
https://doi.org/10.1145/3121431
https://doi.org/10.1145/3121431

27

Control Theoretic Models of Pointing

JÖRG MÜLLER, Aarhus University
ANTTI OULASVIRTA, Aalto University

RODERICK MURRAY-SMITH, University of Glasgow

This article presents an empirical comparison of four models from manual control theory on their ability to

model targeting behaviour by human users using a mouse: McRuer’s Crossover, Costello’s Surge, second-

order lag (2OL), and the Bang-bang model. Such dynamic models are generative, estimating not only move-

ment time, but also pointer position, velocity, and acceleration on a moment-to-moment basis. We describe

an experimental framework for acquiring pointing actions and automatically fitting the parameters of math-

ematical models to the empirical data. We present the use of time-series, phase space, and Hooke plot visual-

isations of the experimental data, to gain insight into human pointing dynamics. We find that the identified

control models can generate a range of dynamic behaviours that captures aspects of human pointing be-

haviour to varying degrees. Conditions with a low index of difficulty (ID) showed poorer fit because their

unconstrained nature leads naturally to more behavioural variability. We report on characteristics of hu-

man surge behaviour (the initial, ballistic sub-movement) in pointing, as well as differences in a number

of controller performance measures, including overshoot, settling time, peak time, and rise time. We describe

trade-offs among the models. We conclude that control theory offers a promising complement to Fitts’ law

based approaches in HCI, with models providing representations and predictions of human pointing dynam-

ics, which can improve our understanding of pointing and inform design.

CCS Concepts: • Human-centered computing→ HCI theory, concepts and models;

Additional Key Words and Phrases: Control theory, modelling, pointing, targeting, dynamics, aimed move-

ments, fitts’ law

ACM Reference format:

Jörg Müller, Antti Oulasvirta, and Roderick Murray-Smith. 2017. Control Theoretic Models of Pointing. ACM

Trans. Comput.-Hum. Interact. 24, 4, Article 27 (August 2017), 36 pages.

https://doi.org/10.1145/3121431

1 INTRODUCTION

At the outset of the academic study of interaction within human–machine systems, the ideas
of control theory were at the core of the subject, e.g., [12, 13, 57], providing models of human

The work of AO has received funding from the European Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme (Grant agreement no. 637991). RM-S gratefully acknowledges funding support

from the EC Horizon 2020 project MoreGrasp, Nr. H2020-ICT-2014-1 643955.

Authors’ addresses: J. Müller, Institute for Computer Science, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth,

Germany; email: Joerg.Mueller@uni-bayreuth.de; A. Oulasvirta, School of Electrical Engineering, Aalto University, Kone-

miehentie 2, PO Box 11000 00076 Aalto University, Finland; email: antti.oulasvirta@aalto.fi; R. Murray-Smith, School of

Computing Science, 18 Lilybank Gardens, University of Glasgow, Glasgow G12 8RZ, Scotland; email: Roderick.Murray-

Smith@glasgow.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1073-0516/2017/08-ART27 $15.00

https://doi.org/10.1145/3121431

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

https://doi.org/10.1145/3121431
https://doi.org/10.1145/3121431

27:2 J. Müller et al.

performance, tools for analysis of joint human–machine system behaviour and frameworks for
coupling humans and machines. However, the concepts of control theory and dynamic systems
have played only a small role in contemporary human-computer interaction (HCI) research and
practice.
We believe it is time to reconsider the role of control theory in HCI, as a better understanding

of how humans continuously interact with a computer provides a foundation for designing sys-
tems, which can better share the workload between the two, gives us a more scientific framework
for describing such interactions, and could support the design of novel interaction techniques. In
general, modelling is needed in HCI to bridge the gap between single, isolated observations and
theoretical constructs. Formal, executable models offer a systematic, rigorous, and transferable
explanation of interaction. They advance scientific explanations by forcing authors to explain as-
sumptions in a clear and scrutinable form. Modelling facilitates generalisation and application of
theories, as they can be tested across a variety of conditions.
As a formalism focussed on dynamic systems, control theory moves beyond predicting the typi-

cal aggregate descriptions of interaction used in HCI, such as movement time. Importantly, control
theory, with its associated dynamic models, allows the prediction of moment-by-moment changes
in states like position, velocity, and acceleration. Control theory is of particular interest in a con-
structive subject like the design of user interfaces. It offers a rich formalism for understanding
interaction via its constituents: inputs, outputs, feedback, and system states. It can describe the
interaction-level dynamics with implications for task-level behaviour [28]. Control theoretic ap-
proaches also focus on the closed-loop view, which highlights the fundamental limitations of tak-
ing a stimulus–response approach to the causal relationships in situations where the state is fed
back to the input, as is the case in human–computer interaction. It is explicitly intended to pro-
vide the tools to allow a designer to create the desired system dynamics. Control theory could
thereby become a formalism to inform input methods and interaction techniques, from mouse
pointing, to gesture-based interfaces, where the dynamics of gesture unfolding in time are core to
the approach, or to novel sensor-based interaction methods, which gather evidence over time, and
move us beyond the classical, well-tested desktop GUI, or to systems where the computer system
dynamics change over time.
While our motivation for reintegrating control theory in HCI is a longer term one, and the mod-

els we will explore are well suited for general control tasks, such as tracking and for disturbance
rejection, in this article we chose to test the applicability of classical manual control models to an
intensively studied core task in HCI: pointing with a mouse.
Surprisingly, the insights from the field of manual control theory have found very little appli-

cation in HCI. No executable manual control models have been easily available, and many manual
control models stem from aircraft pilot modelling, with fewer examples of direct applications to
pointing. We decided that replicating and extending this classic pointing task is an ideal starting
point for control-theoretic investigations. It affords a link between existing work in both the man-
ual control literature and HCI research and it is directly relevant to many graphical user interfaces
where intent is communicated by using a pointer to select spatially bounded regions from a display.
But why work on yet another model of pointing? If we consider pointing as a case, the prevalent

Fitts’ law [22] based family of modelling offers no explanation about the causal relationship that
links conditions and outcomes in pointing. Crucially, it makes no testable predictions about the
process of pointing. By contrast, control theory offers amodel of interaction that allows designers to
include explicit assumptions about the human controller, the input device, and issues like feedback,
delays, and noise. In particular, it can produce full position, velocity and acceleration profiles to
allow inspection of concepts like overshoot, settling time, peak time, and rise time. Control theory

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

Control Theoretic Models of Pointing 27:3

is a natural approach to pointing dynamics, because while pointing is traditionally understood as
a discrete selection task in HCI, the constituent motor action is continuous.
In the future, control-theoretic modelling could complement Fitts’ law based analysis by help-

ing us understand the contributions of physical properties of the input device and the properties
of feedback. A successful control-theoretic model would support detailed offline analyses, such as
what happens when open-loop or closed-loop control strategies are applied, or what is the be-
havioural impact of a change to the performance objective? In such offline analysis and design,
control theory may allow us to simulate the mouse friction, latency, transfer functions, interface
dynamics, and mechanical parts. In online use, adaptive interfaces can make real-time model-
based predictions about future behaviour extrapolating from the current state and adapting the
system behaviour accordingly. However, much research needs to be completed to realise these
potentials.

