. 5. Top row: Input depth, an object occludes the hand. Middle row: Result of our
approach (different viewpoint). Our approach succesfully tracks the hand under heavy
occlusion. Bottom row: Result of [27] shows catastrophic failure (object pixels were
removed for fairness)

error of 19.6 mm. In contrast, our method (without any hand-object specific
terms) is consistently better with an average of 17.2 mm (maximum improve-
ment is 5 mm on 2 sequences). This is a result of the continuous articulated 3D
Gaussian mixture alignment energy, a generalization of ICP, which considers 3D
spatial proximity between Gaussians.

Fig. 6. Ablative analysis

Secondly, we show that the aver-
age error on our hand-object dataset is
worse without viewpoint selection, seman-
tic alignment, occlusion handling, and
contact points term. Fig. 6 shows a con-
sistency plot with different components of
the energy disabled. Using only the data
term often results in large errors. The er-

rors are even larger without viewpoint selection. The semantic alignment, occlu-
sion handling, and contact points help improve robustness of tracking results
and recovery from failures. Fig. 5 shows that [27] clearly fails when fingers
are occluded. Our hand-object specific terms are more robust to these difficult
occlusion cases while achieving real-time performance.

Runtime Performance All experiments were performed on an Intel Xeon E5-
1620 CPU with 16 GB memory and an NVIDIA GTX 980 Ti. The stages of our
approach take on average: 4 ms for preprocessing, 4 ms for part classification, 2 ms
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for depth clustering, and 20-30 ms for pose optimization using two proposals.
We achieve real-time performance of 25-30 Hz. Multi-layer random forests ran
on the GPU while all other algorithm parts ran multithreaded on a CPU.

(a) Rotate sequence from our dataset (b) Grasp2 sequence from our dataset

(c) Real-time tracking results with various object shapes and different users

(d) Results on the IJCV dataset [37]. Notice how our method tracks the hand even if
multiple hands are in view. Tracked skeleton in green and object in light blue

Fig. 7. (a, b) show tracking results on our dataset. (c) shows real-time results with
different object shapes and colors. (d) shows results on a public dataset

Fig. 9. Occlusion error and recovery

Limitations Although we demonstrated
robustness against reasonable occlusions,
situations where a high fraction of the
hand is occluded for a long period are still
challenging. This is mostly due to degraded
classification performance under such oc-
clusions. Misalignments can appear if the underlying assumption of the occlu-
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Fig. 8. Subset of tracked frames on the dataset of [38]. Our method can handle objects
with varying sizes, colors, and different hand dimensions. Here we show how
even a complex shape like a bowling pin can be approximated using only a few tens of
Gaussians

sion heuristic is violated, i. e. occluded parts do not move rigidly. Fortunately,
our discriminative classification strategy enables the pose optimization to re-
cover once previously occluded regions become visible again as shown in Fig. 9.
Further research has to focus on better priors for occluded regions, for exam-
ple grasp and interaction priors learned from data. Also improvements to hand
part classification using different learning approaches or the regression of dense
correspondences are interesting topics for future work. Another source of error
are very fast motions. While the current implementation achieves 30 Hz, higher
frame rate sensors in combination with a faster pose optimization will lead to
higher robustness due to improved temporal coherence. We show diverse object
shapes being tracked. However, increasing object complexity (shape and color)
affects runtime performance. We would like to further explore how multiple com-
plex objects and hands can be tracked.

