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Abstract—The research on indoor localization has received
great interest in recent years. This has been fuelled by the
ubiquitous distribution of electronic devices equipped with a
radio frequency (RF) interface. Analyzing the signal fluctuation
on the RF-interface can, for instance, solve the still open issue
of ubiquitous reliable indoor localization and tracking. Device
bound and device free approaches with remarkable accuracy
have been reported recently.

In this paper, we present an accurate device-free passive
(DfP) indoor location tracking system which adopts channel
state information (CSI) readings from off-the-shelf WiFi 802.11n
wireless cards. The fine-grained subchannel measurements for
MIMO-OFDM PHY layer parameters are exploited to improve
localization and tracking accuracy. To enable precise positioning
in the presence of heavy multipath effects in cluttered indoor
scenarios, we experimentally validate the unpredictability of
CSI measurements and suggest a probabilistic fingerprint-based
technique as an accurate solution. Our scheme further boosts
the localization efficiency by using principal component analysis
(PCA) to filter the most relevant feature vectors. Furthermore,
with Bayesian filtering, we continuously track the trajectory
of a moving subject. We have evaluated the performance of
our system in four indoor environments and compared it with
state-of-art indoor localization schemes. Our experimental results
demonstrate that this complex channel information enables more
accurate localization of non-equipped individuals.

I. INTRODUCTION

People assign a significant share of their time indoors (over
80%) [1], covering shopping in leisure time or attending
meetings during office hours. Accurate information on mo-
bility patterns and movement paths would enable improved
building and path management and also help to advertise
relevant information at right places. However, in most practical
purposes, it can not be assumed that all subjects to be tracked
can be equipped in advance, as this would require considerable
resources. Recent research on RF-based indoor localization,
however, has let to promising results. In these approaches,
fluctuations in the ubiquitously available RF-Signals are ex-
ploited for localization and tracking purposes.

Traditional approaches require transceiver-equipped sub-
jects and localize the device rather than its wearer by translat-
ing the observed changes and fluctuation in received signals
to a coordinate system.

Examples are FM-based indoor localization [8], GSM-based
techniques [26] as well as Bluetooth [13] or WiFi-based

systems [4]. The reported localization accuracy of state-of-art
device-bound indoor systems is less than 0.5m [32] [33] with
the adoption of CSI information, which meets the demand of
most applications.

The main disadvantage of such approaches is, however, that
all require a cooperating and equipped subject to be localized.
However, in most practical purposes, it can not be assumed that
all subjects to be tracked can be equipped in advance, since this
would require considerable resources. A possible alternative
is device-free passive (DfP) indoor localization [52], [7], [49],
[31]. In DfP indoor localization, fingerprint-based techniques
are widely adopted, since the unpredictability of radio prop-
agation due to multipath effects renders the alternative of
analyzing RF signals challenging. Among these solutions, the
Nuzzer system [31] builds an offline radio map by modeling
the RSSI of a data stream from an AP-MP pair to follow
Gaussian distribution and assuming all the data streams to be
independent at each predefined training location. In the online
phase, a location is determined whose RSS samples match
closely with the passive radio map. PC-DfP improves the
accuracy by adopting linear discriminant analysis or quadratic
discriminant analysis. Channel state information (CSI) recently
can be aggregated from a commodity Intel 5300 Network
Interface Card in the granularity of OFDM subchannels, a
much finer grained channel indicator than RSSI. By adopting
the raw CSI measurements, a recent work, Pilot, shows that the
correlation feature of CSI samples can be leveraged to distin-
guish between empty environment and presence of a subject in
the area of interest, and further determine the location of this
subject. Thanks to the fine-resolution of CSI readings, Pilot
outperforms state-of-art RSSI-based indoor schemes, such as
Nuzzer and PC-DfP. However, for one CSI reading from a
packet, only one correlation value is calculated in Pilot, which
does not take full advantage of the characteristics in frequency
and space domain.

In this study, we further advance CSI-based indoor local-
ization by adopting every single subchannel amplitude of CSI
measurements and propose a single-stage direct classification.
This is in contrast to Pilot, which utilizes the “correlation”
between multiple CSI readings in a two-stage process. The
contributions of this paper are

a) a comprehensive analysis of the characteristics of CSI
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change induced by human presence.
b) a computationally efficient single-stage approach for in-

door localization and tracking which takes full advantage
of information provided by CSI measurements from
commodity 802.11n WiFi wireless cards. The approach
is computationally efficient and robust against high-
dimensional CSI vectors due to PCA-based dimension-
ality reduction.

c) a large case study covering four diverse typical indoor
spaces in two different buildings

d) a performance comparison to the state-of-art indoor
positioning solutions Nuzzer [31], PC-DfP [50] and
Pilot [46].

e) Kalman-filter and Particle-filter based approaches to
track a moving target and a discussion on the adapt-
ability of these two Bayesian filters to distinct walking
patterns.

f) the Cramér-Rao Bound (CRB) on the proposed track-
ing system, which is regarded as the benchmark for
asserting the performance of KF and PF based tracking
algorithms.

This paper is an extension of our work presented in [34].
In particular, we have significantly revised and improved the
analysis, conducted a more general experimental study in
4 diverse environments, added performance metrics for the
analysis, compared the results achieved to two additional
state-of-the-art algorithms, namely Nuzzer and PC-DfP and
improved the overall discussion on the topic. Finally, and
most significantly, our current system is able to continuously
track a moving target. This is possible by the adaptation of
Kalman-filter and Particle-Filter-based approaches. Both have
been concisely investigated and are discussed in depth in this
article.

The rest of this paper is structured as follows. The related
work and preliminary studies are detailed in section II and III.
In section IV, we describe the implementation of our proposed
CSI-based passive device-free indoor localization system. In
section V, we investigate the feasibility of tracking a moving
person using Bayesian filtering. We detail the experiment setup
in section VI. The evaluation results are presented in sec-
tion VII. In Section VIII, related issues and possible solutions
are discussed. Finally, section IX draws our conclusion and
discusses future work.