1.1 Article Objectives and Structure

This article addresses three major objectives:

(1) Examine and compare models from manual control theory for their ability to capture
dynamic aspects of pointing behaviour in an HCI task, using an automated model fitting
process in Simulink and Matlab, based on empirical user data.

(2) Better understand, visualise, and quantify the dynamic behaviour in the oft-used recipro-
cal pointing task, with a particular focus on the velocity and acceleration profiles during
task performance.

(3) Assessmodels formodel fit, complexity, and assumptions, and then use themodels to anal-
yse details of lower-level phenomena within a single pointing action, which are neglected
in task performance models like Fitts’ law.

Our focus in this article is on one-dimensional pointing movements with a mouse as input de-
vice, an oft-studied theme for modelling research in HCI. As in previous work in HCI, we assume
spatially bounded targets, and time-minimisation as the goal, and we present methods and results
from a comparison of four manual control models, which have not been compared before in an
HCI context.
We chosemodels frommanual control theory (in particular pilot modelling) based on the follow-

ing criteria: (1) popularity, (2) small set of parameters that can easily be identified from collected
data, (3) ability to model interaction with a non-linear (computer) system, and (4) no require-
ment to know the movement time in advance. The second-order lag (2OL) is a simple linear model
widely used in control theory. McRuer’s Crossover model [34] is a model intended to model pilot
behaviour in continuous tracking tasks. The Bang-bang model is a non-linear, maximum-effort
model. Costello’s Surge model [11] is a more complex model intended to model pilot behaviour,
which combines the Bang-bang model and McRuer’s Crossover model. These models differ not
only in modelling assumptions and fit with data, but also in terms of plausibility as explanations
of human movement.
To compare these models, we conducted an experiment using high-fidelity pointer tracking. It

captures pointing dynamics at high accuracy, whereas most existing datasets only capture move-
ment endpoints. Besides high temporal and spatial granularity, this data can better expose vari-
ability in pointing movements.
In the rest of the article, we first review the literature of aimed movement modelling to contex-

tualise control theoretic models. We then provide an introduction to key control theory concepts
and their relationship with HCI. We describe the acquisition of the Pointing Dynamics Dataset
and Models, and explain our approach to model fitting.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

27:4 J. Müller et al.

2 MODELS OF AIMED MOVEMENTS

Manual control theory [11, 34] seeks to model the interaction of humans with machines, for exam-
ple aircraft pilots, or car drivers. In contrast, motor control theory, e.g., [50], seeks to understand
how the human central nervous system controls the body, for example in reaching tasks. In this
article because we are focussing on unaugmented pointing, we essentially have a ‘unit gain’ for
the controlled system (it could be argued that the mouse mass is almost negligible), so one might
reasonably question whether this is really manual control, which focusses on human control of a
dynamic system, or motor control which relates to control of a human’s own body? We argue that
while this article does not investigate control of target interface elements with complex dynamics,
our goal is to develop an engineering framework, which is well-suited to such closed-loop analysis.
In summary, here we do not seek to compare models from manual control theory with mo-

tor control models in general, but we compare four models from classical manual control theory
against each other, focussing on their ability to model human pointing with a mouse. However,
in order to position manual control models relative to motor control models of aimed movements,
we provide a brief review of the main types of pointing models, focussing on models of spatially
constrained time-minimisation tasks; that is, where the task is to hit a spatially determined target
as quickly as possible.
Various authors have proposed simple feedback control models compatible with Fitts’ law (e.g.,

[5, 10, 28]). Winston and Nelson [38] also provide a good initial coverage of the early literature.
While there are too many models to review thoroughly, it suffices here to look at them in terms
of the phenomena they cover in pointing. From this angle, they can be divided in two classes:
(1) task performance-level models and (2) dynamics-level models. Task performance-level models
essentially map task demands into indicators of task-level performance, such as total movement
time and accuracy.While Fitts’ lawmakes no assumption about the constituent process of pointing,
later extensions cover, for example, the number of sub-movements. The dynamics-level models
include production of movement in a given task. An overview of models is given in Table 1.

2.1 Models of Task Performance

Performance-level models predict total time and/or variance in end-point error in aimed move-
ments. The best known model, Fitts’ law, captures a statistical relationship that links performance
to task demands [22]. More precisely, it describes movement time (MT) as a function of movement
distance (D) and the size of the target (W):

MT = a + b ID = a + b log2

�
D
W

+ 1

�
, (1)

in the Shannon formulation [33], where ID is the index of difficulty of the task. In Fitts’ law, move-
ment time is related to the inverse of spatial error. Several variants have been proposed (e.g., [27,
60, 62]). However, most have little to say about what happens during movement.
An important exception is the iterative corrections model of [14]. They model motion as a series

of ballistic, open-loop sub-movements of equal duration. Detailed kinematic recordings, however,
showed only one or at most two corrections. Moreover, considerable variation has been found
in the duration of the initial sub-movement. An extension of the idea was proposed by [36]. The
stochastic optimised sub-movement model defines MT as a function of not only D andW , but also
the number of sub-movements:

MT = a + b
�
D
W

�1/n

, (2)

where n is an upper limit on sub-movements (n = 2.6 minimised the RMS error empirically). Sev-
eral extensions have been proposed to compute also end-point variability [35].

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

Control Theoretic Models of Pointing 27:5

Table 1. Comparison of Selected Pointing Models

Model Outputs Predictors Free Parameters Assumptions

Fitts’ law [22] MT D,W a, b Limited capacity

motor system

Meyer’s law [36] MT D,W a, b, (n) Sub-movements stoch-

astically optimised

Plamondon KT [39] x (t), � (t), a (t) D × 2, t0 µ × 2, � × 2 Agonistic and antagonistic

muscle synergies

Minimum-Jerk [23] x (t), � (t), a (t) D, MT Jerk minimisation

VITE [4] x (t), � (t), a (t) D G (t), � Neural network

E-LQG [53] x (t), � (t), a (t) Qi, R A, B, Ci, �1, H, �� Optimal control

(This article) x (t), � (t), a (t) D (TI , TL, Tn, �e, Kp) Error minimisation

or (m, d, k, �) or (�, u, �)

Notes: MT = movement time, D = target distance,W = target width, n = number of sub-movements, x (t) = position

at time t , � (t) = velocity at time t , a (t) = acceleration at time t , KT: D = amplitude of impulse command, µ and

� are the logtime delay and the log-response time of the agonist and antagonist neuromuscular system involved in a

synergy; VITE: G (t) = GO signal, � = rate, E-LQG: A, B, H = dynamics of controlled system, Ci = signal dependent

noise, �1 = initial state covariance, �� = sensory noise covariance, Qi = state cost, can depend on D and MT, R =
control cost.

