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Density of Spherically-Embedded Stiefel and

Grassmann Codes
Renaud-Alexandre Pitaval, Lu Wei, Olav Tirkkonen, and Camilla Hollanti

Abstract—The density of a code is the fraction of the coding

space covered by packing balls centered around the codewords.

A high density indicates that a code performs well when used

as a uniform point-wise discretization of an ambient space. This

paper investigates the density of codes in the complex Stiefel and

Grassmann manifolds equipped with the chordal distance arising

from an Euclidean embedding, including the unitary group as

a special case. The choice of distance enables the treatment of

the manifolds as subspaces of Euclidean hyperspheres. In this

geometry, the densest packings are not necessarily equivalent to

maximum-minimum-distance codes. Computing a code’s density

follows from computing i) the normalized volume of a metric

ball and ii) the kissing radius, the radius of the largest balls

one can pack around the codewords without overlapping. First,

the normalized volume of a metric ball is evaluated by asymp-

totic approximations. The volume of a small ball can be well-

approximated by the volume of a locally-equivalent tangential

ball. In order to properly normalize this approximation, the

precise volumes of the manifolds induced by their spherical

embedding are computed. For larger balls, a hyperspherical cap

approximation is used, which is justified by a volume comparison

theorem showing that the normalized volume of a ball in the

Stiefel or Grassmann manifold is asymptotically equal to the

normalized volume of a ball in its embedding sphere as the

dimension grows to infinity. Then, bounds on the kissing radius

are derived alongside corresponding bounds on the density.

Unlike spherical codes or codes in flat spaces, the kissing radius

of Grassmann or Stiefel codes cannot be exactly determined from

its minimum distance. It is nonetheless possible to derive bounds

on density as functions of the minimum distance. Stiefel and

Grassmann codes have larger density than their image spherical

codes when dimensions tend to infinity. Finally, the bounds on

density lead to refinements of the standard Hamming bounds for

Stiefel and Grassmann codes.

Index Terms—Unitary matrix codes, spherical codes, Grass-

mann manifold, Stiefel manifold, density, packing, metric ball,

volume, Hamming bound.
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I. INTRODUCTION

Sphere packing is a classical problem with a long history

from geometry to information theory [1]–[4]. In his 1948

seminal work [5], Shannon made the connection between the

capacity of an additive white Gaussian noise channel and

packing of multidimensional spheres. This interpretation was

later generalized to non-coherent multi-antenna channels and

packings in products of Grassmann manifolds [6].

Stiefel and Grassmann codes are matrix codes with appli-

cations to Multiple Input Multiple Output (MIMO) commu-

nications [6]–[9], Code Division Multiple Access (CDMA)

wireless systems [10], and compressive sensing [11], [12]. The

complex Stiefel manifold is the space of rectangular semi-

unitary matrices. The Grassmann manifold is the space of

eigenspaces spanned by the Stiefel matrices. An element in

the Grassmann manifold is an equivalence class of Stiefel

matrices, which can be alternatively represented by a unique

projection matrix. When discussing codes in Grassmann man-

ifolds of one-dimensional subspaces, the equivalent language

of frame theory is often used [12].

Depending of the application and convenience, several non-

equivalent distances can be defined on these spaces [13],

[14]. A common distance for the unitary group and Stiefel

manifold is simply the Frobenius norm of the difference of

two matrices [15]. Similarly for the Grassman manifold, an

often-used distance arises from the Frobenius norm of the

difference between two projection matrices [8], [16]. These

distances correspond to embed the manifolds into Euclidean

spaces. Through these embeddings, each manifold is a subset

of an hypersphere and the distance is the length of a chord.

For the application of limited-feedback MIMO precoding,

unitary precoder designs have been reduced to quantization

problems on Grassmann and Stiefel manifolds with the as-

sociated chordal distance [8], [9], [17]. In the context of

space-time coding, the code performance in the low signal-to-

noise-ratio (SNR) regime has also been related to the chordal

distance [16], [18]. More recently, analogical results have been

derived for linear classification: In the small model mismatch

regime, the number of classes that can be distinguished by a

subspace classifier is governed by the chordal distance among

subspaces, and more generally by their principal angles [19].

In the last decade, basic coding-theoretic results estimating

the relationship between the cardinality and the minimum

distance of codes in Grassmann and Stiefel manifolds have

been published [15], [17], [20]–[27]. The standard Hamming

bound relates the minimum distance to the notion of code

density. The density of a code is the maximum portion of the

coding space covered by non-intersecting balls of equal radius.
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In classical geometry, maximizing the code’s density is known

to be equivalent to maximizing its minimum distance. For the

Stiefel and Grassmann codes measured by chordal distance,

this equivalence does not always hold.

The present paper investigates this surprising fact and

discusses the density of codes in Grassmann and Stiefel

manifolds equipped with their chordal distance. We provide a

direct connection between minimum distance and density via

lower and upper bounds on the density for a given distance.

This connection leads to new conjectured bounds on the

minimum distance as a function of code cardinality. Related

to applications, numerical evaluations suggest that the density

may be a more relevant criterion for MIMO precoding than the

minimum distance. While for space-time coding, the minimum

distance of a code may be more important than its density.

There are two main difficulties in evaluating the density of

codes in these spaces: 1) evaluating the normalized volume of

a ball, and 2) estimating the kissing radius of codes.

The problem of estimating the volume of a metric ball

has been addressed in [17], [20], [22], [23], [26]–[29]. In

the large code cardinality regime, balls are small and can

be approximated to be balls in flat space. While some exact

evaluations were obtained in Grassmannian cases [17], [28],

the case of the Stiefel manifold has been less addressed. A

powerful and general framework is provided in [22], [26],

[27]. However, it appears that the state-of-the-art volumes in

the literature do not correspond to the desired metrics. Indeed,

the volume element is unique up to a non-vanishing scaling

factor which is often dismissed, as it can be absorbed in the

overall normalization. From Nash embedding theorem [30],

every Riemannian metric can be seen as induced by an

appropriate Euclidean embedding. There exists an intrinsic

metric locally equivalent to the chordal distance, and thus a

consistent volume density that defines the notion of volume

on the manifold. In this respect, we provide the exact scaling

of the volume for Grassmann and Stiefel manifolds induced

by the spherical embedding, leading in turn to precise small

ball approximations.

For larger radius, we show that the volume of a ball

in the manifold can be well approximated by the “area”

of the hyperspherical cap the ball is embedded into. The

approximation is supported by a volume comparison theorem

showing that the normalized volume of a ball in the manifold

is asymptotically equal to the normalized volume of a ball

in the embedding sphere. This result generalizes and provides

a structural unification of our previous results in [31]–[33].

The derivation is a by-product of the asymptotic Gaussianity

of the chordal distance arising through its reduction to linear

statistics. The intuition behind relates to a classical result

by Borel [34] who proved that coordinates of a hypersphere

are asymptotically Gaussian as the dimension tends to infin-

ity [35], and the long history of central limit theorems showing

the Gaussian behavior of linear statistics [36] in random matrix

theory.