II. RELATED WORK

Recently, location estimation in indoor environments has
gained a great deal of attention by researchers, due to the
increasing demand of location-based services and applications.
While a large range of information sources have been utilized,
such as video [20], magnetometers [22], and magnetic resonant
coupling [27], all of which suffer from the system cost and
installation effort. In this study, of particular interest are radio
frequency (RF) based solutions, as RF-channel information is
a ubiquitously available source, thereby mitigating installation
cost. Many systems using RF signals have been designed
for precise indoor positioning from traditional device-bound
solutions. In these, the target is an RF-transceiver equipped
subject [31], [50], [25], [46]. We detail these two categories of

localization systems in the following. Furthermore, we survey
a plethora of methods for tracking the trajectory of a moving
person using RF sources.
A. Device-bound Localization

Device-bound localization systems deal with the problem
of positioning an entity equipped with an RF-emitting device.
Researchers working in this direction propose to use different
wireless techniques ranging from Infrared (IR) [40], Ultra-
sonic [18], RFID [24], Bluetooth [13] or WiFi [4], [44], [6],
[48]. Among these, WiFi signals are most widely adopted due
to popularity and low cost. For example, as described in [4],
the proposed RADAR system first builds an a priori fingerprint
map by gathering the WiFi RSS measurements at different
locations in the training phase, and then deduces the location
by minimizing the Euclidean distance between online RSS
measurements and corresponding measurements in the radio
map during the test phase. The accuracy can be further im-
proved by using CSI measurements from revised commodity
WiFi devices and clustering techniques for localization [32]
[33], where experimental evaluation asserts error distances
smaller than 0.5m. Recently, Xie et al. [47] and Vasisht et
al. [38] released new tools, Splicer and Chronos respectively,
both of which can measure the CSIs from a much wider
spectrum band and adjust the errors of amplitude and phase of
the gathered CSIs, further improving the precision of indoor
localization. Except for the utilization of fine-grained CSI
measurements, in order to improve the positioning accuracy,
some recent studies propose to either exploit other extra
wireless signal measurements [47] or to design a novel scheme
for accurate fingerprint generation [44]. Apart from accuracy,
efficiency of location estimation is of significant importance
for a positioning system as well. To this end, Cai et al. [6]
introduce CRIL, which can quickly adapt to the changes of
dynamic environments and thus improve the efficiency of an
indoor localization system while preserving the localization
accuracy.
B. Device-free Localization

The assumption that a device is always carried by a subject
is not realistic. A device-free system was first introduced by
Youssef et. al [51] for the localization of a non-equipped
entity. In recent years, various RF device-free localization
schemes have been proposed [51], [49], [46], [42], [43], [19].
These schemes mainly constitute fingerprint-based and model-
based solutions. Model-based algorithms use statistical models
to establish a mathematical relationship between the radio
signals and the location in indoor environments and thus do
not require the laborious effort to construct and maintain
the radio map. However, in most cases, due to the cluttered
indoor environments, an accurate model cannot be built to
capture the complicated relationship between radio signals and
coordinates of indoor spaces. On the other hand, fingerprint-
based algorithms do not assume any prior knowledge of the
relationship between RF signals and positions while requiring
considerable effort to construct and calibrate the radio map.
We focus on the most relevant systems below.

Fingerprint-based indoor localization systems require to
construct an offline radio map, and then compare it with the
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collected online measurements to estimate the location of the
targeted person [51], [49], [46], [31]. Seifeldin et. al [31]
present an RSS-based large-scale device-free localization sys-
tem, Nuzzer, by analyzing the human-induced RSS statistics
with probabilistic techniques. It presumes the RSSI samples of
each AP-MP stream to be Gaussian distribution. Furthermore,
Xu et. al [49] employ linear discriminant analysis from RSS
to recognize different cells of locations, which significantly
mitigates NLoS effects and thereby achieves better accuracy
in cluttered indoor environments. Furthermore, to ease the
effort of building a radio map, a transferring positioning model
based device-free system is proposed in [25], which can collect
training measurements in a certain indoor environment and
apply them into other different indoor spaces with the aid of
floor plans. Also, some other studies try to construct radio
maps using simultaneous localization and mapping (SLAM)
approaches [14], [17]. In order to better characterize the
influence of the target on wireless signals and extract suitable
statistical features, Wang et. al [39] propose a deep learning
approach to automatically learn discriminative features. With
the evolution of WiFi PHY layer techniques, Xiao et al. [46]
initially estimate the position of a passive entity from CSI-
related patterns. On observing that CSI samples are susceptible
to presence of a subject and immune to temporal variance,
the authors propose the Pilot system to utilize correlations of
CSI from 802.11n wireless cards as the discriminant feature
to determine the location of passive subjects by a two-
stage detection approach. Since CSI measurements provide
more accurate channel information, the reported localization
precision is dramatically increased compared to that achieved
by other state-of-art RSS-based schemes. While the correlation
feature enables the classification among different locations, it
only represents the temporal characteristics of motion-induced
variance of CSI samples. Furthermore, in Pilot, an abnormal
environment should be detected by determining whether the
correlation between the current CSI sample and normal CSI
readings is smaller than a manually selected threshold before
triggering the second-stage localization process. In this work,
we propose a probabilistic fingerprint-based DfP localization
scheme to analyze human-induced variance of CSI measure-
ments. Differing from Pilot, we model the CSI change vector
as a multivariate Gaussian distribution. Our system is further
capable of tracking the trajectory of an individual by the
adoption of Bayesian filtering techniques.

In terms of model-based localization systems, an approxi-
mate model is required upon which the localization algorithms
can map the changes of RF measurements to the location of
a targeted person [42], [43], [19]. For instance, Wilson and
Patwari utilize Radio Tomographic Imaging (RTI) on the two-
way RSS variance [42] or RSS mean fluctuations [43] between
nodes arranged in a rectangle surrounding the monitored area
for robust localization. To reduce the density of RF nodes, they
develop a novel solution using RF transceivers in motion [19].
Recently, Kaltiokallio et. al [21] propose to model the RSS
measurements of the indoor radio propagation channel as a
three-state process, which can further increase the localization
accuracy. Instead of leveraging RSSI measurements as raw
source, Qian et. al [28] introduce a novel system Widar, which,

by modeling the relationship between the CSI measurements
and the user’s location and velocity, can yield a decimeter-level
accuracy.
C. Device-free Tracking
Regarding mobility tracking systems, a generic approach is to
exploit the multiple measurements in time series to reduce the
positioning errors iteratively [12], [9]. In terms of device-free
tracking systems, several solutions have been proposed [42],
[53], [5]. For instance, in [42], [53], the authors exploit the
Kalman filter for tracking a single person using the location
results from Variance-based RTI and subspace Variance-based
radio tomography respectively. Furthermore, they extend their
work to track multiple persons [5]. Instead of using Kalman
filter, the problem of tracking multiple persons is formulated as
a data assignment problem (DAP) and solved by minimizing
the total cost of DAP.

III. BACKGROUND AND MOTIVATION

A. Channel State Information
In the standard of the 802.11 protocol, RSS is defined as

an indicator for the quality of a link, which characterizes
the overall received signal power in the channel. With the
wide adoption of multiple input multiple output-orthogonal
frequency-division multiplexing (MIMO-OFDM) PHY tech-
nology in many wifi-class devices, RSS is no longer regarded
as an accurate metric, since the data streams are transmitted on
various orthogonal subchannels independently and the quality
of these subchannels differs one by one. In contrast to RSS,
CSI contains link information in the granularity of a single
MIMO-OFDM subcarrier. Therefore, it holds the potential for
more accurate indoor localization. With the release of the
CSI tool for commodity WiFi cards by Halperin et. al [16],
we can aggregate both the amplitude and phase information
for each MIMO-OFDM subcarrier. Let t, r be the number
of transmit (TX) and receive (RX) antennas, and w the
total number of subcarriers for a TX-RX pair. Based on the
functionality of the CSI tool, a CSI vector can be obtained
per packet, containing t · r · w values of subchannels as
C = {Cmi,k}, i ∈ [1, t], k ∈ [1, r], m ∈ [1, w], for each

value Cmi,k, it reflects both amplitude and phase of the RF
signal Cmi,k = |Cmi,k|ej sin θ modulated at the subchannel m from
transmit antenna i to receive antenna k.