These two models have some relationship to control theoretic models of pointing. They assume
intermittent feedback control, where each action is based on the error at the start of the action.
Meyer also assumes that the neuromotor system is noisy, and that this noise increases with the
velocity of the sub-movements. This causes the primary sub-movement to either undershoot or
overshoot the target. Although noise per se is not modelled, its consequences are. Critiques of the
Meyer model have pointed out trouble capturing the case where sub-movements have different
speed–accuracy trade-off properties [39, 40]. It cannot explain why targets with small and large
ID values do not conform to the model. Moreover, external factors like gain function and delay
may be hard to include. A more critical shortcoming is that the number of sub-movements is
fixed. For a given D andW , the sequence of sub-movements would always be the same, and it is
not possible to explain why the target is missed at times. Gawthrop et al. [25] demonstrate that
a simple predictive controller can be consistent with Fitts’ law, while non-predictive controllers
cannot. The same paper also presents the link between intermittent control, predictive control and
human motor control, and further develops this in [24].

2.2 Dynamic Models

Dynamic models include fully time-varying phenomena during pointing. These models can be
implemented algorithmically.
Plamondon’s Kinematic Theory (KT) assumes that the motor system produces movement by con-

trolling muscles acting in groups, or synergies [39, 40]. KT assumes two systems: agonist and an-
tagonist. These are linear time-invariant systems that produce a velocity output from an impulse
command. The velocity of the end-effector of the synergy is given by

� (t) = �1 (t) ��2 (t) = D1H1 (t � t0) � D2H2 (t � t0), (3)

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

27:6 J. Müller et al.

where D is the amplitude of the impulse command, subscripts 1 and 2 represent the agonist and
the antagonist systems respectively, and H (t � t0) is the impulse response of each system. The
response is assumed to converge toward a log-normal curve in most conditions, and becomes a
weighted difference of two log-normals, or what is called as the Delta-lognormal Law:

� (t) = D1�
�
t ; t0, µ1,� 2

1

�
� D2�

�
t ; t0, µ2,� 2

2

�
, (4)

where µ characterises the log time delay (a scale parameter) and � the log response time (a shape
parameter) of the neuromuscular system. The model can be used to predict speed–accuracy trade-
off and velocity profiles. It also covers observed phenomena, such as including triple peak velocity
profiles and the increase of velocity with increasing distance.
TheMinimum-Jerk Model [23] analyses hand movements that are smooth and graceful, such as

when drawing or gesturing. The motor system is assumed to maximise the smoothness of move-
ments (or, equivalently, minimise jerk). The cost function CF is proportional to the mean square
of the jerk, or the time derivative of the acceleration:

CF =
1

2

t2�

t1

� �
d3x
dt3

�2
+

�
d3�
dt3

�2�
dt . (5)

For the case of point-to-pointmovements, the optimal time series can be computed analytically as a
fifth-order polynomial ([23], Appendix A). An application to gesture typingwas recently presented
by [45]. It samples via-point features from empirical movement samples to generate movements
with realistic figural shape and dynamics. However, it does not predict absolute movement time.
Furthermore, because it assumes optimal motion, corrective movements are not modelled.
Vector Integration To Endpoint (VITE [4]) is a model inspired by neural networks that takes as

input a time-dependent GO signal G (t), a rate � , a target T and initial state and produces a time
series of movement towards the target. The model is governed by the equations:

dV
dt

= � (�V +T � P)
dP
dt

= G[V]+. (6)

It is thus a second-order model related to the 2OL explored in this article. A major difference is the
non-linear GO function G[V]+ that is applied when integrating the state V (velocity) to the state
P (position). The function can be chosen such that the model has a symmetric velocity profile.
This is a major difference to linear second order systems, in which the acceleration is necessarily
proportional to the error. Any linear system will thus have an asymmetric velocity profile.
Todorov presents a linear optimal control model of motor control based on an extension of

the Linear Quadratic Gaussian regulator (E-LQG) [53]. In particular, the additive noise model
in the conventional LQG is replaced with a multiplicative, and thus signal dependent, noise term.
The model represents the human perceptual system with a Kalman filter and human control as
an optimal controller that is controlling a linear biomechanical system. In contrast to the fixed
parameter models that we investigate in this article, the control law is determined automatically,
while noise terms, controlled system dynamics and cost functions are given as free parameters. The
model has been evaluated qualitatively in via-point movements, with parameters adjusted itera-
tively. It is not obvious how to adjust the model parameters to replicate the behaviour of a specific
user in a specific task. Further, the optimal control technique depends on the overall model being
linear. Therefore, users interacting with non-linear computer interfaces (e.g., including transfer

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

Control Theoretic Models of Pointing 27:7

functions1) can inherently not be modelled. Finally, the model cannot predict the movement time,
but rather needs the movement time as an input to predict the time series.
Todorov’s model is related to an earlier optimal control model of pilot behaviour, the Kleinman–

Baron–Levison model [30]. Also, [63] presents an approach to pointing target prediction that in-
ternally uses an inverse optimal control algorithm. This determines a cost function for which the
human pointing trajectory would be optimal, and this approach could potentially be integrated
with the above mentioned optimal control models.
Shadmehr [51] and Rigoux and Guigon [47] explore the relationship between movement time

and optimal trade-offs between reward and effort, an area which seems very relevant to human–
computer interaction ‘in the wild’ where human motivation can be highly variable. This is related
to attempts to consider interfaces which allow users to engage in casual or focussed interaction,
depending on their context and the difficulty of the task, e.g., [41].

2.3 Summary

Contrary to task-level models, which do not predict position, velocity, nor acceleration, dynamic
models address these shortcomings. They can predict pointer time series, velocity, and accelera-
tion profiles, and – like task-level models – are described by a small set of parameters that can be
identified from collected user data. Unlike minimum-jerk models or optimal control models, man-
ual control models can predict the time it takes for the pointer to settle on the target, as a function
of distance and target size. This is possible, because the behavioural goal is directly implemented
in a control law, which makes decisions about the trajectory on a moment-to-moment basis.

3 CONTROL THEORETIC VIEW OF CONTINUOUS INTERACTION: BASICS

This section outlines basic terminology and concepts for understanding pointing as a special case
of continuous interaction from a control theoretic perspective (for introductory books, see [28,
29, 43, 52, 56]). We start from the elements of the interaction loop, review the control-theoretic
correspondents, and put them together in a general framework. The goal here is not to propose
a concrete, executable model but to outline the shared aspects of all control theoretic models of
pointing.We call it a ‘framework’ because it is not an executable model like the ones we investigate
in later sections for pointing, but it serves as a reference when we compare the executable models.
The framework is shown in Figure 1.

3.1 Basic Terminology

Control theory uses the concepts of signals, systems, goals, states, error (distance of state from
goal), feedback, and feedforward. The block diagram is one standard way of presenting their re-
lationship in a particular model, describing how signals get processed by systems in the presence
of feedback. Signals are variables that change their value over time. In Figure 1, signals are repre-
sented by arrows. Systems, represented by boxes, convert input signals to output signals. Systems
can have states. In particular in pointing, we propose that the state should not only be the position,
but should also include higher derivatives such as the instantaneous velocity. Acceleration could
be another possible state, being correlated to muscle activation. In this article, we limit ourselves
to second-order (position and velocity) models. Feedback occurs when the output of a series of
systems is fed back into the same system. This can result in mathematically complex behaviour,
including nulling of errors, instability, and oscillations. The term feedforward is used in a range of
ways in HCI, but in control theory it has a specific meaning. In Figure 1, it denotes the open-loop

1Note that this usage is of transfer function in mouse OS sense of a non-linear function mapping, rather than a dynamic

system transfer function.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

27:8 J. Müller et al.