Next, the paper addresses the evaluation of the kissing radius

and density of Grassmann and Stiefel codes. The kissing radius

is the analog of the packing radius for linear codes [37], which

has applications in, e.g., sphere-decoder optimization [38],

[39]. It is the largest possible radius of packing balls around

the codewords of a code. The kissing radius also relates to rate-

distortion theory as it is the smallest possible distance from

a codeword to the border of its Voronoi cell. The problem

reduces to finding the minimum mid-distance between two

points at a given distance δ. For a geodesic distance on a

flat space, the answer is simply δ/2, the so-called packing

radius. With a strictly extrinsic distance, the triangle inequality

is never satisfied with equality and the kissing radius is greater

than δ/2. While for spherical codes there is a one-to-one map-

ping between the kissing radius and the minimum distance,

this is not always the case for the Grassmann and Stiefel

codes with chordal distance. As a consequence, the density

is not a single-variable function of the minimum distance of

the code, and two codes with equal minimum distance could

have different densities. This is in sharp contrast with classical

packing problems where maximizing the density is equivalent

to maximizing the minimum distance. The kissing radius and

the density cannot be determined solely from the minimum

distance but it is possible to derive bounds. Combining these

bounds with the volume comparison theorem discussed above

shows that the densities of Grassmann and Stiefel codes are

asymptotically greater than or equal to the densities of their

image spherical codes. The bounds are shown to be tight by

simulations.

Finally, a direct application of bounds on density is to revisit

the Hamming bounds. The results of this paper improve the

Hamming bound for the Grassmann case in [20], [22]; and

generalize the bound for the unitary group in [23] to the Stiefel

manifold.

The rest of this paper is organized as follows. Section II

introduces the considered spaces and their geometry. Section

III states the problem and necessary definitions. Section IV

addresses the problem of the volume of a ball. In Section V,

bounds on kissing radius and density are derived. Section VI

provides concluding remarks.

II. THE GRASSMANN AND STIEFEL MANIFOLDS

We consider the following Riemann manifolds equipped

with a chordal distance induced by their canonical spherical

embedding. Throughout the paper, M stands for the unitary

group Un, Stiefel manifold VC
n,p, or Grassmann manifold GC

n,p

embedded into the sphere SD−1(R) of radius R =
√
n,

√
p

or
√

p(n−p)
2n

, in a Euclidean space of dimension D = 2n2,

2np or n2 − 1, respectively. Elements in the manifold are

represented by matrices in C
n×n or C

n×p endowed by the

inner product 〈·, ·〉 = RTr ·H ·, where R is the real part and

Tr is the matrix trace. The geometric description below follows

directly by generalizing [13] and [14] to the complex space.

The chordal distances, the dimension dim of the manifolds,

and the corresponding embeddings are summarized in Table I.

A. Hypersphere

The Euclidean (D−1)-sphere of radius R in R
D is defined

as

SD−1(R) =
{
x ∈ R

D | ||x||2 = R
}
. (1)
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TABLE I
MANIFOLDS OF DIMENSION dim WITH THEIR SPHERICAL EMBEDDINGS:

(M, dc) →֒ SD−1(R).

M dim dc(U ,V ) D R
Un n2 ‖U − V ‖F 2n2 √

n
VC
n,p 2np− p2 ‖U − V ‖F 2np

√
p

GC
n,p 2np− 2p2 1√

2
‖UUH − V V H‖F n2 − 1

√

p(n−p)
2n

For R = 1, we simply write SD−1. The chordal distance is the

natural Euclidean distance applied to elements on the sphere.

Given x,y ∈ SD−1(r) it is simply the norm of the difference:

dc(x,y) = ||x− y||2. (2)

It is an extrinsic distance as it measures the length of a chord

outside of the manifold itself, which here is the surface of the

sphere.

B. Unitary Group

The unitary group is the set of unitary matrices,

Un =
{
U ∈ C

n×n | UHU = UUH = In
}
, (3)

where ·H denotes the Hermitian conjugate. This compact

Lie group is a manifold of dimension dimUn = n2. By

differentiating the unitary constraint, one can verify that the

tangent space TUUn at U is the set of matrices ∆ ∈ C
n×n

such that UH
∆ is skew-Hermitian. Specifically, at identity,

the tangent space TIUn is the Lie algebra of skew-Hermitian

n× n matrices u(n).

One can parametrize Un with reference to a fixed U ∈ Un

via skew-Hermitian matrices as V = U exp(UH
∆) ∈ Un

with UH
∆ ∈ u(n). For a fixed ∆, the exponential map

exp(·) defines the geodesic between U and V by mapping

the tangent space to the manifold as V (t) = U exp(t UH
∆)

with 0 ≤ t ≤ 1. A Riemannian metric may be defined

from the canonical embedding of Un in the Euclidean space

(Cn×n, 〈·, ·〉), then exp(·) is the matrix exponential.

Consider the eigenvalue decomposition UHV =
Ωdiag(eiθ1 , eiθ2 , . . . , eiθn)ΩH where the diagonal

elements of Ω ∈ Un are non-negative and real. This

decomposition is unique if these principal angles can

be strictly ordered π ≥ θn > . . . > θ2 > θ1 ≥ −π.

This leads to the corresponding eigenvalue decomposition

UH
∆ = Ωdiag(θ1, θ2, . . . , θn)Ω

H , and accordingly the

geodesic between U and V becomes

V (t) = UΩdiag(eiθ1t, eiθ2t, . . . , eiθnt)ΩH . (4)

The geodesic distance is the intrinsic distance between two

points obtained by integrating the geodesic path along the

manifold. It is given by the norm of the tangent direction

according to the considered Riemannian metric

dg(U ,V ) = ‖∆‖F = ‖UH
∆‖F =

√√√√
n∑

i=1

θ2i . (5)

Alternatively, the canonical distance in the ambient matrix-

space is

dc(U ,V ) = ‖U − V ‖F =
√
2n− 2RTr(UHV )

=

√√√√4

n∑

i=1

sin2
θi
2

(6)

where the last equality follows from the decomposition (4).

By observing that dc(0,V ) = ‖V ‖F =
√
n for all V ∈ Un,

one verifies that the unitary group equipped with dc has

an isometric embedding into the sphere S2n2−1(
√
n). The

concrete embedding (Un, dc) →֒ S2n2−1(
√
n) is obtained

from the classical mapping C
n×n →֒ R

2n2

by vectorizing a

complex matrix into a real vector.

C. Stiefel Manifold

The complex Stiefel manifold is the space of rectangular

semi-unitary matrices,

VC

n,p =
{
Y ∈ C

n×p | Y HY = Ip
}
. (7)

This provides a generalization of both the hypersphere and the

unitary group. For p = n, one directly recovers VC
n,n = Un,

while for p = 1 and by identification of C
n with R

2n, this

corresponds to the unit sphere VC
n,1 = S2n−1.