The received signal strength (RSS) is a practical metric for
the quality of a link, which characterizes the overall received
signal power in the channel. As shown in Figure 1, RSS
estimation can be acquired from the overall received channel
power (e.g 8-bit information in WiFi 802.11 standards). With
the adoption of OFDM modulation, as depicted in Figure 1, the
CSI estimation can be obtained from reference signals (RSs)
transmitted over various subcarriers. Thus, in contrast with
RSS, it can represent the link quality in the granularity of
subcarriers independently.

B. Unpredictable Nature of CSI in Indoor Environments
It is of great importance to know the sources of errors and
biases to design a robust indoor localization system. Regarding
the RSS-based solutions, various experiments demonstrate that
multiple effects are of concern for the location precision. For
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Figure 1: Flow diagram of signal processing in 802.11n
standard

instance, in [49], Xu et. al have a subject stand within the Line-
of-Sight (LOS) path between a single channel TX-RX link in
a cluttered indoor environment and find that the blocking of
the LOS path induced by humans may not lead to a decrease
in RSS, which demonstrates the unpredictability of mulitipath
fading induced bias. In the context of MIMO-OFDM, since
the RSS is no longer a reliable indicator for the entire channel
quality [16], in this section, we investigate the challenges
posed by CSI measurements in solving the location estimate
problem of cluttered environments. As aforementioned, both
amplitude and phase information can be attained from CSI
readings. Regarding the phase information, as also mentioned
in [54], [47], [45], [29], compared with amplitude information,
it contains significant random noise and, without phase cor-
rection and sanitization, cannot be leveraged for RF sensing
applications. Therefore, we solely adopt the CSI amplitude
measurements to design our indoor localization system.

To verify the multipath fading of subchannels, we carry out
experiments in a typical domestic home and install a transmit-
ter (access point) and a receiver (laptop) within a distance of
4 meters at a height of 1.4m from the floor. As we need to
explore the signal fluctuation of CSI measurements before and
after blocking the LOS path, at first, the CSI measurements
are recorded when no subject is present in the room. Then, we
gather CSI readings while a subject stands in or out of the LOS
path and extract the average values of non-subject occupied
CSI measurements from them. We coin the term of destructive
(or constructive) probability to refer to the probability that
the amplitude of the CSI measurement from a subchannel
decreases (or increases) induced by the presence of a subject
in the area of interest. Figure 3 illustrates the destructive and
constructive probability of the CSI measurement changes from
all 30 subchannels respectively when a subject blocks the LOS
path. From this figure, we observe that the human-induced CSI
change in LOS areas can be destructive as well as constructive.
More specifically, for two certain subchannels, Figures 2a,
and 2b show the histograms of the CSI amplitude change from
subchannel 3 and 14 in both LOS and NLOS areas. From
Figure 2a, we notice that the amplitude of CSI measurements
in subchannel 3 decreases with probability of over 90% due
to the blocking of the LOS path, while for subchannel 14, the
strength of the signal attenuates with a probability smaller
than 60%. From these figures, we conclude that the CSI
measurements observed over diverse subchannels change in
an unpredictable manner. Therefore, rather than employing
a deterministic model of CSI measurements to estimate the
distance, we propose to exploit a probabilistic approach for
location discrimination.
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Figure 2: Amplitude change of CSI readings in different
subchannels
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Another underlying assumption of our system is that the
height of the tracking subjects is higher than that of radio
devices and resilient to different persons. To validate this, we
select two different representative subjects (a man with height
of 1.8m and a woman with height of 1.5m) to conduct the
identical experiments with the setup. Figure 4 quantifies the
constructive probability of the CSI measurement changes from
all 30 subchannels for different persons at various deployment
height of AP and laptop, which validates our assumption.
These results are due to fewer number of impacted signal
paths once the height of an subject is lower than that of radio
devices. Likewise, subjects with various height experience
similar signal variation when the placement of radio devices
is below the height of them.

IV. SYSTEM DESIGN

A. Problem Formulation
Here, we formulate the indoor localization problem and define
the terms and variables used in our system. Let us consider
a cluttered indoor environment, which is rich of multipath
propagation. We virtually divide the space into a set of small
square cells with the same size, say a set K of K cells. Within
the area of interest, we deploy m transmitters (TX) and n
receivers (RX), forming a set L of L = n ·m TX-RX links.
We denote L-dimensional CSI measurement space as C. In
C, each value is L-dimensional vector, where every element
is a CSI reading vector from a TX-RX link. As mentioned in
Section III-A, we refer to this CSI reading vector as C.

During the training phase, a CSI measurement fingerprint
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map is built. To construct it, we have a subject stand at
all K cells and, at each cell k, we collect a number of
T CSI readings from all L links, forming the fingerprint
map, Cmap. Concretely, let Ctk(l) be the t-th CSI reading
vector collected at cell k from the l-th link. Hence, The
collected T CSI readings at cell k from the l-th link can
be presented as Ck(l) = {C1k(l), C2k(l), ..., CTk (l)}. For the
CSI readings from all L links at cell k, it can be presented
as Ck = {Ck(1), ...,Ck(l), ..., Ck(L)}. Therefore, the stored
CSI readings in the fingerprint map can be represented as
{C1,C2,...,CK}= Cmap.

During the online test operation, when a person is present
in the monitored area, we gather a CSI reading vector without
the cell number, say C test. Therefore, the location problem
becomes, given a CSI measurement vector received in the
online phase, C test = C, we want to find a cell y which
maximizes the probability P (Y = y|C test = C) using the prior
knowledge in the radio map, Cmap.
B. Probabilistic Method for Location Discrimination

As aforementioned, due to the random and unpredictable
characteristics of CSI measurements, we propose a probabilis-
tic fingerprint-based indoor localization system. More specific,
we adopt Bayes estimator for the positioning problem. Since
Bayes classifier is derived based on the Bayes’ theorem, the
conditional probability that a fingerprint C test = C collected
during the test phase belongs to a certain cell Y = y is given
by

P (Y = y|C test = C) =
P (C test = C|Y = y) · P (Y = y)

P (C test = C)
, (1)

which is called posterior distribution. Obviously, the loca-
tion discrimination problem of our system is to find the cell
which maximizes the probability of posterior distribution, say
ŷ = argmax

y
P (Y = y|C test = C).