Fig. 1. General control theoretic framework for continuous human-computer interaction. The framework is
instantiated as an example with the block diagram of the 2OL model investigated in this article. Interac-
tion is modelled as a continuous control loop between human and computer. The human forms an intention
and observes the state of the environment (e.g., pointer position). A controller then calculates the differ-
ence between the intention and the state of the environment (error), and calculates a control signal for the
biomechanical system from that. The biomechanical system creates forces and motion, which are sensed by
input devices. This signal is filtered, and a transfer function (e.g., pointer acceleration function) is applied.
The resulting signal can be directly processed for position control, or integrated once for rate control or
twice for acceleration control. Finally, application dynamics can range from trivial for a Desktop to complex
for a computer game. The state of the application is then fed back to the user via a display. The different
components in the control loop can be modelled in many different ways. The other models studied in this
article (McRuer, Bang-bang, Surge) instantiate the different components in different ways. Image of the eye
is adapted from artwork by Fischer (2013). Image of silhouette inspired by figure in Card et al. (1983).

behaviour of the human when ignoring the feedback, i.e., the path from intention to movement
independent of data from perception.

3.2 General Framework for Continuous Interaction

We present a general control theoretic framework for continuous interaction in Figure 1.2 Pointing
is later treated as a special case of this. The signals include computer input, e.g., the movement of
the mouse on a surface, and computer output, the pointer position on the display, as well as signals
internal to the human and the computer. As we detail below, the systems of interest are the human
and the computer. The human can further be subdivided at least into intention, controller, and
biomechanics. These have different roles in controlling pointer position.

2See [15, 20] for early HCI discussion of continuous interaction.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

Control Theoretic Models of Pointing 27:9

On the other hand, the computer can be subdivided at least into input device (e.g., mouse), filter-
ing, transfer function, control order (e.g., position or rate control), application dynamics, and dis-
play. Because the output of the computer is fed back into the perception of the human, a feedback-
loop emerges. In this article, we will assume the presence of negative feedback; that is, the human
is calculating the difference of the pointer position from his intention, and is trying to minimise
the resulting error.
In the following, we define some terminology for describing interaction from a control theoretic

perspective. Based on Figure 1, we define the aspect of the interface that the user is interested to
control as the state of the interface. This can, for example, be the pointer position and velocity or
zoom level and velocity. We define the difference between the user’s intention and the state as the
error signal. In Figure 1, the error would be calculated in the controller.
We can now provide a definition of continuous interaction: If we can identify a continuous signal

loop between user and interface, as depicted in Figure 1, and the user is continuously trying to min-
imise the error between his intention and the system state, we can say that the user is continuously
interacting with the system.
This definition is independent from the specific interface. For example, the system state could

be displayed in a visual, auditory, or haptic modality. Input from the user could be through mouse,
joystick, eyes, or mid-air gestures. In many cases there will be a de-clutching mechanism (e.g.,
letting go the mouse, in the case of pointing) and the interaction will be intermittently continuous.
This definition also includes continuous interaction with non-computer interfaces, such as driving
a car or riding a bicycle.
Many HCI tasks have a direct correspondent in control theoretic terms. For example, the task

of pointing to a target that appears at a point in time corresponds to step tracking. Following a
moving target might involve ramp tracking. In this formulation, the target over time is represented
as an input signal to a control theoretic model.
One relevant aspect is the issue of disturbances. In contrast to typical control engineering tasks,

in pointing the majority of the disturbances or variability will be typically internal to the human
controller, rather than in the system being controlled (the mouse or interaction objects). Games or
e.g., flight or driving simulations provide a specific examplewhere disturbances are of themore tra-
ditional type, external to the controller, as would be device use in mobile contexts. Further sources
of noise or uncertainty come from sensor noise in the pointing device and visual uncertainty due
to issues with the display, or the user’s vision.
Because of its origins in engineering, the system being the controlled (the computer in our case)

in control theoretic terms is often called the plant.

3.3 Earlier Examples of Control Theory and Dynamic Models in HCI

Control theory provides an engineering framework, which is well-suited for analysis of closed-
loop interactive systems. This can include properties such as feedback delays, sensor noise (see
e.g., [54]), or interaction effects like ‘sticky mouse’ dynamics, isometric joystick dynamics [2],
magnification effects, inertia, fisheye lenses, speed-dependent zooming, all of which can be readily
represented by dynamic models. The use of state space control methods was explored in document
zooming context in [16–19, 31] and [44] reviewed the challenge of optimising scrolling transfer
functions and used a robot arm to identify the dynamics of commercial products. Examples of
the use of dynamic models in interactive systems are now widespread in commercial systems,
and there are also examples in the academic literature, including [8, 59]. Quinn and Zhai [45] use
control models to understand how input trajectories associated with words entered into gesture
keyboards are likely to vary.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

27:10 J. Müller et al.

The control perspective can also lead to unusual approaches to interaction, such as interfaces
that inferred the user’s intent based on detection of control behaviour, as developed in [58] and
built on by [21]. It also has the potential to help us understand how to describe interfaces which
span the spectrum from casual interaction to highly engaged interaction [41], depending on the
effort the user is willing to apply to the task.
We now move on to describe instantiations of this generic framework in models of pointing.

4 POINTING MODELS

We instantiate our framework with particular executable implementations for the case of one-
dimensional pointing with the mouse. To this end, we compare specific implementations of sub-
models for the human and the computer subsystem of the model.
The task we examine is the translation (of a pointer) along the x dimension. The input device

is the mouse. We investigate step tracking with a performance objective of minimising time while
avoiding errors. In mouse pointing, users sometimes lift up the mouse and reposition it. Because
the tracking of the mouse is broken when the mouse is lifted, in this way the input space can
be repositioned in relation to the output space. This process is commonly called ‘clutching’. In the
instantiations of the framework in this article, clutching is not modelled.

4.1 Submodels for the Human

The manual control literature provides a wide range of control models, based on different as-
sumptions about human behaviour, with a range of computational complexity and number of free
parameters. These models model the ‘human’ part in Figure 1 and have been used for example to
model aircraft pilot behaviour. We chose the most widely used models in manual control theory,
which can be adjusted to experimental data through a limited set of parameters in a system iden-
tification process (see Section 2.3). All models are second order and represent the instantaneous
pointer position and velocity, e.g., in two integrators.
A second order lag (2OL) can be interpreted as a simple spring–mass–damper system.3 Themodel

is related to the equilibrium point theory of motor control [50]. In this theory, the human motor
system is understood as a spring–mass–damper system, such as the 2OL. When a target changes,
the human sets the equilibrium point of the system to the new target and the human body swings
towards the target. In order to model human and system delays, we extend the pure second order
lag with a dead time. This dead time delays the target signal before it is processed by the spring–
mass–damper system. The 2OL can be represented by the differential equation

�̈ (t) =
1

m
(u (t � �) � d�̇ (t) � k� (t)), (7)

where d is the damping factor, k the spring constant,m the mass of the system, � the dead time, �
the pointer position, and u the target signal. Use of the Laplace transform allows this differential
equation to be written in the form

G (s) =
Y (s)
U (s)