As for the unitary group, the tangent space at Y is the

set TY VC
n,p of matrices ∆ ∈ C

n×p such that Y H
∆ ∈

u(p) is skew-Hermitian. In general, tangents have the form

∆ = Y A + Y⊥B where A is p × p skew-Hermitian, Y⊥ is

the orthogonal complement of Y such that the concatenation

(Y Y⊥) ∈ Un is unitary, and B is an (n − p) × p arbitrary

complex matrix. Specifically at “identity” In,p ,

(
Ip
0

)
,

tangents are of the form

∆ =

(
A

B

)
∈ C

n×p with A ∈ u(p). (8)

By counting the degrees of freedom in the tangent space,

one finds that the Stiefel manifold is a space with dimension

dimVC
n,p = 2np− p2.

Given a starting point Y = Y (0) and a fixed tangent

direction ∆ = Y A + Y⊥B ∈ TY VC
n,p, the canonical

embedding of VC
n,p in the Euclidean space (Cn×p, 〈·, ·〉) leads

to the following geodesic equation [14],

Y (t) =
(
Y ∆

)
exp t

(
Y H

∆ −∆
H
∆

Ip Y H
∆

)
I2p,pe

−tY H
∆.

(9)

The geodesic distance between Y and Z = Y (1) is then

dg(Y ,Z) = ‖∆‖F =
(
‖A‖2F + ‖B‖2F

)1/2
. (10)

Remark 1. To the best of our knowledge, when p 6= n, unlike

for the unitary group, it is not known how to compute the

geodesic Y (t) in closed-form, given only Y = Y (0) and

Z = Y (1).

The corresponding Euclidean/chordal distance from the

ambient space is

dc(Y ,Z) = ‖Y −Z‖F . (11)
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Similarly as for the unitary group, one can verify that

dc(0,Z) =
√
p for all Z, and thus this gives an isometric

embedding of the Stiefel manifold VC
n,p into S2np−1(

√
p).

As an alternative to (7), the Stiefel manifold can be

treated as the quotient space VC
n,p

∼= Un/Un−p, where a

point in VC
n,p is an equivalence class of unitary matrices

[U ] =

{
U

(
Ip 0

0 Ω

) ∣∣∣∣ Ω ∈ Un−p

}
. A natural geometry in

this interpretation of the Stiefel manifold is the one inherited

from the geometry of the unitary group Un embedded in

(Cn×n, 〈·, ·〉). One can split the tangent space of the unitary

group at U between the so-called vertical and horizontal

spaces: TUUn = HU ⊕ VU . The vertical space VU is the

tangent space of [U ] →֒ Un at U corresponding to “move-

ments” inside the equivalence class. The horizontal space HU

is the orthogonal complement of the vertical space, providing

a unique representation for tangents to the quotient space.

For VC
n,p

∼= Un/Un−p at U ∈ Un, it is the collection

of matrices ∆∗ = U

(
A −BH

B 0

)
, where A ∈ u(n)

and B ∈ C
(n−p)×p. With this non-equivalent geometry, the

geodesic distance between U and V = U exp(UH
∆∗) is

dg∗(U ,V ) = ‖∆∗‖F =
(
‖A‖2F + 2‖B‖2F

)1/2
. The metric

induced by this embedding, and the resulting volume is

discussed in [27]. This metric is not further considered in this

paper.

D. Grassmann Manifold

The complex Grassmann manifold GC
n,p is the quotient space

of VC
n,p over Up:

GC

n,p
∼= VC

n,p/Up ⊂ C
n×p. (12)

Elements in GC
n,p are equivalence classes of rectangular semi-

unitary matrices Y ∈ VC
n,p:

[Y ] = {Y Q | Q ∈ Up}. (13)

We can identify the equivalence class with a unique matrix

representation, which is desirable for pratical implementation

and computation. By symmetry (c.f. the discussion in [33])

and for simplicity, we will assume p ≤ n/2 for the Grassmann

manifold, all along this paper.

As described above, tangent vectors at Y ∈ VC
n,p take the

form {Y A+ Y⊥B}. This can be again split between the

vertical space VY = {Y A | A ∈ up} and the horizontal

space HY = {Y⊥B | B ∈ C
n×(n−p)}. At In,p, horizontal

tangents are thus of the form ∆ =

(
0

B

)
, and we have

dimGC
n,p = 2p(n − p). Consider the compact singular value

decomposition B = LΘRH , where L ∈ VC
n−p,p, R ∈ Up

and Θ = diag(θ1, . . . , θp). By setting A = 0, the geodesic

equation (9) for the Grassmann manifold reduces to [14]

Y (t) = Y R cos(Θt)RH + Y⊥L sin(Θt)RH . (14)

The geodesic equation could be rotated from the right by any

unitary matrix as it will still belong to the same equivalence

class. Without loss of generality one can thus restrict the range

of the singular values of B to 0 ≤ θi ≤ π
2 for all i. These

values are known as the principal angles between the planes

[Y (0)] and [Y (1)]. Contrary to the Stiefel manifold, here

given two end points Y = Y (0) and Z, one can compute

the tangent in the geodesic (14) and satisfy [Z] = [Y (1)] by

singular value decomposition of ZHY and ZHY⊥, where the

singular values of ZHY are cos θ1, . . . , cos θp.

The geodesic distance is given by

dg([Y ], [Z]) = ‖∆‖F = ‖B‖F =

√√√√
p∑

i=1

θ2i . (15)

In [13], the following distance was defined

dc([Y ], [Z]) =

√√√√
p∑

i=1

sin2 θi, (16)

which is locally-equivalent to (15) as sin2 θi ≈ θ2i when θi ≈
0, and corresponds to a Euclidean embedding since

dc([Y ], [Z]) =

√√√√p−
p∑

i=1

cos2 θi =
√
p− ‖ZHY ‖2F

=
1√
2
‖Y Y H −ZZH‖F . (17)

This is in fact an isometric embedding into

Sn2−2(
√

p(n−p)
2n

) [13] which follows from mapping any

[Y ] ∈ GC
n,p to the space of detraced Hermitian matrices as

[Y ] → Π̄Y =
1√
2

(
Y Y H − p

n
I
)
, (18)

and the chordal distance is the ambient Euclidean distance

dc([Y ], [Z]) = ‖Π̄Y − Π̄Z‖2F . (19)

In this ambient space of dimension n2 − 1, it can be further

verified that the distance of any Π̄Y from the origin is

‖Π̄Y − 0‖2F = p(n−p)
2n , and thus Π̄Y belongs to a sphere

of radius

√
p(n−p)

2n . When there is no ambiguity on the

considered space, we will simply write dc(Y ,Z), which is

well-defined as the distance does not depend on the Stiefel

representatives.

Alternatively, the Grassmann manifold can be expressed

as the quotient space GC
n,p

∼= Un/(Up × Un−p) ⊂ C
n×n.