Since we suppose that the targeted person resides within
the area of interest without any biased place, we can safely
consider that each location y is equally likely, and thus the
probability of P (Y = y) is the same at every cell1. Also,
let P (C test = C) be identical for all possible locations y, as
we suppose we gather fingerprints across all the cells with
the same possibility during the test phase. To find the optimal
solution for the posterior distribution P (Y = y|C test = C)
is equivalent to having the maximum likelihood estimate of
P (C test|Y ). More specifically, the predicted cell for the location
of the subject is therefore ŷ = argmax

y
P (C test = C|Y = y).

As addressed in existing researches (cf. [10]), we model the
amplitude of every CSI reading at location y to approximately
follow a multivariate Gaussian distribution with mean µy and
common covariance matrix Σ. Therefore likelihood estimate
of P (C test|Y ) is described mathematically as
P (C test = x|Y = y) =

1√
(2π)p|Σ|

e−
1
2 (x−µy)

′
Σ−1

(x−µy),

(2)
where p = L · t · r · w.

To estimate the parameters µy and Σ, we utilize the
fingerprint map collected at training phase. The process is

1If we have the prior knowledge about the user profile, the probability of
P (Y = y) is a constant variable and can be used in Equation (1).

detailed as follows. At first, we convert Equation (2) to an
equivalent description in the log-scale as

δ(x|y) = −1

2
ln(|Σ|)− 1

2
(x− µy)

′
Σ−1(x− µy)− y

2
ln(2π).

(3)
Given the set of T training CSI readings at cell y in the
fingerprint map, Cy = {C1

y, C
2
y, ...,C

T
y }, we assume each CSI

measurement, Cty, t ∈ [1, T ], to be i.i.d2. Then, taking the
derivative w.r.t. µy of log-likelihood function (Equation (3))
and setting it to 0, we obtain

µ̂y =
1

T

T∑
t=1

Cty.

Similarly, we take its derivative w.r.t. Σ−1 of (Equation (3))
and let it be 0, leading to

Σ̂ =
1

T

T∑
t=1

(Cty − µ̂y)(Cty − µ̂y)
′
.

Therefore, using the collected fingerprint map, Cmap, the CSI
readings at cell y, Cy can be represented by a multivariate
Gaussian distribution with mean µ̂y and covariance matrix Σ̂.
In the test phase, using the collected CSI readings C test and
substituting the two parameters µ̂y and Σ̂ into Equation (2), we
can calculate the probability of generating these CSI readings
at cell y. Once the system yields the probability of C test at every
cell, the cell in which we achieve the optimal probability, say
ŷop, is exactly the estimated location of the subject.
C. Dimensionality Reduction

To apply indoor location systems into some practical large-
scale scenarios, one main concern that pose a challenge in
positioning a subject in real time is the high dimensionality of
the data set. A large number of solutions have been proposed
for the raised issue in RSS-based indoor localization systems
(cf. [50], [11]). Since we leverage CSI measurements as the
source signals, which has a much higher dimension than RSS
indicators, so that it is severer to solve the problem that the
high dimensional CSI readings bring about.

In this study, we adopt principal component analysis (PCA)
to project every CSI reading in the data set to a lower
dimensional subspace. In particular, assuming that we would
like to reduce each p-dimensional CSI measurement to a q-
dimensional vector (q < p), we require to choose the q
dimensionalities with largest variances and ignore the other
less significant ones. These resulting q-dimensional features
are called principal components.

For our system, we take the following procedures to cal-
culate the q principal components. At each location y, we
have T p-dimensional vectors, Cy = {C1

y, C
2
y, ...,C

T
y }. We

write C′y as a T × p data matrix D. Since PCA requires
a mean-centered matrix U in order to calculate variations,
the first step for projecting CSI vectors is to find the mean
vector γ of the data matrix D and subtract it from each

row vector of D to obtain U , where γ = ( 1
T

T∑
t=1

Cty)′. Let

V be the covariance matrix of U , which can be computed

2Our assumption is that every CSI reading has the same probability
distribution and is independent with each other.
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by V = U ′U/T . Then we can calculate p eigenvectors and
eigenvalues of V . We can form the p − q PCA projection
matrix by choosing the q eigenvectors of V which have the
q largest eigenvalues Φpca = [xpca1, xpca2, ... xpcaq ]. For any p-
dimensional CSI vector d = (Ciy)′ = (d1, d2, ... dp), collected
at location y, we project it into a corresponding q-dimensional
vector by dpca = (d− γ) · Φpca.

V. TRACKING

In this section, we investigate the implementation of two
Bayesian estimators including Kalman filter (KF) and particle
filter (PF) for continuously tracking the trajectory of a moving
person. Firstly, we review the derivation of KF and PF and
theoretically analyze the availability of the two Bayesian
Estimators to their typical estimation problems. Then, we
present the formulation of our tracking problem and derive
the CRB from the proposed tracking model in the estimation
context which can be solved using KF and PF.
A. Bayesian Estimators

Assuming the parameters needed to be estimated are packed
in a state vector, x, an estimation problem is to predict the
state vector using given information including system model,
control input and measurement model. Mathematically, the
system model is written as

xk = f(xk−1,uk−1,wk) (4)

and the measurement is modeled as

zk = h(xk,vk) (5)

where xk is the state vector at the k-th iteration, f(·) is
the system dynamics function, uk is system input, wk is the
process noise, h(·) is the measurement function and vk is the
measurement noise.

Upon the basic laws of probability, Bayesian filtering tech-
niques solve the estimation problem by recursively predicting
the probability density function (PDF) of current state vector
(xk) with the prediction stage and measurement update stage,
which can be expressed as follows:
Prediction: predict the current state, xk, using previous mea-

surements up to (k − 1)-th iteration by

p(xk | z1:k−1,u0:k−1) =

∫
p(xk |xk−1,u1:k−1)

·p(xk−1 | z1:k−1,u0:k−2)dxk−1
(6)

Update: update the predicted xk using the measurement
obtained at k-th iteration by

p(xk | z1:k,u0:k−1) =
g(zk |xk) · p(xk | z1:k−1,u0:k−1)

p(zk | z1:k−1,u0:k−1)
,

(7)
where g(zk |xk) is the likelihood, p(xk | z1:k−1,u0:k−1) is
prior probability and p(xk | z1:k,u0:k−1) is posterior proba-
bility.
1) Kalman Filtering

If the conditions that 1) both system model f(·) and
measurement model h(·) are linear functions of state vector xk

and input uk, and 2) both system noise wk and measurement
noise vk are Gaussian noise are satisfied, Equation (4) and (5)
can be written in the form as

xk = Axk−1 + Tuk−1 + wk, (8)
zk = Hxk + vk, (9)

where A is the state transition matrix, T is the input matrix
and H is the measurement matrix. With these conditions, the
prior and posterior PDF in Equation (6) and (7) can be an-
alytically calculated by Kalman Filter algorithm as described
in [41].