=
e�s�

ms2 + ds + k
, (8)

which is called the transfer function of the system, commonly denotedG (s).U (s) and Y (s) denote
the Laplace transform of the input (e.g., target) and output (e.g., mouse position) signal of the
system, respectively. The block diagram of this model is depicted as an example in Figure 1. When

3The system order usually refers to the highest derivative, or the number of coupled first-order differential equations used

in the model. The control order refers to the number of integrations between the control input to a controlled system (plant)

and the output of a plant.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

Control Theoretic Models of Pointing 27:11

the target changes, this model quickly accelerates towards the target and decelerates when close
to the target. Depending on the damping factor, the model can be underdamped, which means that
it overshoots the target and oscillates.
McRuer’s Crossover model [34] is a classical model for modelling aircraft pilot behaviour, with a

transfer function:

G (s) =
Kpe�s�e (1 + sTL)
(1 + sTn) (1 + sTI)

. (9)

Here, TI is the human lag time constant, TL is the human lead time constant, Tn is the neuromus-
cular lag time constant, �e is the human dead time, and Kp is the gain constant. Compared to the
2OL, this model is more advanced. In particular it allows to model lead (reaction to the derivative
of the error). While this is a good model for tracking a changing reference point, and eliminating
the effect of disturbances, a major limitation of this model for representing pointing behaviour is
that it is not intended to model reaction to large step changes, like those that characterise a mouse
pointing task. In step changes of error, the derivative part of the model creates infinite accelera-
tions, which are clearly not consistent with human behaviour. These infinite accelerations can be
damped if the target position is filtered with a low-pass filter before it is passed into the system.
The Bang-bang model is a non-linear, maximum-effort, minimum-time model. It maximally ac-

celerates a second-order system (e.g., the human arm) towards the target and then maximally
decelerates at the optimal point half-way towards the target. The model is related to the impulse-
timing view ofmotor control [50]. It is also related to Crossman andGoodeve’s iterative corrections
model. However, the Bang-bang model would not predict sub-movements to be of equal durations,
and in its pure form always reaches the target in a single sub-movement. This model cannot be
represented as a linear differential equation, and its Laplace transform does not exist. Instead, it
is mainly described by the gain parameter g. We extend the pure Bang-bang model with three
parameters, to fit human behaviour better. First, we define a dead zone around zero error. Oth-
erwise, in the vicinity of the target, the model will continue to generate short, high-acceleration
pulses, without settling. Second, we introduce a dead time on the input signal to help compensate
for human reaction time delays. Third, we add an undershoot parameter. This parameter causes the
model not to stop at the target after one bang, but at a point a certain fraction short of the target,
like the human.
Costello’s Surge model [11] combines the benefits of Bang-bang control and linear control with a

switching controller. When the sum of error of pointer location and error velocity is larger than a
threshold (such as after a step in the target position) the model enters an open-loop ballistic move-
ment towards the target, as the Bang-bang model does. When the error is smaller than the thresh-
old, the model switches toMcRuer’s Crossover model. This model is related toWoodworth’s model
of an initial-impulse phase and later current-control phase [61]. The model is a multiple model
(Bang-bang and McRuer) controller, which brings a number of associated complexities. From an
implementation perspective, the two controllers need to share the system state. This means that
the same integrators need to be controlled by both the Bang-bang and McRuer controller. Further,
when the model switches controllers, discontinuities in system behaviour can arise and care needs
to be taken with simulation integration techniques. The Bang-bang model we use inside the Surge
model is the same as described above, including dead time and undershoot.

4.2 Submodels for the Computer

Control theory provides tools formodelling key aspects of the computer system,many ofwhich are
important for HCI but have been hard to conceptualise. In Figure 1, the input device can be easily
modelled as a position control device (such as a mouse) or a rate control device (such as a joystick).
Effects like sensor noise, sampling rate, input resolution, frictions, and non-linearities (e.g., limits

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

27:12 J. Müller et al.

of joysticks) can be modelled in a natural way. A particularly neglected aspect in HCI literature are
pointing transfer functions4 (notable exceptions include [6, 7] and [2, 48]), which can be modelled
explicitly in this approach. Control theory can also model interfaces with more complex dynamics
than the desktop, such as Bumptop [1], physics-based computer games, or interaction effects like
‘sticky mouse’ dynamics, magnification effects, inertia, fisheye lenses, or speed-dependent zoom-
ing, all of which can be readily represented by dynamic models. Finally, aspects of the display such
as output resolution can also be modelled. Input device, software, and display introduce latencies,
which can be modelled explicitly. While a core strength of control theoretic modelling is that all
these aspects of the computer can be modelled and simulated explicitly, in this article, we concen-
trate on comparing submodels of the human. For this reason, in the remainder of this article the
computer is modelled as a trivial constant gain.

5 THE POINTING DYNAMICS DATASET

We now describe the Pointing Dynamics Dataset of one-dimensional serial pointing with the
mouse. This dataset and models compared in this article are available from http://joergmueller.
info/controlpointing/. Our goals in collecting this data were to (1) cover some commonly studied
aspects of pointing in HCI and (2) achieve a level of high fidelity that allows analysis of pointing
dynamics.
We captured data using a serial pointing task [22], where a user clicks between two one-

dimensional targets of varying size and distance.

5.1 Method

5.1.1 Participants. 12 unpaid participants (mean age 28 years, std. dev. 2.5, 11 male, all normal
or corrected to normal eyesight, all expert computer users) participated in the study. All preferred
to use, and used, the mouse with the right hand, while two were left-handed. They had on average
16.8 (std. dev. 6.1) years, of experience of mouse use, and used a mouse on average for 34.9 (std.
dev. 20.6) hours per week.

5.1.2 Task and Materials. Two one-dimensional targets are displayed. The x-dimension of the
mouse is used to move a white crosshair pointer (1px wide) that only moves horizontally. The
task is to click on the targets serially. The current target is shown in red, while the other target is
shown in grey. A new trial starts as soon as the participant clicks on the previous target. Missed
trials are annotated in the dataset. Distance andwidth are varied between blocks, but kept constant
within each block. One condition of the experiment is a combination of distance and width, where
all distances and widths are in screen (not mouse) coordinates. We cover four different indices of
difficulty (ID) (2,4,6,8) with two different distances. One distance is 212mm, with target widths of
0.83, 3.32, 14.1, and 70.6mm, respectively. The other distance is 353mm, with target widths of 1.38,
5.54, 23.5, and 118mm, respectively. Each combination is repeated for 102 trials, and the order of
conditions is counterbalanced using a Latin square.

5.1.3 Procedure. Participants were asked to adjust table, display, and mouse pad to their pref-
erences. All participants were resting their palm on the mouse pad. Participants were introduced
to the task and completed a training phase for all conditions before starting the experiment, where
they trained for 22 trials in each condition. Participants took a break after each condition, where
they were asked to stretch their limbs and relax briefly. They were asked to adjust the mouse po-
sition in the first trial of each condition and avoid clutching in the remaining trials. Participants

4Note the difference between a pointing transfer function which refers to a changing C:D ratio, and a transfer function

G (s) in the control literature which is a linear, time-invariant system.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

http://joergmueller.info/controlpointing/

Control Theoretic Models of Pointing 27:13

Fig. 2. The apparatus used for the experiment.

were asked to click on the targets as fast as possible while maintaining an error rate of below 5%.
When participants clicked outside the target, a beep tone sounded, and the next target was pre-
sented. Participants were not asked to repeat failed trials. Failed trials do not have a large influence
on our system identification process, and are not the focus of this article.