In this representation, elements in a Grassmann manifold are

equivalence classes of unitary matrices. The tangents of GC
n,p

at the identity are of the form ∆∗ =

(
0 −BH

B 0

)
for

this second quotient representation. Again, we do not consider

this representation, but we note here that the natural geodesic

distance induced by this embedding only differs from (15) by

a scaling factor,

dg∗([Y ], [Z]) = ‖∆∗‖F =
√
2‖B‖F

=
√
2dg([Y ], [Z]). (20)
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III. PACKING PROBLEM AND MAXIMUM CODE DENSITY

A packing is a maximal set of non-intersecting balls of

fixed radius, covering the space so that it is not possible to

fit in another ball. For a given code size, a packing thus

gives the maximum density, i.e. the maximum fraction of

the space that one can cover by non-intersecting balls. This

problem is considered to be the dual of a coding problem:

maximizing the code cardinality for a given minimum distance

or reciprocally maximizing the minimum distance for a given

code cardinality. Surprisingly, these two problems are not

necessarily equivalent for the Grassmann and Stiefel manifolds

with chordal distance. This is because there is not necessarily

a one-to-one mapping between the minimum distance and the

kissing radius of the code, which follows from the choice of an

extrinsic distance combined with the two-point inhomogeneity

of the spaces [15], [40].

A. Code, Minimum Distance, and Metric Balls

An (N, δ)-code is a finite subset of N elements in M,

C = {C1, . . . ,CN} ⊂ M, (21)

where δ is the minimum distance defined as

δ = min{dc(Ci,Cj) ; Ci,Cj ∈ C, i 6= j}. (22)

A metric ball BC(γ) ⊂ M of radius γ with center C ∈ C
is the subset

BC(γ) =
{
P ∈ M

∣∣ dc(P ,C) ≤ γ
}
⊆ M. (23)

B. Kissing Radius

Given a code, one can surround each codeword by metric

balls of the same radius and enlarge them until two balls touch.

This leads to the notion of kissing radius. The kissing radius is

a generalization of the so-called packing radius. We choose a

different terminology to emphasize here that the kissing radius

of a code may not be a function of the minimum distance, and

also because the packing radius is sometimes defined as δ/2
irrelevantly of the choice of distance [41] by extension from

flat geometry.

Definition 1. The kissing radius of a code C is the maximum

radius of non-overlapping metric balls centered at the code-

words:

̺ = sup
BCk

(γ)∩BCl
(γ)=∅

Ck 6=Cl

γ. (24)

For each codeword pair (Ck, Cl), there exists a mid-

point Mk,l which is the closest equidistant point satisfying

Mk,l = argminM dc(Ck,M) subject to dc(Ck,M) =
dc(Cl,M). The mid-points Mk,l define the mid-distances

̺k,l = dc(Ck,Mk,l) = dc(Cl,Mk,l), and the kissing radius

is the minimum of all of them ̺ = mink 6=l ̺k,l.
As the chordal distance is measured along a geodesic

defined by the associated Riemann metric, the midpoints can

be computed accordingly: with Ck,l(t) the geodesic such that

Ck,l(0) = Ck and Ck,l(1) = Cl, the midpoint is Mk,l =
Ck,l(1/2). In the case of the unitary group and the Grassmann

manifold, the geodesic equation is fully parametrized by a set

of principal angles {θi} as given in (4) and (14), respectively,

and the mid-distance ̺k,l can then be directly computed from

half of these angles { θi
2 }. However, for the case of the Stiefel

manifold, the geodesic equation between two points is not

known as explained in Remark 1. Alternatively, the midpoint

can be computed1 by an orthogonal projection of the center of

mass Ck+Cl

2 , which for the Stiefel manifold is given by polar

decomposition [9].

For spherical codes one has only one principal angle.

This results in a one-to-one mapping between the minimum

distance and kissing radius. In contrast, for the Grassmann

and Stiefel manifolds with chordal distance, the kissing radius

and the minimum distance may not be directly expressible as

functions of each other. First, the kissing radius corresponds

to the mid-distance between two codewords, which may not

be at the minimum distance from each other. Second, for a

given pairwise distance, one may have different mid-distances.

Grassmann and Stiefel manifolds are not in general two-point

homogeneous spaces [15], [40]: one cannot necessarily find a

unitary mapping between two pairs of equidistant points, i.e.,

a pair (Ck,Cl) cannot always be mapped to a pair (Ci,Cj)
even if dc(Ck,Cl) = dc(Ci,Cj). In fact, in the case of

M = Un and GC
n,p, the collection of principal angles provides

the complete relative position between two points which is

transitive under the action of the unitary group. However, by

compressing this “vector-like distance” to the scalar distance

dc, one loses transitivity.

C. Density

The density of a code is the fraction of M covered by

metric balls centered around the codewords with radius equal

to the kissing radius. We consider a uniform measure µ on M
inherited from the Haar measure on the unitary group. Recall

that the Grassmann and Stiefel manifolds are homogeneous

spaces of the unitary group. For any measurable set S ⊂ M
and any U ∈ Un, the uniform measure satisfies µ (US) =
µ (S). Due to the homogeneity of M, the characteristics of

this ball are independent of its center which for convenience

will often not be specified. The measure µ corresponds to a

normalized volume

µ(B(γ)) =
vol B(γ)

vol M , (25)

satisfying µ(M) = 1.

Definition 2. The density of a code C ∈ M is defined as

∆(C) = µ

(
⋃

Ci∈C
BCi

(̺)

)
=

∑

Ci∈C
µ (BCi

(̺))

= Nµ (B(̺)) . (26)

By definition, it satisfies ∆(C) ≤ 1. A maximum packing

code has the maximum density for a given cardinality. The

problem of maximizing the density for a given cardinality

corresponds to maximizing the kissing radius of the code. This

1Except if Ck and Cl are antipodal then their center of mass is 0 which
does not have a unique projection.
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TABLE II
AN EXAMPLE MAXIMAL-MINIMUM-DISTANCE CODE C1 IN GC

4,2 WHICH IS NOT AN OPTIMAL PACKING SINCE IT HAS A LOWER DENSITY THAN C2 .

C1 C2
density ∆ = 8

9

(

7− 4
√
3
)

≈ 0.0638 density ∆ = 1
8
= 0.125

min. dist. δ = 2√
3
≈ 1.15 min. dist. δ = 1

kissing radius ̺ =
√
2α− ≈ 0.65 kissing radius ̺ = 1√

2
≈ 0.71

















α+ 0
α− 0
0 α+

0 α−













α+ 0
−α− 0
0 α+

0 −α−













α− 0
iα+ 0
0 α−
0 iα+













α− 0
−iα+ 0

0 α−
0 −iα+

































1 0
0 1
0 0
0 0













0 0
1 0
0 1
0 0













0 0
0 0
1 0
0 1













0 1
0 0
0 0
1 0

















where α±=
√

1
6 (3±

√
3)

TABLE III
INFINITE CODE FAMILIES Cm

1 AND Cm
2 IN GC

2m,2 GENERALIZING THE

CODES IN EXAMPLE 1

Cm
1 Cm

2

Cardinality N = 4m−1 Cardinality N =
(2m

2

)

min. dist. δ = 2√
3
≈ 1.15 min. dist. δ = 1

kissing radius ̺ =
√
2α− ≈ 0.65 kissing radius ̺ = 1√

2
≈ 0.71

could be in fact reformulated as another maximum-minimum

distance problem where distances among codewords would

be defined by the mid-distances. In the case of the Grassmann

manifold and unitary group, this would correspond to halve

the principal angles in the chordal distance definition, which

for the Grassmann manifold can be identified as the “chordal

Frobenius-norm” [14] (up to a scaling factor).