9 Conclusion

We have presented the first real-time approach for simultaneous hand-object
tracking based on a single commodity depth sensor. Our approach combines
the strengths of discriminative classification and generative pose optimization.
Classification is based on a multi-layer forest architecture with viewpoint selec-
tion. We use 3D articulated Gaussian mixture alignment tailored for hand-object
tracking along with novel analytic occlusion and contact handling constraints
that enable successful tracking of challenging hand-object interactions based on
multiple proposals. Our qualitative and quantitative results demonstrate that
our approach is both accurate and robust. Additionally, we have captured a
new benchmark dataset (with hand and object annotations) and make it pub-
licly available. We believe that future research will significantly benefit from this.
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16 S. Sridhar, F. Mueller, M. Zollhöfer, D. Casas, A. Oulasvirta, C. Theobalt

22. Plankers, R., Fua, P.: Articulated soft objects for multiview shape and motion cap-
ture. IEEE TPAMI 25(9), 1182–1187 (2003), http://dx.doi.org/10.1109/TPAMI.
2003.1227995

23. Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking
from depth. In: Proc. IEEE CVPR (2014)

24. Romero, J., Kjellstrom, H., Kragic, D.: Hands in action: real-time 3d reconstruction
of hands in interaction with objects. In: Proc. ICRA. pp. 458–463 (2010)

25. Sharp, T., Keskin, C., Robertson, D., Taylor, J., Shotton, J., Kim, D., Rhemann,
C., Leichter, I., Vinnikov, A., Wei, Y., Freedman, D., Kohli, P., Krupka, E., Fitzgib-
bon, A., Izadi, S.: Accurate, robust, and flexible real-time hand tracking. In: Proc.
ACM CHI (2015)

26. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kip-
man, A., Blake, A.: Real-time human pose recognition in parts from single depth
images. In: Proc. IEEE CVPR. pp. 1297–1304 (2011), http://dx.doi.org/10.

1109/CVPR.2011.5995316
27. Sridhar, S., Mueller, F., Oulasvirta, A., Theobalt, C.: Fast and robust hand track-

ing using detection-guided optimization. In: Proc. IEEE CVPR (2015), http:

//handtracker.mpi-inf.mpg.de/projects/FastHandTracker/
28. Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand

motion tracking using rgb and depth data. In: Proc. IEEE ICCV (2013)
29. Stenger, B., Mendonça, P.R., Cipolla, R.: Model-based 3d tracking of an artic-

ulated hand. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on. vol. 2, pp. II–310.
IEEE (2001)

30. Stoll, C., Hasler, N., Gall, J., Seidel, H., Theobalt, C.: Fast articulated motion
tracking using a sums of gaussians body model. In: Proc. IEEE ICCV. pp. 951–
958 (2011)

31. Sun, X., Wei, Y., Liang, S., Tang, X., Sun, J.: Cascaded hand pose regression. In:
Proc. IEEE CVPR (2015)

32. Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.:
Robust Articulated-ICP for Real-Time Hand Tracking. Computer Graphics Forum
(Proc. of SGP) 34(5) (2015)

33. Tang, D., Chang, H.J., Tejani, A., Kim, T.: Latent regression forest: Structured
estimation of 3d articulated hand posture. In: Proc. IEEE CVPR. pp. 3786–3793
(2014), http://dx.doi.org/10.1109/CVPR.2014.490

34. Tang, D., Taylor, J., Kim, T.k.: Opening the Black Box : Hierarchical Sampling
Optimization for Estimating Human Hand Pose. In: Proc. IEEE ICCV (2015)

35. Tejani, A., Tang, D., Kouskouridas, R., Kim, T.K.: Latent-Class Hough Forests for
3d Object Detection and Pose Estimation. In: Proc. ECCV, pp. 462–477 (2014),
http://link.springer.com/chapter/10.1007/978-3-319-10599-4_30

36. Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery
of human hands using convolutional networks. ACM TOG 33(5), 169:1–169:10
(2014)

37. Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.: Capturing
hands in action using discriminative salient points and physics simulation. IJCV
(2016)

38. Tzionas, D., Gall, J.: 3D Object Reconstruction from Hand-Object Interactions.
In: Proc. IEEE ICCV (2015)

39. Tzionas, D., Srikantha, A., Aponte, P., Gall, J.: Capturing Hand Motion with an
RGB-D Sensor, Fusing a Generative Model with Salient Points. In: Proc. GCPR
(2014)



Real-time Joint Hand and Object Tracking from RGB-D Input 17
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