5.1.4 Apparatus. Data was captured on a Dell Precision 7810 PC with an AOC G2460PQUmon-
itor (24in., 1,920 × 1,080 resolution, 140Hz, no Vsync). The Logitech G502 mouse was used, with no
additional weights on the G240 mousepad. 12,000 DPI resolution was used with a 1,000Hz update
rate. The software used libpointing.org for accessing the raw mouse data via rawHID, instead of
using the mouse data that is provided preprocessed by the operating system. A resolution-aware
constant control-display (C:D) gain, manually tuned to 4.36, was used. OpenGL (glfw3) was used
for low-latency graphics generation. The program was running at approximately 2,000Hz, such
that the frequency of the overall apparatus was limited by the 140Hz of the monitor. Data was
captured using Microsoft Windows 10. The apparatus is shown in Figure 2.
Latency was measured with a Sony DSC-RX10M2 camera at 1,000 FPS. The mouse was hit with

a hard object at high speeds, and the number of frames from impact to pointer motion on the
display was counted. The latency was 25ms.

5.2 Preprocessing

We work directly from the raw dataset—no outliers or errors were removed. In order to facilitate
further analysis, data was preprocessed. We drop the first 20 trials from each condition as partic-
ipants familiarised themselves with the new condition. We downsample the data to 500Hz using
padding of pointer positions. Naive calculation of derivatives (velocity and acceleration) from po-
sition data would greatly increase any small noise in the signal. Therefore, we filter the pointer
position using a Savitzky–Golay filter [49] with a 4th degree polynomial and a window size of 101
samples (200ms). We chose this approach to creating an FIR filter, so that it could also calculate 1st
(velocity) and 2nd (acceleration) derivatives of pointer position, which were added to the dataset.
The effective low-pass bandwidth (to a �3dB cut-off) is 8.79Hz. This focusses the modelling ef-
fort on the most important aspects of human control behaviour, and filters out high frequency
disturbances, and mouse sensor noise.

5.3 Final Dataset

The entire dataset provides mouse movement data for 12 participants in CSV format. The raw
dataset contains timestamp, raw mouse movement (x and �), pointer position on screen (x only),
condition, trial, target position, program status (pause, etc.) and performance data (success, trial

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

libpointing.org

27:14 J. Müller et al.

Fig. 3. Core visualisations of pointing dynamics used throughout this article. On the left, a time series plot
shows how the pointer position changes over time. After an initial reaction time, users move the pointer
towards the target in a large, often ballistic, movement (the surge phase). There might be some overshooting
and gradual corrections towards the target. After the pointer has settled on the target, it rests there for some
time until users click the mouse button. In the middle, a phase space plot plots pointer velocity over position.
The exact shape of the surge phase is clearly depicted in phase space plots. On the right, a Hooke plot plots
acceleration over position. The shown trial is trial 41 of participant P1 for a target width of 0.83mm, typical
for trials with high ID in the dataset.

duration). The processed dataset is sampled at 500 Hz and a smoothed pointer position, velocity,
acceleration, target and timestamp are provided. The size of the processed dataset is 217MB. The
overall error rate (movement endpoints outside the target) is 2.86%. There are two main sources
of error. In some cases, participants accidentally double-clicked on a target. In other cases, they
clicked slightly besides the target. In particular, for very small targets (0.83mm= 3px and 1.38mm=
5px), some participants slipped off the target when they clicked the mouse button. In one extreme
case, one participant reached an error rate of 11% for 0.83mm targets. The median error of all
failed trials over all participants and conditions is 0.82mm. Although participants were instructed
to avoid clutching, the dataset includes a few clutch events. During these events, mouse data is
missing.

6 MODELLING APPROACH: OBJECTIVES AND IMPLEMENTATION

We evaluate the four models (2OL, McRuer, Bang-bang, and the Surge model) against the collected
dataset.

6.1 Visualisations of Pointing Dynamics

A key contribution of control-theoretic models is a deeper understanding of dynamics. To better
gain insight into how pointing dynamics differ among the four models, we utilise five plot types
from control-theoretic literature:
1. Time series plots: In Figure 3 (left), we can see how the pointer position changes over time.

There is an initial reaction time before the pointer starts moving. Then there is a more or less
ballistic phase when the pointer moves towards the target, called the ‘surge’. There might then
be some corrections, overshooting, and oscillations around the target. Finally, after the pointer
has settled on the target, it rests there for some time until the user finally clicks the mouse but-
ton. Time series can be plotted for a single selection, as in Figure 3 (left). In this case they show
the step response of human-computer system, which is the response to a step in target position.
Time series can also be plotted for an entire condition with a number of repeated selections (see
Figure 10).
2. Velocity profiles show pointer velocity plotted over time (see Figure 11).
3. Acceleration profiles show pointer acceleration plotted over time (see Figure 14).

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

Control Theoretic Models of Pointing 27:15

4. Phase space plots are an alternative visualisation of pointer velocity, where velocity is plotted
against pointer position. They present motion trajectories in the state-space of a second-order
system. In Figure 3 (middle), the user accelerates towards the target in one ballistic movement,
which lands in the vicinity of the target. Then follows a series of smaller ballistic movements,
changing into a more continuous final approach to the target.
5. Hooke plots plot acceleration (�-axis) against pointer position (x-axis) (see Figure 3, right).

Guiard [26] gives an introduction to the relationship between pointing behaviours and Hooke’s
law and the use of Hooke plots. Hooke and phase space plots can provide different insight into
dynamics from time-series, and are less susceptible to time-alignment issues.

6.2 Criteria for Model Fitness

To evaluate the applicability of control-theoretic models, it is necessary to assess models against
several objectives. Our primary objective is to model the time series behaviour of pointing; that is,
the movement of the pointer over time from an initial pointer position towards a target.
To assessmodel fitness in this respect, wemeasure the rootmean square error (RMSE) of predicted

pointer position to actual pointer position.5 The difference between these two positions is squared,
and then averaged over the entire duration of the condition. Finally, the root of this value is taken.
Calculated like this, we can assess model error, using metres as the unit of measurement, which is
natural for pointing tasks. A downside of this metric is sensitivity to timing differences – even if
pointing dynamics are predicted with 100% accuracy in terms of position over time, even a slight
difference in motion onset time will lead to large RMSE. RMSE can be used to understand error in
modelling the dynamics of movements, in other words the difference in time derivatives velocity
and acceleration, as well as position. We also compare maximum velocities, accelerations, and
decelerations.
In order to compare details of the pointer trajectory, we use step response characteristics. The

pointing task corresponds to the step response in control theoretic terms, and we can use a variety
of metrics to characterise it. Overshootmeasures by how much the centre of the target is overshot,
in percent of the distance from initial position to target centre. Rise time measures how long it
takes for the pointer to travel from 10% to 90% towards the target. This is a classical metric for
steepness of the response. Settling time measures how long it takes for the pointer to enter the
target such that it does not exit the target before the click. Peak time measures how long it takes
for the pointer to reach the largest overshoot.
There are many aspects of user behaviour that we are interested in that are difficult to quantify.