In general, the packing problem is not necessarily equivalent

to maximizing the minimum distance of the code, and codes

with same minimum distance may also have different kissing

radiuses and thus densities. We illustrate these statements with

two concrete examples below. The first example describes two

Grassmann codes where the (proven) maximum minimum-

distance code has a lower density than another code.

Example 1. Consider the two Grassmannian codes given in

Table II. The density of these codes of cardinality four in GC
4,2

is ∆ = 2̺8 according to the volume formula provided in [17].

The first code C1 is an optimal max-min distance code

reaching the Rankin simplex bound [1], [13], constructed

by embedding the optimal tetrahedron code of GC
2,1 [42].

The embedding is obtained by a tensor product with the

identity matrix, following [43, Prop. 12]. This is a strongly

simplicial configuration in the sense that all principal angles

equal arccos( 1√
3
). The mid-distances between each pair of

codewords are thus all the same, approximately 0.65, leading

to a density of ≈ 0.0638.

The second code C2 is obtained by circular permutation

of the rows of the truncated identity matrix. Its distance

distribution corresponds to the embedding of a square. The

principal angles between two codewords are either {0, π
2 } or

{π
2 ,

π
2 }. The mid-distances between each of the codewords are

either 1/
√
2 or 1. The density of this code is 0.125, almost

twice the density of the optimum max-min distance code C1
while it has a smaller minimum distance.

The codes in Example 1 can be generalized to two in-

finite families of codes Cm
1 and Cm

2 in GC
2m,2 where both

have constant minimum distance and kissing radius: Given

m ≥ 2, the codewords Ck ∈ Cm
1 are constructed by the

m-fold tensor product Ck = I2 ⊗ c1 ⊗ · · · ⊗ cm−1 for all

ci ∈
{
[α+,±α−]T , [α−,±iα+]

T ]
}

, leading to a code with

4m−1 codewords in GC
2m,2 with constant minimum distance

δ = 2/
√
3 and kissing radius ̺ =

√
2α− ≈ 0.65. The

code Cm
2 is obtained by row permutations of the truncated

identity matrix I2m,2 leading to
(
2m

2

)
codewords with constant

minimum distance δ = 1 and kissing radius ̺ = 1/
√
2 ≈ 0.71.

For all m, the first construction Cm
1 has a larger minimum

distance than Cm
2 , but the latter has a larger kissing radius and

density as summarized in Table III. The code Cm
2 is larger

than Cm
1 but one could select only 4m−1 codewords as in Cm

1

without changing the kissing radius and minimum distance.

The second example shows that two optimal maximal-

minimum-distance codes with different densities can exist.

Example 2. In [44], an infinite family of real Grassmann

codes meeting the Rankin simplex bound is described gener-

alizing a code found in [13]. Since the simplex bound is the

same for real and complex Grassmannians, these codes are

also maximum-minimum-distance complex Grassmann codes.

It is observed that this construction can lead to different

codes with same minimum distance but a different distribu-

tion of principal angles, and thus different densities. This

observation follows from the lowest dimensional examples

C3 and C4 in Table IV. Each code is the union of four

orbits under the action of the cyclic group but from different

generator matrices. The density of these codes of cardinality

28 in GC
7,3 can be approximated [17] to ∆ ≈ 2

33̺
24. The

code C3 has three distinct sets of principal angles and thus

three distinct mid-distances from which the kissing radius is

̺ =

√
9−

√
2−

√
3−

√
6

6 ≈ 0.75. The code C4 has two distinct sets

of principal angles and thus two mid-distances, among which

the set of angles {0, arccos 1
3 , arccos

1
3} with mid-distance√

2/3 ≈ 0.817 is also a mid-distance of C3. The kissing radius

is achieved with the other set of principal angles which has a

mid-distance only slightly smaller ≈ 0.805 (it does not seem

to have a compact form). While both codes reach the optimal

minimum distance of 4
3 , the code C4 has a density about 5

times larger than C3.

We briefly discuss the performance of these codes when

applied to MIMO communications.

MIMO precoding is well-known to be related to

Grassmannian packing [8]. In this context, the mu-
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TABLE IV
EXAMPLE OF TWO MAXIMAL-MINIMUM-DISTANCE CODES C3 AND C4 IN GC

7,3 WITH DIFFERENT DENSITIES [44].

C3 C4
density ∆ ≈ 10−4.2 density ∆ ≈ 10−3.5

min. dist. δ = 4
3

min. dist. δ = 4
3

kissing radius ̺ ≈ 0.75 kissing radius ̺ ≈ 0.81
Generator matrices: Generator matrices:





0 1 0 ±
√
2 0 0 0

0 0 1 0 0 0 ±
√
2

0 0 0 0 1 ±
√
2 0





T 



0 1 0 0 0 0 ±
√
2

0 0 1 0 0 ±
√
2 0

0 0 0 ±
√
2 1 0 0





T

The signs are selected such that their product is +1.
28 codewords obtained by circular permutation of the rows of the four generator matrices

tual information with Gaussian signaling is given by

EH

[
log2 det

(
I + γCH

q(H)H
HHCq(H)

)]
where γ is the

per-stream SNR, and q(·) is a quantization map that selects

the codeword index in C maximizing the instantaneous rate

for each channel realization H inside the expectation. Entries

of H ∈ C
p×n are assumed to be standard complex normal

variables CN (0, 1). Numerical evaluations of corresponding

mutual informations for the codes in Examples 1 and 2 show

that the two higher density codes C2 and C4 slightly outperform

the codes C1 and C3, respectively. C2 provides a SNR gain

of 0.16dB over C1, and C4 provides a SNR gain of 0.05dB

over C3, in the SNR region pγ = 20dB. These examples and

other numerical experiments hint that it may be in fact the

density of the code that primarily governs the achievable rate

of transmission rather than the maximum-minimum distance.

We believe this behavior to be quite generic for the following

reason. MIMO precoding reduces to a quantization problem

on the Grassmann manifold with chordal distance [17], and

the mid-distances of the code reflect better the rate-distortion

trade-off since they represent the first border effects of the

Voronoi cells.

We now look at the application of unitary codes as space-

time constellations over a non-coherent MIMO transmission

Y =
√

snrnpCH + N . Here H ∈ C
p×p and N ∈ C

n×p

have standard complex normal CN (0, 1) entries, and C is

uniformly selected from the code C. The standard approach

in this case is to design Grassmann codes that maximize the

product diversity
∏

i sin
2 θi since it is minimizing the pairwise

block error rate at high-SNR [45]. Low-SNR analysis [18]

shows on the other hand that it is the chordal distance (sum

diversity)
∑

i sin
2 θi that dominates the block error rate, and

it was additionally observed in [16] that codes maximizing

the chordal distance can lead to higher mutual information

I(Y ;C) than codes with high product diversity. Furthermore,

subspace perturbation analysis in [46] suggests that an appro-

priate code metric is given by the chordal Frobenius-norm,

which is exactly the kissing radius of the code with chordal

distance as explained above, and thus its density. From the

evaluation of the mutual informations I(Y ;C) of the codes

in Examples 1 and 2 shown on Figure 1, the code density

does not seem to be an ultimate performance measure when

it comes to mutual information, as C1 clearly outperforms C2.