2) Particle Filtering

For nonlinear systems or non-Gaussian noise systems, it is
impossible to analytically calculate the posterior PDF in Equa-
tion (7), since the calculation of the prior PDF ((6)) requires
integration over the state space. For the objective of estimating
these systems, PF is applied to approximate Equation (7) with
a number of particles, which can be expressed as:

p(xk | z1:k−1,u0:k−1) ≈
M∑
m=1

wmk δ(xk − ξmk ) (10)

where ξmk is the m-th particle at the k-th iteration, wmk is
the normalized weight of ξmk , δ(·) is Dirac delta function and
M is the number of particles. Therefore, to approximate the
posterior PDF is equivalent to calculate the weight of each
particle. With the adoption of sequential sampling importance
resampling (SIR) PF [3], the weight of each particle can be
calculated as

wmk ∝ wmk−1
g(zk | ξmk )p(ξmk | ξmk−1)

q(ξmk | ξmk−1, zk)
, (11)

where q(·) is the importance density function.
As demonstrated in Algorithm 1, the SIR PF algorithm

iteratively works in three procedures : 1) sampling, 2) weight
calculation and 3) resampling.

B. Cramér-Rao Bound for Bayesian Filtering

The Cramér-Rao Bound (CRB) can provide a lower bound
on the mean square error (MSE) of any unbiased estimator
[37], [36]. As for Bayesian filtering, Let Ck denote the CRB
of the estimated state vector xk, which is the inverse of the
bayesian information (BIM) Jk = C−1k . Also, let ∆η

ϕ be the
partial derivatives with respect to vector η and ϕ. Following
[36], the BIM can be calculated in a recursive way

Jk+1 = Ωk − (D12
k )T (D11

k + Jk)−1D12
k + Γk+1, (12)

where

D11
k = Ex

{
−∆xk

xk
ln p(xk+1 |xk)

}
(13)

D12
k = Ex

{
−∆

xk+1
xk ln p(xk+1 |xk)

}
(14)

Ωk = Ex

{
−∆

xk+1
xk+1 ln p(xk+1 |xk)

}
(15)

Γk+1 = Ez,x

{
−∆

xk+1
xk+1 ln p(zk+1 |xk+1)

}
(16)

J0 = Ex

{
−∆x0

x0
ln p(x0)

}
. (17)
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Algorithm 1 Sequential Importance Sampling with Resam-
pling

• Draw a particle ξm0 from ξm0 ∼p0(x0) and set wm0 =
1/M, m = 1, ...,M
BIn the first place, initialize M particles from the distribu-
tion p0(x0) and set their weight is equally likely.
• For k = 1, ..., N recursively do

1. Sampling
− Draw (ξmk , m = 1, ...,M) from ξmk ∼p(xk | ξmk−1)
2. Weight Calculation
− Compute the updated importance weights

wmk =
g(zk | ξmk )p(ξmk | ξmk−1)

q(ξmk | ξmk−1, zk)

3. Resampling
− Normalize importance weights

wmk =
wmk∑M
n=1 w

n
k

, m = 1, ...,M

− Resample particles according to importance weights

{ξmk , 1/M} ← {ξmk , wmk }, m = 1, ..., M

• End for

C. Tracking with Bayesian Estimators
1) Tracking System Model

In our tracking system, we assume the targeted person
to walk with nearly constant velocity, hence, the motion of
the subject within the time interval ∆t from k to k + 1
can be described by an approximately fixed velocity with
random acceleration. Let the state vector xk be defined as
xk = [pxk, pyk, vxk, vyk]

′
, where (pxk, pyk) and (vxk, vyk)

is the coordinate and velocity of the subject respectively. The
system model is

xk+1 = Axk +Bnk,
where

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 ,B=


1

2
∆t2

1

2
∆t2

∆t
∆t

 .

We assume that the random acceleration nk at any time
interval ∆t is a zero mean white Gaussian noise with the same
variance, say nk∈ N (0, σ2

n). Let the covariance of Bnk be
Qk. Since both nk and B do not depend on k, Qk is expressed
as Qk = σ2

nBB
T .

For measurement model, since we can directly measure the
coordinate zk =(p̃xk, p̃yk) of the tracked person from our
localization system, the measurement equation of our tracking
system is formulated as

p̃xk = pxk

p̃yk = pyk, (18)
hence, the measurement matrix H is given by

H =

[
1 0 0 0
0 1 0 0

]
.

We denote the noise of measurement zk be uk, which follows
zero-mean normal distribution Rk. More specifically, let the

two-dimensional vector uk be defined as uk =

[
uxk
uyk

]
,

where uxk , uyk are the measurement noise at x-axis and y-
axis respectively. We assume they are uncorrelated and have
identical variance, say uxk = uyk ∈ N (0, σ2

u).
Therefore, under the circumstance of this tracking system,

the equations (13)-(16) can be computed as

D11
k = ATQ−1k A (19)

D12
k = −ATQ−1k (20)

Ωk = Q−1k (21)

Γk+1 = HR−1k+1H. (22)

Applying the recursion form described in [2], the CRB on
our tracking system can be expressed as

C−1k+1 = Jk+1 = (Qk + AJ−1k AT )−1 + HR−1k+1H. (23)

2) Tracking with KF and PF

Our tracking system can be modeled to satisfy the condi-
tions of KF estimator. Concretely, assuming the subject walks
with fixed velocity in the indoor environments, for this case,
the assumption of nk∈ N (0, σ2

n) holds.
In the realistic scenarios of our tracking system, we also al-

low the person to walk with random velocity and acceleration.
Under this circumstance, the assumption of nk∈ N (0, σ2

n) is
not true, so that the conditions for KF cannot be satisfied.
In this case, PF is applied for estimating the trajectory of
the subject by approximating the posterior PDF using state
particles.

For applying the Algorithm 1 into our tracking problem,
we suppose p0(x0) = N (x0; 0, σ) and p(xk | ξmk−1) =
N (xk; ξmk−1 + ve(ξ

m
k−1) · th,

∑m
k−1), where ve(ξ

m
k−1) is

the velocity of the m-th particle at the (k − 1)-th iteration
and

∑m
k−1 is the covariance matrix of this distribution. We

approximate the velocity as ve(ξmk−1) = ξmk−1−ξmk−2. Also, the
importance density function q(xk |xmk−1, zk) we chose is equal
to p(xk |xmk−1) and weight is set to wmk−1 = 1/M . Therefore,
the weight update equation can be given by wmk ∝ g(zk | ξmk ).

Since the likelihood, g(zk |xk), is equivalent to the mea-
surement function yk = h(xk)+vk and in our system, we
model the measurement function as zk = xk + uk, where
uk ∼ N (0, Rk), hence, wmk = N (ymk ; ξmk , Rk).