Therefore, it is also important to judge model behaviour against user behaviour regarding whether
the model can reproduce qualitative phenomena. This is done in particular by comparing the time-
series, phase space, and Hooke plots qualitatively.
Finally, Ockham’s rule suggests that models with fewer parameters are preferable, if they

can accurately predict pointer behaviour. However, we prioritise plausibility over the number of
parameters.

6.3 Model Implementation

We implement all models in Simulink6 as block diagrams. Simulink is a Matlab extension that
allows simulation of linear and non-linear systems. The second-order lag is a linear time-invariant
(LTI) system. Matlab allows implementation of LTI systems in state-space form, or as transfer
function. These systems can be simulated very efficiently using the lsim command. However, for

5See Chapters 3 and 4 of [42] for a detailed discussion on criteria for manual control models.
6Simulink, Matlab Release version R2016a, The MathWorks, Inc., Natick, Massachusetts, United States.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

27:16 J. Müller et al.

consistency with the non-linear systems, we decided to model also the 2OL in Simulink using two
integrators, three gains, and a dead time.
McRuer’s model is also a LTI system.We implement the differential equation as described in [11],

as a block diagram in Simulink. In order to avoid infinite derivatives at step changes of the input
signal, we filter the input with a low pass filter with transfer function G (s) = 1

0.01s+1 (this has a
�3dB cut-off at a frequency of 100rad/s = 15.9Hz).
The Bang-bang model is a non-linear model. We implement it as a Matlab function within a

Simulink model that gets evaluated at every simulation step. The Matlab function creates an ac-
celeration signal that feeds into two integrators. The model receives the target signal after a dead
time, and calculates the error to the current pointer position. The Matlab function checks whether
the error is larger than 5 mm, and if so, generates an acceleration–deceleration Bang-bang pulse.
The model does not land exactly at the target, but undershoots by a fraction undershoot. Until this
Bang-bang is finished, the function does not process the error.7

Costello’s Surge model combines the McRuer and Bang-bang models and is more difficult to im-
plement. The principal difficulty is that when the model switches between the submodels Bang-
bang and McRuer, the state, consisting of pointer position and velocity, must be preserved. Thus,
the two submodels need to share the two integrators that represent the state. This excludes the use
of transfer functions or state-space representations, which maintain state internally. The model is
simply a combination of the McRuer and Bang-bang models with a switch that switches control of
the integrators to the McRuer model when the Bang-bang model is not active (within �x of the tar-
get position and below �� absolute speed), and to the Bang-bang model otherwise. Discontinuities
in model behaviour can arise at the instance of switch of submodel.
In order to simulate, the models need solvers for the differential equations they represent.

The discontinuous character of the switching Costello and Bang-bang models caused problems
with variable step solvers. Therefore, we chose a conservative, fixed-step solver (ode5, Dormand–
Prince) with a fixed step width of 1ms for all models.

6.4 System Identification Process

The 2OL model has four free parameters (massm, spring constant k , damping factor d , and dead
time �). McRuer’smodel has five free parameters (TI ,TL,Tn ,�e ,Kp). The Bang-bangmodel has three
free parameters, gain�, undershoot and dead time � . Costello’s Surgemodel has an additionalmodel
switching threshold, resulting in nine free parameters. These parameters need to be adjusted to fit
the experimental data. This process is called system identification.
There exists a comprehensive literature on system identification with a wealth of methods

specialised for identifying specific classes of systems [32]. For our study we wanted to use the
same system identification technique for all compared models. Because Costello’s model is a non-
linear switching controller, its parameters are difficult to identify using classical system identifi-
cation techniques. Therefore, we resorted to a very general technique based on simulation and
optimisation.

7Two practical pitfalls appear with the Bang-bang model at the instant of step changes. The first is that the simulation

environment only executes the code at discrete simulation steps. If these steps do not coincide with the instances where

the target changes (step), the simulation interpolates the target at the simulation step. Thus, the model might execute a

bang with an interpolated (much smaller) error that lands short of the target. The second is that at step changes, the error

velocity is infinite. Because the model uses the error velocity to compute the optimum step size, it overshoots the target.

As a practical technique to circumvent both problems, we only execute a bang if the derivative of the target position is

close to 0, i.e. the target does not move.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

Control Theoretic Models of Pointing 27:17

In this technique, an optimiser aims to identify the parameter set that minimises the error be-
tween the model and experimental data.8 The objective function determines which aspects of user
behaviour the models are fit to. As objective function we use the sum squared error (SSE) of po-
sition, velocity and acceleration, weighted equally. We found that for the linear models, 2OL, and
McRuer, regardless of the choice of optimiser (search-based, gradient descent), the process reliably
converges to the same parameter set. For these models, we used the Simplex search method as im-
plemented in the Matlab fminsearch function, because of its efficiency. However, for Costello’s
model, many methods are susceptible to becoming stuck in local optima, resulting in a large vari-
ety of parameters for different optimisation methods. The Pattern search method showed to most
reliably converge on the best parameter set. Therefore, we resorted to using a Pattern search us-
ing a Latin hypercube search method for the Bang-bang and Surge models. We found the initial
values to have negligible impact on the result. Therefore, we ran system identification once on a
different data set, and set the initial values for the optimisation equal to the average values of the
preliminary identification step.
We are initially interested in how well manual control models can represent pointing behaviour

of individual participants in individual conditions. We therefore identify model parameters and
evaluate model parameters for each set of participant, distance, and width individually. We split
the experimental data into a training and a test set. For each condition (combination of distance
and width), we use the second half of trials for training, and the first half of trials for evaluation.

6.5 Analysis of the Surge Movement

Undershoot has negligible impact on RMSE, but is an important and interpretable feature of our
models, so it is therefore not identified through the optimisation process explained above, but
calculated as follows. To identify the surge movement we analyse the acceleration of the pointer.
There are different possible definitions of the end of the surge period.We chose to end it when there
was a zero crossing of acceleration, after the deceleration phase. From the start of the movement,
we find the first point when the deceleration of the pointer is below �1ms�2, and then from that
point, we find the next zero crossing of the acceleration and define this as the end of the surge.
We validated this heuristic on our data, and it identifies robustly the parts of the movement that
constitute the first sub-movement (surge).

7 ANALYSIS OF POINTING DYNAMICS

The participants exhibited different movement strategies, with some participants having a more
ballistic, open-loop initial surge and others having a more closed-loop surge with corrections in
the deceleration phase.
Figure 4 provides an overview. It shows time series, phase space, and Hooke plots, for all par-

ticipants for a single condition (W = 1.38 mm, D = 353 mm, ID 8). While there is considerable
variability, clear patterns emerge. Our first approach to explore the sources of variability is to plot
the data for each participant. Figure 5 shows this for the phase space plot.

We observe two different strategies, exposing a large source of variability.

(1) Some participants have one big surge movement of relatively symmetric form that ends
fairly close to the target. This indicates a ballistic surge without much correction once the
motion is initiated (open-loop strategy). This is cleaner for the plots on the left.