It should be noted that C1 has both a higher minimum chordal

distance and product diversity than C2, the later having zero

product diversity between four codeword pairs out of six.

SNR [dB]
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max-min dist code C
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high density code C
2

max-min dist code C
3

max-min dist code

with higher density C
4

Fig. 1. Comparison of the codes in Examples 1 and 2 when used as a
space-time constellation for non-coherent communication.

D. Hamming Bound

The notion of density directly relates to the Hamming

bound: For any (N, δ)-code, one must satisfy

N ≤ 1

µ(B( δ2 ))
. (27)

The upper bound in (27) is a direct application of the stan-

dard Hamming bound to M without taking into account the

curvature of the space and the choice of distance. The chordal

distance, inherited from a Euclidean embedding, is extrinsic

to the considered curved space and thus never satisfies the

triangle inequality with equality. Accordingly, balls of radius

δ/2 around the codewords do not necessarily form a packing,

as none of the balls would be touching each other and one

could possibly fit in an extra ball. The kissing radius ̺ is

larger than δ/2, and the Hamming bound can be refined by

any radius δ/2 < r ≤ ̺, and ultimately for r = ̺,

N ≤ 1

µ(B(̺))
. (28)

By construction δ
2 ≤ ̺ and thus the Hamming bound (28) is

always tighter than the ‘standard Hamming bound’ (27), while

being asymptotically equivalent for δ → 0.

The difficulty in exploiting the improved bound (28) is in

finding a relationship between the kissing radius and the mini-

mum distance of the code. To obtain a bound on the minimum
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distance, one needs to find a function of the minimum distance

such that δ/2 ≤ f(δ) ≤ ̺. Then, provided that both the

volume expression and f are invertible, it is possible to bound

the minimum distance from above.

IV. VOLUMES

In this section, we address the problem of volume com-

putation in the manifolds, providing two different asymptotic

approximations of the volume of balls operating in different

regimes.

A. Spherical Volumes and Hyperspherical Caps

The (D−1)- and D-dimensional volume of SD−1(R) (with

its natural metric dc) are respectively

AD(R) =
2πD/2

Γ
(
D
2

)RD−1, VD(R) =
πD/2

Γ
(
D
2 + 1

)RD. (29)

Since the manifolds of interest are submanifolds of hy-

perspheres, the considered balls are subsets of hyperspherical

caps. A hyperspherical cap is a ball on a sphere,

CD,R(r) =
{
x ∈ SD−1(R) : ‖x− y‖ ≤ r

}
(30)

for some implicit center y. One can define a uniform spherical

measure σ, and the normalized volume of the spherical caps

is denoted by σ(CD,R(r)). We use a different notation for

distinction with the uniform measure on the manifold M ⊂
SD−1(R) but if considering M = SD−1(R) then the two

measures match µ(B(r)) = σ(CD,R(r)).
The (D− 1)-dimensional volume of a spherical cap can be

computed exactly, as given below. It is given along with two

asymptotics proven in Appendix A.

Lemma 1. The normalized volume (area) of a hyperspherical

cap in SD−1(R) measured with chordal distance is given by

σ(CD,R(r)) = I r2

4R2

(
D − 1

2
,
D − 1

2

)
(31)

where r is the radius of the cap satisfying 0 ≤ r ≤ 2R, and

Ix(a, b) is the regularized incomplete beta function.

As the radius of the cap r goes to zero, the volume of the

spherical cap tends to

σ(CD,R(r)) ≃
1

2
√
π

Γ(D2 )

Γ(D+1
2 )

( r

R

)D−1

. (32)

On the other hand, as the dimension of the sphere D goes to

infinity with
√
D

(
1− r2

2R2

)
fixed, the volume tends to

σ(CD,R(r)) ≃
1

2
erf

(√
D
2

)
− 1

2
erf

(√
D
2

(
1− r2

2R2

))

(33)

where erf(x) is the Gauss error function defined in Eq. (75).

The volume (32) equals VD−1(r)/AD(R). Intuitively, when

a cap is small it is almost “flat” and its volume tends to be the

“area of a disc”. The volume (33) corresponds to an asymptotic

Gaussian behavior for large dimensions: the squared chordal

distance of uniformly distributed random points is asymptot-

ically Gaussian; d2c ∼ N
(
2R2, 4R4

D

)
where N (m, v) is the

normal distribution with mean m and variance v. A similar

expression formulating this high-dimensional regime can be

found in [47], [48]. As D → ∞, high-dimensional random

vectors are asymptotically orthogonal and the chordal distance

tends to
√
2R which is the mid-distance between two antipodal

points.

B. Manifold Volume and Small Ball Approximation

1) Overall Manifold Volume: The volume of a space can

be obtained from the integration of a volume element, which

is unique on a Riemannian manifold up to a non-vanishing

scaling factor. This scaling factor is induced by the chosen

distance, and impacts the overall volume. The theorem below

provides the volumes correctly scaled for the chordal distance.

Theorem 1. The volumes of the manifolds induced by the

chordal distance dc (or its equivalent geodesic distance dg)

are

• for the unitary group [49]

vol Un =
(2π)

n(n+1)
2

∏n
i=1(i− 1)!

, (34)

• for the Stiefel manifold

vol VC

n,p =
2

p(p+1)
2 πnp− p(p−1)

2

∏p
i=1(n− i)!

, (35)

• for the Grassmann manifold

vol GC

n,p = πp(n−p)

p∏

i=1

(p− i)!

(n− i)!
(36)

A detailed volume computation is provided in Appendix B.

While it is possible to find the exact volume for the unitary

group rigorously derived for the chordal distance in [49],

[50], the equivalent result for the Stiefel manifold does not

seem to have been reported before. This volume differs by

a constant factor from the commonly cited formula, see

e.g. [6], [20], [22]. In many contexts, the overall scaling

of the volume is meaningless as often the induced scaling

would be absorbed or canceled out. The volumes known

in the literature arise from integration of a volume element

neglecting scalar prefactors. Conventional volumes in the

literature are expressed as the product of the volumes of

spheres: vol VC

n,p =

n∏

k=n−p+1

V2k(1) =

n∏

k=n−p+1

2πk

(k − 1)!
,

where V2k(1) = vol S2k−1 is given in (29). The two different

conventions are related by vol VC
n,p = 2

p(p−1)
2 vol VC

n,p.

For the Grassmann manifold with the geometry

induced by the spherical embedding, it appears that

these normalizations cancel out so that we have

vol GC

n,p =
vol VC

n,p

vol Up
=

vol VC
n,p

vol Up
=

vol Un

vol Upvol Un−p
.