VI. EXPERIMENTAL SETUP

A. Hardware Description and Data Aggregation

To evaluate the performance of our system, we deploy a
wireless sensing network to aggregate required CSI measure-
ments as our testbed. In our study, we use TP-LINK WR841N
wireless APs with an IEEE 802.11n compliant radio operating
in the 2.4GHz unlicensed band as transmitters. The receivers
utilized in our system are lenovo laptops integrated with Intel
WiFi Wireless Link 5300 Cards. By using the modified driver
released by [16], the receivers can probe one CSI reading per
packet. The placement of APs and laptops is fixed and known
a priori. Each laptop deployed in the targeted environment is
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synchronized with each other and receives 10 beacons from
each AP per second.

During the training phase, we collect CSI measurements
from a male volunteer with a height of 176cm. Specifically, in
all the experiment settings, to aggregate the training data and
construct the fingerprint map, we divide the indoor areas of
interest into 0.75m×0.75m cells and record 100 CSI readings
(approximately 10 seconds) from every TX-RX link in each
cell. Note that all laptops can receive packets from all APs
concurrently, since we run multiple processes to download data
from the IP addresses of corresponding APs. To mitigate the
bias induced by different orientation and movement, we collect
5 datasets (500 CSI measurements) in which the subject faces
towards four different directions and walks randomly within
a specific cell. During the test phase, a different subject (a
female participant with a height of 160cm) is located at a
random cell with random orientation. The subject may either
stand still or walk at the cell. We collect CSI measurements at
500 locations (some locations are tested multiple times) and
record samples with a duration of 5s (roughly 50 values) per
cell.
B. Experiment Layouts

To confirm the validity of our system on various experimen-
tal scenarios, we carry out experiments in 4 different indoor
environments. These environments are used for diverse func-
tionalities and thus equipped with different domestic appli-
ances and furnishings. As illustrated in Figure 5, Environment
1 is a corridor without any objects, Environment 2 and 3
are typical office environments with various space size and
Environment 4 is domestic home equipped with household
furniture. For all four indoor spaces, transmitters and receivers
are placed as depicted in Figure 5.
C. Performance Metrics

We introduce three performance metrics to evaluate the
performance of our proposed device-free indoor localization
system.
1) Cell Estimation Accuracy

The cell estimation accuracy quantifies the ratio of the
number of cells where the positions of the target person are
correctly estimated during the test phase to that of all cell
locations and is calculated as

εtest =

Ntest∑
i=1

I(yi = ŷi)/Ntest,

where Ntest is the total number of testing cell locations.
2) Median Distance Error

At the test phase, we consider the location of a cell to be
misclassified if the estimated cell does not match with the
human occupied cell. Under such circumstances, we take into
account the average mismeasured distance between the center
points of the estimated cells and actual ones, termed as median
distance error. Formally, the median distance error is given by

σtest =

Ntest∑
i=1

||yi − ŷi||/Ntest,

where ||yi − ŷi|| is the Euclidean distance between yi and ŷi.

3) Average Processing Time
In our system, to address the problem of parameter estima-

tion with high-dimensional datasets, we adopt PCA projection
for dimension reduction. To validate the efficiency of PCA, the
average processing time with different proportion of principle
components to classify a testing location is measured on a
MacBook Pro laptop (2.2 GHz Intel Core i7 processor, 16 GB
1600 MHz DDR3 memory, SSD storage).

VII. EXPERIMENTAL RESULTS

A. Comparing Various Localization Methods
In this section, we evaluate the performance of our system

and compare it against other indoor localization systems
including Nuzzer [31], PC-DfP [50] and Pilot [46]. The
characteristics of these systems are summarized as follows:

Nuzzer: Nuzzer is a RSS-based device-free indoor local-
ization system which constructs an offline radio map
at the training phase and then estimates the location
of an entity using a Bayesian-based inference algo-
rithm. In Nuzzer, the distribution of RSS follows the
Gaussian assumption.

PC-DfP: PC-DfP is also a Bayesian probabilistic classifi-
cation based device-free indoor localization system
using RSS measurements. To tailor the system to
cluttered indoor environments, PC-DfP assumes that
the density of the RSS mean vector of all the links
at each location is multivariate Gaussian and adopts
linear discriminant analysis for classification.

Pilot: Pilot is a two-stage device-free indoor localization
which exploits the correlation feature of CSI mea-
surements to achieve a better performance compared
to RSS-based schemes. Pilot will detect the presence
of a human in the first stage and then trigger posi-
tioning phase to track the coordinate of the human
in the second stage.

We conduct experiments in the 4 representative indoor envi-
ronments as depicted in Section VI. Figure 6 and 7 illustrate
the cell estimation accuracy and median distance error respec-
tively. We should note that for Pilot it is possible that the sys-
tem does not provide any prediction on the location. For this
case, we define the error distance to be min(width, length)
of the testing room. In all indoor environments, we ob-
serve that our system outperforms the other three device-free
localization systems. Compared to the RSS-based schemes
(Nuzzer, PC-DfP), we attribute the better performance to
more implicit information carried by CSI measurements in
our system compared to RSS readings leveraged by Nuzzer and
PC-DfP. Furthermore, in comparison with the other CSI-based
localization system, Pilot, the performance gain of our system
demonstrates that only one correlation feature and the two-
stage location classification method adopted in Pilot are less
effective than the location discrimination approach proposed
in our system.

B. Impact of Principal Components
As aforementioned, parameter estimation is time-consuming

due to the high-dimensionality of CSI vectors. In this section,
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Figure 5: Layout sketches of our experimental indoor spaces. Environments (a), (b) and (c) are in the same building with walls
mainly made of concrete. Environment (c) features a different penetration of walls which are made of wood and gypsum.
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Figure 6: Comparison of
cell estimation accuracy
achieved by different indoor
localization systems in four
indoor environments
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Figure 7: Comparison
of median distance error
achieved by different indoor
localization systems in four
indoor environments

we study the impact of using PCA dimensionality reduc-
tion on different evaluation metrics, including cell estimation
accuracy (Figure 10), median distance error (Figure 9) and
average processing time (Figure 8). From the three figures,
we notice that a significant reduction in the PC-proportion
(from 1 to 1/5) barely worsens the localization performance
(see Figure 10 and 9), while dramatically saving processing
time and thus improving the efficiency of our system (see
Figure 8). Nonetheless, if we further reduce PCs (e.g. from 1/5
to 1/10), the classification accuracy will decline severely (see
Figure 10) and error distance will hike sharply (see Figure 9);
meanwhile the processing time can only reduce mildly, and its
increasing rate progressively declines (see Figure 8). Thus, it is
important to choose an appropriate number of PCs to balance
the accuracy-efficiency trade-off for indoor localization.