(2) Other participants accelerate, but then have a flatter coasting trajectory towards the tar-
get. This indicates that they are not executing the first surge motion in a purely ballistic

8We use Simulink Design Optimisation for computations.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

27:18 J. Müller et al.

Fig. 4. An overview of dynamics in the task of pointing at 1.38mm targets at 353mm distance (ID 8). Left:
Time series; Middle: Phase space plots; Right: Hooke plots. For clarity, failed trials are not shown.

manner but rather correct during the movement to try to land closer to the target (closed-
loop strategy).

All participants cover the remaining distance with some smaller (ballistic) movements and finally
some more gradual homing in towards the target.
Figure 6 shows the Hooke plots of all participants. All plots have a clear N shape, characteristic

for the high ID of the task. We make two observations. First, for some participants the acceleration
and deceleration phases are also relatively symmetric, indicating an open-loop strategy. Second,
for others, the deceleration is less steep than the acceleration, indicating a closed-loop strategy.
Naturally, there is more variability of the endpoint of the surge movement than of the start point,
since the target is small.
From Figures 5 and 6, we see that participant P1 had average phase space and Hooke profiles,

so we use P1 as an example of an ‘average’ participant behaviour throughout the article. Figure 7
shows the phase space and Hooke plots of participant P1 for all conditions, sorted by target width.
It can be seen that the ID has a strong influence on the shape of the phase space plot. The plots
for ID 2 are qualitatively different from higher IDs, showing the oscillating nature of the move-
ment. For ID 2, movement is oscillating between the two targets, and the target is always reached
within a single submovement. The deceleration phase of the previousmovement continues into the
acceleration phase of the next movement, without the acceleration dropping to zero. This results
in an oval phase space plot and a straight-line Hooke plot. This phenomenon has been reported
by [3, 37]. The higher the ID, the more undershooting occurs, and the higher the number of sub-
movements to reach the target. For higher IDs, the Hooke plot has an N shape, and the individual
trials are clearly separated. Overall, there is more undershooting than overshooting of the target.
For the same ID, the conditions with different distance and target width have similar phase space
and Hooke plots, with differences mainly in scale. Conditions with smaller distance have a lower
velocity for the same ID.

7.1 Surge Duration and Reaction Time

Figure 8 shows an analysis of parameters of pointing dynamics. The top left plot shows the points
where the participants clicked (endpoints) relative to the centre of the target, grouped by tar-
get width. Naturally, with larger target size, the variance of endpoints increases. More interest-
ingly, in the oscillatory case with ID 2, the median endpoint is not close to the target centre.
Instead, participants preferred to click short of the target centre, which decreases the distance
of their movement. The top right plot shows the reaction times of all participants and all trials
grouped by ID. We define ‘reaction time’ as the time from the previous mouse click until the
pointer has moved more than 5mm from that position. Reaction times for ID 2 are slightly lower

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

Control Theoretic Models of Pointing 27:19

Fig. 5. Phase space plots of all 12 participants for pointing on 1.38mm targets at 353mm distance (ID 8).
The plots are sorted by deceleration slope from left to right. Movements on the left are more ballistic, with
a relatively symmetric acceleration and deceleration slope. Movements on the right have a less steep de-
celeration, indicating that the participants are correcting their movement while they are decelerating (c.f.
Figure 6). There is considerably more undershooting than overshooting. Finally, the spring–mass properties
of the human hand sometimes lead to small ‘loopings’ when the mouse stops (e.g., P5). For clarity, failed
trials are not shown.

(median = 78ms), but for higher IDs reaction times are similar (median between 102 and 108ms).
This might be explained by the fact that for ID 2, the acceleration that decelerates the previous
movement is directly used to accelerate the next movement. Because acceleration is related tomus-
cle force, the force is already built up at the start of the trial for ID 2. Another possible explanation
is that the cognitive overhead of motion planning is lower for ID 2 than for higher IDs.
The bottom left plot shows the proportion of trial time spent in the surge movement grouped

by target width. It can be seen that, with increasing target width, the proportion of the trial time
that is spent in the surge movement increases. For very small targets (0.83 mm), less than half
(median = 34.6%) of the trial time is spent in the surge movement. The majority of the time is spent

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

27:20 J. Müller et al.

Fig. 6. Hooke plots of all 12 participants for pointing on 1.38mm targets at 353mm distance (ID 8). The order
of participants is the same as in Figure 5. For participants on the left, the Hooke plot has a more symmetric
N shape, while for those on the right, the deceleration is less steep than the acceleration. Plots on the left
show higher accelerations than plots on the right.

in corrections. With very large targets (ID 2), the entire trial time is spent in the surge movement.
The bottom right plot shows the proportion of the distance to the target that is covered by the surge
movement. With 0.83mm targets, participants undershoot the target considerably, with the surge
covering median = 95.5% of the distance. As the target size increases, the surge ends closer to the
target centre. At a target width of 23.5mm, the surge covers a median = 99.3% of the distance. With
even larger targets, participants stop clicking in the target centre, and the surge undershoots the
target centre more. With 118mm targets the surge covers median = 94.2% of the distance. There is
a strong trend towards undershooting rather than overshooting the target, with the median surge
endpoints undershooting for all target widths.

8 MODELLING RESULTS

This section examines modelling results, comparing 2OL, McRuer, Bang-bang and Surge. The iden-
tified model parameters are summarized in Table 2. As shown below, there are large differences

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

Control Theoretic Models of Pointing 27:21

Fig. 7. Phase space and Hooke plots by target width for participant P1. Plots for the same ID look similar,
only at different scale. Note how for low IDs, the deceleration continues into the acceleration of the next
trial, without the acceleration reaching 0.

in model behaviour for index of difficulty (ID = log2 (D/W + 1)) 2 versus IDs 4, 6, and 8, and in
some cases we analysed these separately. To compare model fit, we use RMSE as reported above.
We plot RMSE in Figure 9 using 95% confidence intervals for comparison.

8.1 Position

Figure 9 (left column) shows the accuracy of the four models in predicting the position of the
pointer over time (top for IDs 4, 6, and 8, and bottom for ID 2). Bang-bang shows best model fit
for position and McRuer the worst. Differences are small, however. The median RMSE over all
participants and all conditions is 8.8% for 2OL, McRuer 9.1%, Bang-bang 8.4%, and Surge 8.9%. To
estimate the variance within the data, we have computed the mean of all trials in the test set (mean
trial) for each condition. The mean pointer position is calculated relative to time since trial start.
The median RMSE of the mean trial is 6.8%.
We also split the RMSE between the dynamic phase (when the participants’ pointer is not within

the target) and the static phase (when it is within the target). In the dynamic phase, median RMSE
of 2OL is 9.9%, McRuer 10.1%, Bang-bang 9.5%, and Surge 10%. In the static phase, median RMSE
of 2OL is 4%, McRuer 5.2%, Bang-bang 2.8%, and Surge 3.1%. Figure 10 shows the actual pointer
position and predicted pointer position over time for the four models. All models can predict the
participant’s pointer position well. Because all models have a dead time, they can model the re-
action time (the pointer starts moving a small time after the target has switched) of the human,

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 27. Publication date: August 2017.