However, we remark that the true volume of the Grassmannian

with the quotient geometry GC
n,p

∼= Un/(Up × Un−p) and

distance dg∗ is vol∗ GC

n,p =
vol Un

vol Upvol Un−p
, which differs

from vol GC
n,p in the embedding geometry computed above
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Fig. 2. The small ball volume approximation (39) of Corollary 1 compared to simulation.

by a factor of 2p(n−p). Using the conventional volumes, one

would get vol∗ GC

n,p =
vol Un

vol Upvol Un−p
= vol GC

n,p, i.e. the

volumes in the two geometries would erroneously be assumed

to be the same. When interpreting the Haar measure as a

normalized volume (25), keeping track of the scaling of the

volume is necessary. We suspect that omitting the volume

scaling factors is one of the reasons behind the numerical

errors observed in [22], in which a standard volume formula

was used irrespectively of the geometric interpretation of the

Stiefel and Grassmann manifolds, and the related distances.

Considering dc, some special manifolds of interest are

isometrically isomorphic to spheres: the Stiefel manifolds

VC
n,1

∼= S2n−1, and the Grasmann manifolds GC
2,1

∼= S2( 12 ).
As expected, the volumes in Theorem 1 match the spherical

volume (29) in these cases.

2) Small Ball Approximation: The volume of a small

geodesic ball can be well approximated by the volume of a

ball of equal radius in the tangent space. This approximation,

tight as the radius goes to zero, is actually an upper bound as

discussed in [22], known as the Bishop–Gromov inequality,

a volume comparison theorem valid for any Riemannian

manifold. In [22], it was used to evaluate volumes of small

geodesic balls in the Grassmann and Stiefel manifolds. For

the case of the Stiefel manifolds, results were extended to

the chordal distance in an indirect manner from the geodesic

distance dg∗ combined with local inequalities. Surprisingly, the

results of [17] show that this approximation is exact for the

Grassmann manifold with chordal distance smaller than one,

in the same manner as the area of a cap of the real sphere

equals the area πr2 of a disk. Later, the same approximation

was used in [51] for volumes in simple flag manifolds.

Refining the result, a power series expansion for the volume

of small geodesic ball in any Riemannian manifold [52] was

later leveraged in [26], [27]. Limiting this expansion to the

leading term gives as r → 0

vol B(r) = Vdim(r)(1 +O(r2)) (37)

where Vdim(r) is according to (29) with the dimension dim of

the manifold in Table I. Intuitively, in a small neighborhood

the manifold looks like a Euclidean space and can be approx-

imated by the tangent space. Other coefficients of the series

expansion are addressed in [27] requiring computation of the

curvature of the manifold.

The expansion (37) given for the geodesic distance extends

to the corresponding chordal distance induced by the isometric

embedding in R
D as dg = dc + O(d3c) [53], [54]. Therefore,

the normalized volume of metric balls in M with dimension

dim for both the geodesic distance dg and the chordal distance

dc is given by

µ(B(r)) =
Vdim(r)

vol M (1 +O(r2)) (38)

as r → 0. We then have the following results as a direct

consequence of Theorem 1 and VD(r) given in (29).

Corollary 1. The volume of metric balls as r → 0 with metrics

dc or dg is

µ(B(r)) = cn,pr
dim(1 +O(r2)), (39)

• where for the Stiefel manifold VC
n,p,

cn,p =
2−

p(p+1)
2 π

−p
2

Γ(p(n− p/2) + 1)

p∏

i=1

(n− i)!, (40)

• and for the Grassmann manifold GC
n,p [17],

cn,p =
1

(p(n− p))!

p∏

i=1

(n− i)!

(p− i)!
. (41)

In the case of the geodesic distance dg , the Bishop–Gromov

inequality [22] is accordingly given by µ(B(r)) ≤ cn,pr
dim.

For the Stiefel manifold with n 6= p, the result above differs

from the one in [27] derived for quotient geometry (dg∗).

The two results match for the unitary group with n = p,

as expected. Comparing to the Grassmannian case in [27],

there is a difference by a factor of 22p−
n−p

2 (n−p+1). The local
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equivalence between the chordal distance dc and the geodesic

distance dg makes the result identical for both metrics. For the

Grassmann manifold with chordal distance, the result of [17]

is stronger than Corollary 1 as it gives µ(B(r)) = cn,pr
dim

for r < 1.

The approximated volumes in Corollary 1 for the Stiefel

manifold (with p 6= n) and for the unitary group (with p = n)

are compared with simulation in Fig. 2. The figures are shown

in logarithm scales since the region of interest is small chordal

distance. We see that the approximations match almost exactly

the simulations as r → 0, which is a consequence of the exact

volume normalization given in Theorem 1.

C. Complementary Balls

As an interlude, we discuss complementary balls. Small ball

approximations can be used to compute the volume of very

large balls almost totally covering the space. In the same man-

ner as a sphere can be fully covered by two complementary

caps satisfying

σ(CD,R(r)) = 1− σ(CD,R(
√

4R2 − r2)), (42)

we have the following analogous result for the Stiefel and

Grassmann manifolds, proved in Appendix C.

Lemma 2. In the Stiefel manifold (VC
n,p, dc),

µ(B(r)) = 1− µ(B(
√

4p− r2)) (43)

implying that the volume is symmetrical at µ(B(
√
2p)) = 1/2.

For the Grassmann manifold (GC
n,p, dc),

µ(B(r)) = 1− µ

(
B⊥

(√
2p(n− p)

n
− r2

))
, (44)

where B⊥(γ) =
{
[P ] ∈ GC

n,p | dc([Q], [P ]) ≤ γ
}

for an

arbitrary center [Q] ∈ GC
n,n−p and with chordal distance2

as defined in (19).

We remark that there is a structural difference here between

the Stiefel and Grassmann manifolds. The antipodal on the

embedding sphere to a point in the Stiefel manifold always

belongs to the same Stiefel manifold. This is not always true

for the Grassmann manifold except for p = n/2, as the

antipodal on the sphere to a point in GC
n,p belongs to GC

n,n−p.

This observation will be useful in the interpretation of the

high-dimensional regime discussed next.

D. Volume Comparison Theorem and Spherical-Cap Approx-

imation

We now present a second volume approximation: For the

manifolds M isometrically embedded in SD(R), the uniform

measure of a ball in M can be well approximated by the

spherical measure of a cap on SD(R). The two normalized

volumes are indeed asymptotically equivalent in the high-

dimensional regime. Before stating the theorem, we highlight

an intermediate result of independent interest.

2Note that here the definition of the chordal distance between two Grass-
mannian planes of non-equal dimensions differs from [17], where one would

have µ(B(r)) = 1− µ(B⊥(
√

p− r2)), see [33].