C. Impact of Diverse Participants

To further validate that our system is resilient to diversity of
participants, we recruited 8 subjects (6 males, 2 females; age:
23-31 years; height: 158-183 cm) to conduct the experiments
in the environment of the domestic home and captured two
datasets in two different days. We conduct three tests with
different training data. First, we utilize the data of all 8 partic-
ipants captured on one day for training and the 8 participants’
CSI measurements from another day for testing. Then, we
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Figure 8: Average processing
time to classify a test location
with different proportion of
principle components (PCs)
in four indoor environments
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Figure 9: Median distance
error with different propor-
tion of principle components
(PCs) in four indoor environ-
ments

evaluate the classification performance of our system for leave-
one-out cross validation, in which the data from one subject
captured on two different days is utilized for classification and
the data from all the other subjects for training. Furthermore,
for each subject, we measure localization accuracy using the
data from one day for training and the data from another
day as the classification data. Figure 11 shows the results,
which demonstrate that three cases using distinct training data
achieve comparable accuracy. Moreover, we also observe the
use of the training data of all the 8 participants results in a
slight increase in localization accuracy. In order to mitigate
the impact of dataset diversity captured at different time, our
system can perform a CSI calibration scheme, which further
increases the performance of all the three cases. (see Section
VII-F)

D. Influence of Data Aggregation Parameters

During the data aggregation procedure in our system, at each
cell, we sample the CSI measurements from all the L TX-RX
links, where each transmitter periodically broadcasts at a rate
of P packets per second with a duration of Ttrain for the training
phase and Ttest for the test phase. Table I summarizes the default
data aggregation parameters used in our experiments. In the
following, we vary the values of these parameters and discuss
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Table I: Default data aggregation parameters used in our
experiments

Parameter Notation Default
value

Number of links
between TX-RX pairs L 12

Packet broadcasting rate
per second P 10

Time duration for data aggregation
per cell at training phase Ttrain 10s

Time duration for data aggregation
per cell at test phase Ttest 5s

the influence on the performance of our system.
1) Packet Reception Rate

From Figure 12a, we observe that we can achieve a cell
estimation accuracy of over 90% by sampling the packets
beyond a rate of 8 pks/s. This confirms a similar result
reported in [35] for feasible RSS sample rates. Also, Fig-
ure 12b indicates that a reduced packet reception rate raises the
performance of our system in terms of computation efficiency,
which can be ascribed to the fewer data required to process a
location.
2) Number of Links

Aggregating data from fewer TX-RX links can lead to
significant reduction on the computational complexity of our
system. However, it may also lead to a decrease in terms of
localization accuracy. The experimental results achieved with
different number of links are shown in Figure 13a and 13b.
The results support the above conclusion that a smaller number
of links deteriorates the cell estimation accuracy and reduces
the localization processing time.

3) Time of Collecting Data
For fingerprint-based indoor localization schemes, the con-

struction of a radio map is arduous, hence, reducing the time
of collecting data at each cell can alleviate the effort during the
training phase. With respect to the test phase, spending less
time to collect the test measurements can make localization
systems more responsive for locating the targeted people.

Table II (Table III) shows the average localization delay
and the cell estimation accuracy/distance error with different
time of collecting data during the training phase (test phase)
using the same test dataset (training dataset) in all the indoor
environments. There is a clear tradeoff between the cell

1 3 5 7 9
Pa. Rate (pks/s)

70

80

90

100

C
el

lE
st

.A
cc

.(
%

) Env. 1
Env. 2
Env. 3
Env. 4

(a) Cell estimation accuracy of our
localization scheme with different
packet reception rate
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Figure 12: Influence of packet reception rate on the perfor-
mance of our indoor localization system
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Figure 13: Influence of number of links on the performance
of our indoor localization system

estimation accuracy/distance error and localization delay with
respect to the time of collecting data.
E. Tracking Results
1) Data Set

In the set of experiments, we collected datasets of CSI
measurements when the targeted person is moving in all
four indoor environments as depicted in Figure 5. More
specifically, at each environment, the subject walks along a
random trajectory in the spaces following two walking types:
(1) fixed velocity (approximately 2m/s) and (2) free-style
velocity, at which the subject can walk at any speed or stand at
a certain location, for about 5 minutes. To obtain the ground-
truth information where the subject is walking, we record
videos. Table IV lists the experimental parameters used in the

Table II: Influence of time frame of data aggregation on the
performance of our indoor localization system during training
phase

Ttrain (s) 2 4 6 8 10
Cell estimation
accuracy (%)

84.4 88.5 88.9 91.7 92.9

Distance error (m) 0.77 0.72 0.73 0.68 0.60
Processing time (ms) 443 491 507 656 720

Table III: Influence of time frame of data aggregation on
the performance of our indoor localization system during test
phase

Ttest (s) 1 2 3 4 5
Cell estimation
accuracy (%)

79.5 82.1 89.8 91.7 92.9

Distance error (m) 0.86 0.80 0.74 0.66 0.60
Processing time (ms) 473 534 590 655 720



12

Table IV: Experimental parameters used in our tracking system
Parameter Notation Value

covariance of process noise for
Kalman filter

Qk 2I4

covariance of measurement noise
for Kalman filter

Rk 5I2

number of particles for particle
filter

M 1000

time frame of each iteration for
both filters

th 1s

study.

2) Tracking Accuracy
We use both filters described above to track the trajectories

of the subject with two different walking styles. Note that
participants are not restricted in their body motion during
walking. Table V shows the mean absolute errors (MAEs)
of various methods for each environment. As illustrated in
this table, among all situations, applying the Kalman filter
to the dataset of the subject moving with fixed velocity,
achieves the best tracking precision with an average MAE of
0.63m. This is a 0.17m improvement compared to particle
filter based tracking with the same dataset. Whereas, when
the subject mimics the walking style in real life (walk at
random speed and stop freely), the average MAE at all the four
indoor environments using particle filter is 0.92m, a 0.31m
improvement compared to that using Kalman filter. These
results validate that Kalman filter is an optimal solution for
linear dynamics systems (constant walking speed), in which
all noise satisfies the normal distribution (we assume Qk

and Rk are Gaussian noise). Under nonlinear circumstances
(free walking), the experimental results support the conclusion
that particle filter is to be preferable to Kalman filter. More
intuitively, for walking with random velocity at Env. 3, Figure
14 shows the tracking trajectory results from both Kalman
filter and particle filter, from which we also observe that
Kalman filter is inferior to particle filter for tracking the
subjects with random walking velocity3.
3) Comparison to the CRB

We further compare the tracking performance of KF and
PF in the two scenarios against CRB on our modeling system
recursively derived via Equation (23). The results achieved at
the conference room are shown in Figures 15, 16 (Results
achieved in the other three indoor environments are omitted
due to space constraints. However, similar performance can be
obtained compared to that at the conference room). As shown
in Figure 15, with constant walking velocity, MSE computed
by KF can achieve (or close to) the bound, which confirms
that KF is an optimal filter under the conditions described
in Section V-A1. In contrast, as plotted in Figure 16, when
the motion of the subject is not nearly constant, the MSE of
state estimates obtained from KF cannot achieve the bound
because the random acceleration nk is not a zero mean white
Gaussian noise any further. Compared with the performance
achieved by KF, MSE of state estimate derived from PF is

3Other figures of tracking trajectory results with different walking style
performed at the other indoor spaces are omitted due to space constraints.
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Table V: Average MAEs (in meters) from our proposed
tracking approaches

Env.1 Env.2 Env.3 Env.4
Kalman filter
(fixed velocity) 0.57 0.66 0.77 0.63
Kalman filter

(free-style velocity) 0.91 0.97 1.13 1.02
particle filter

(fixed velocity) 0.63 0.70 0.81 0.69
particle filter

(free-style velocity) 0.86 0.88 0.94 0.91

much closer to the bound since the averaged estimation error
of weighted state measurement particles ξmk , m = 1, ..., M,
is much smaller than that achieved via Kalman filter equations.

F. Combating with Environment Dynamics
Our system relies on static indoor environments for construct-
ing the radio map, however, over time, changes in the environ-
ment occur, such as temperature, humidity and placement of
furnishings. As a consequence, the created training fingerprint
map cannot precisely reflect the operational environment at a
different time. Thus, the calibration of this training map will
be required to alleviate the effect of environment changes.
In the context of device-bound localization systems, some
approaches in [15] have proposed to continuously calibrate
the these systems and tailor them to time-varying phenomena.
Inspired by [15], we propose a CSI adjustment scheme for
system calibration. The rational for this scheme is that we
assume, at any cell, the CSI change induced by the presence of
a subject is irrelevant with time. Specifically, at time t1, let CSI
measurements of empty environment and cell k be CSIemt1 and
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Table VI: Localization results of two time-varying CSI mea-
surement datasets with or without CSI calibration

Case 1 Case 2 Case 3
Acc. (%) Acc. (%) Acc. (%)

w/o calibration 77.6 72.2 70.4
w/ calibration 84.9 83.2 91.3

Table VII: Results of the different furniture layouts with or
without CSI calibration

Cell Estimation Median Distance
Accuracy (%) Error (m)

w/o calibration 64.8 1.58
w/ calibration 81.3 0.96

CSIkt1 respectively. Likewise, at time t2, CSIemt2 and CSIkt2
represent the CSI measurements of the two conditions. Ac-
cording to our assumption, we can obtain that CSIkt1 -CSIemt1
= CSIkt2 -CSIemt2 . Hence, to adjust the CSI measurements at
each cell at time t2, we only need the information of CSI
measurements of every cell at time t1 and the change of CSI
measurements induced by environment dynamics within the
time interval from t1 to t2, say CSIemt2 -CSIemt1 . Based on this
idea, when the subject is absent from the indoor environments,
we routinely collect the CSI measurements and compute
the variance of CSI measurements between two sequential
periods, say ∆CSIem, which can be used to correct every
training CSI measurement in the fingerprint map. After each
calibration, the training CSI measurement at cell k is updated
via CSIktr + ∆CSIem 7→ CSIktr. Note that the timings when
to collect the CSI feature vector of empty environment are pre-
defined, which should be determined accordingly. For instance,
for domestic home, it can be measured when the subject is at
work. As for the conference room, it can be collected out of
office hours.

To validate the effectiveness of the CSI adjustment scheme,
we sanitize the CSI measurements utilized in Section VII-C,
two datasets of which are captured in two diverse days. After
the CSI measurement configuration scheme, we re-evaluate
the performance of the three cases mentioned in Section
VII-C, results of which are shown in Figure 17. By comparing
the results achieved with or without the CSI measurement
adjustment in Figures 11 and 17, the localization performance
of all the three cases is enhanced, each of which has an overall
accuracy gain of 7.7%, 11.0% and 20.9% respectively, shown
in Table VI.

We further conduct experiments in the conference room
with a different furniture layout to validate the efficiency
of the proposed calibration scheme (we remove some desks
in this case). As Table VII shows, with the correction of
CSI measurements, we can achieve an estimation accuracy
of over 80%, an increase of 16% compared to that obtained
without the CSI sanitization. Similarly, the performance of
median distance error is also improved with the adjusted CSI
measurements.

VIII. DISCUSSION

In this section, we discuss several unsolved issues in this
paper and raise possible solutions to address these problems,
which could further enhance the performance of our system.

A. Identification and Localization of Multiple Persons
One limitation of fingerprint-based techniques is that the

training phase consumes a significant amount of time and
effort. This situation is particularly true when we scale our
system to simultaneously identifying multiple subjects, since
the training overhead increases exponentially with all possible
combinations of subjects. In the context of the device-based
active localization systems, RF-propagation tool [30] and the
approach in [23] are applied to ease the effort of the radio
map construction. These techniques may be also experimented
with our device-free system to generate different radio maps
for multiple persons. Another promising solution might be to
isolate multiple persons in separate spaces from each other
and match them one by one using the known single-person
radio map.
B. Using Different Hardware

IWL5300 is the first commodity wireless NIC which reports
CSI information. Recently, other CSI tools, such as Splicer
[47] and Chronos [38], enable to be integrated with other types
of NIC cards by the modification of wireless drivers. Thus,
another extension of our system is to consider the effect of
using NIC cards from different vendors. The challenge for
this case is the CSI samples captured in the training phase
with one particular model of NIC vary considerably with those
collected by another model of NIC in the test phase. One
promising approach is that using a small number of recent CSI
observations at some specific cells as new training samples
to calculate the calibration parameters that then can used to
update the radio map.

IX. CONCLUSION

We have presented a fingerprint-based device-free system
that enables precise localization in indoor spaces. In our
system, we aggregate the CSI measurements from commodity
802.11n WiFi devices, so that fine-grained subchannel infor-
mation can be utilized to localize a subject. Classification is
done comparing testing CSI readings with the CSI fingerprints
and determine the location with highest probability by Bayes
Classification. The performance of our system can be further
enhanced by reducing dimensionality with PCA. The experi-
mental evaluation in four different indoor environments shows
that the system can outperform the state-of-the-art systems
including Nuzzer, PC-DfP and Pilot in terms of both cell
estimation accuracy and error distance. We further present
a model for tracking the coordinates of the moving subject.
Based on the tracking model, we derive the Cramér-Rao Bound
which provides a lower bound for the mean square error of
any estimators. We apply Kalman filter and Bayesian filter as
two estimators for recursively predicting the coordinates of the
moving target. Experimental results demonstrate that Kalman
filter is a preferred option for tracking the subject with fixed
walking speed, while particle filter is more robust to these
scenarios where the subject walks randomly. Experimental
results also show that the performance of Kalman filter can
achieve the CRB, which further verify that it is an optimal
estimator for the linear systems with additive white Gaussian
noise.
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