Lemma 3. The squared chordal distance d2c = d2c (In,p,Y )
or d2c = d2c([In,p], [Y ]) drawn from a uniformly distributed

random point Y ∈ VC
n,p and a reference point, say In,p,

converges in distribution to a Gaussian random variable:

1√
Var [d2c ]

(
d2c − E

[
d2c
]) d−→ N (0, 1) , (45)

• for the Stiefel manifold VC
n,p, as n → ∞ and where the

finite-size regime mean and variance are given by

E
[
d2c
]
= 2p, Var

[
d2c
]
=

2p

n
; (46)

• for the Grassmann manifold GC
n,p, as n, p → ∞ with

(n− 2p) fixed, and where

E
[
d2c
]
=

p(n− p)

n
, Var

[
d2c
]
=

p2(n− p)2

n4 − n2
. (47)

The proofs are given in Appendix D. They are obtained by

reducing the chordal distances to the linear statistics of random

matrix ensembles and studying their moment-generating func-

tions. Such linear statistics are asymptotically Gaussian, and

by computing the two first moments one finds the asymptotic

forms. The case of the Stiefel manifold is closely related to

the partition function of the von-Mises Fisher distribution,

while for the Grassmann manifold it is related to the partition

function of the Bingham distribution [55].

It follows that the chordal distance is well-approximated by

a Gaussian random variable with the same finite-size mean

and variance, i.e. d2c(In,p,Y ) ∼ N
(
2p, 2p

n

)
for the Stiefel

manifold VC
n,p, and d2c([In,p], [Y ]) ∼ N

(
p(n−p)

n , p2(n−p)2

n4−n2

)

for the Grassmann manifold GC
n,p.

Using (33) for the hypespherical cap volumes, one gets a

volume comparison of the ball in the embedded manifold with

the embedding spherical cap:

Theorem 2. The normalized volume of a ball of radius r in M
is asymptotically equal to the normalized volume of a cap with

same radius in the embedding sphere (M, dc) →֒ SD−1(R),

µ(B(r)) ≃ σ(CD,R(r)) (48)

in the high-dimensional regime as given in (33). We have

• for the Stiefel manifold M = VC
n,p,

µ(B(r)) ≃ 1

2
erf (

√
np)− 1

2
erf

(√
np

(
1− r2

2p

))
,

(49)

as n → ∞ with
√
2np

(
1− r2

2p

)
fixed;

• and for the Grassmann manifold M = GC
n,p,

µ(B(r)) ≃ 1

2
erf

(√
n2 − 1

2

)

− 1

2
erf

(√
n2 − 1

2

(
1− n r2

p(n− p)

))
(50)

as n, p → ∞ with (n− 2p) and
√
n2 − 1

(
1− n r2

p(n−p)

)

fixed.
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Fig. 3. Illustration of Theorem 2: volume of balls in manifolds (Monte Carlo simulation), spherical cap volume (31), and asymptotic evaluation (33)
(equivalently (49) and (50)).

The proof is given in Appendix E. The volume (49) gen-

eralizes our previous result [31], [32] from the unitary group

to the Stiefel manifold. The volume (50) corresponds to the

special case p = q in [33]. Theorem 2 provides a geometric

unification of the asymptotic expressions which are shown

to be closely related due to their spherical embedding. The

different asymptotic regimes for the Stiefel and Grassmann

manifolds can be geometrically understood as the behaviors

in Lemma 2. The Stiefel manifold fully covers all possible

distances on its embedding sphere. This is not the case for

the Grassmann manifold, and as a consequence µ(B(r)) and

σ(CD,R(r)) are not defined on the same support, except for

GC

n,n2
. In the regime n, p → ∞ with fixed n − 2p, one has

p → n
2 and the volume expressions are then asymptotically

defined on the same support.

There exists a body of literature on comparison theorems

in Riemannian geometry that compares volumes among man-

ifolds with reference to the standard sphere. However, these

theorems often compare manifolds of equal dimension, e.g. the

Bishop-Gromov inequality or the Berger-Kazdan comparison

theorem. To the best of our knowledge, volume comparisons

of these manifolds with their embedding spheres in Theorem 2

is new.

The quality of the approximation is illustrated in Fig-

ure 3. The normalized volume of metric balls for different

Grassmann and Stiefel manifolds obtained via Monte Carlo

simulations is compared to the normalized volume of their

respective embedding hyperspherical cap, together with their

joint asymptotic expression. The exact volume of the hy-

perspherical cap is as given by Lemma 1. This numerical

evaluation shows that the three volume expressions are very

close to each other even in the low dimensional regime.

V. KISSING RADIUS AND DENSITY

In this section, we discuss the kissing radius of codes with

chordal distance, and apply volume approximations derived in

the previous section to evaluate code density. Recall that for

the Grassmann and Stiefel manifold with chordal distance, the
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kissing radius ̺ cannot be directly expressed in term of the

minimum distance of the code. In the following, upper and

lower bounds on ̺ and the corresponding bounds on density

are provided.

A. Preliminaries

1) Hypothetical Covering Radius: Ideally, a set of packing

balls would fully cover the space, reaching a maximum density

of one. This is only possible when the cardinality of the code

is N = 2, otherwise one gets an upper bound. This ideal radius

rN fulfills

µ(B(rN )) =
1

N
. (51)

Two volume approximations were discussed in the previous

section. Depending of the regime, one may compute rN
accordingly.

• For N ≥ c−1
n,p the radius is less than one, and the small

ball approximation leads to

rN ≈ (cn,pN)
−1
dim , (52)

where cn,p is given in (40), (41) and dim is the dimension

of the manifold as given in Table I. For the Grassmann

manifold, (52) holds with equality with N ≥ c−1
n,p [17].

• Otherwise for a larger ball, occurring with n, p large

and relatively small N , the spherical approximation of

Theorem 2 leads to

rN ≈
√
2R

√
1−

√
2
D erf−1

(
erf

√
D
2 − 2

N

)
, (53)

where R,D are the radius and the dimension of the

spherical embedding, provided in Table I.

2) Kissing Radius for Spherical Codes: For spherical codes

with chordal distance, the kissing radius of a code is given by

a one-to-one mapping from the minimum distance, directly

computable by the Pythagorean theorem. Given an (N, δ)-
spherical code on SD−1(R), the midpoint on the geodesic

between the two codewords of distance δ is at distance ̺s
from the extremities:

̺s =
√
2R

√

1−
√

1− δ2

4R2
, (54)

which can be inverted as

δ2 = 4̺2s −
̺4s
R2

. (55)

3) Preliminary Bounds on Kissing Radius: Since we are

considering a manifold isometrically embedded in the Eu-

clidean sphere SD−1(R), an (N, δ)-code in M is an (N, δ)-
spherical code. As a consequence, as balls of radius ̺s are

non-overlapping on SD−1(R), their inverse image on M are

also non-overlapping, and we can deduce that ̺s ≤ ̺. On the

other hand, we know that for every non-overlapping ball of

radius r, we have r ≤ rN .

Lemma 4. Given an (N, δ)-code in M isometrically embed-

ded in SD−1(R), the kissing radius ̺ is bounded by

̺s ≤ ̺ ≤ rN , (56)

where ̺s is given in (54) and rN satisfies (51).

It should be noted here that the lower bound is a function of

the minimum distance δ, while the upper bound is a function

of the cardinality N .

B. Bounds on Kissing Radius and Density

We now provide bounds on the kissing radius as a function

of the minimum distance of the code only, and corresponding

bounds on code density.

Proposition 1. For any (N, δ)-code C in M, we have

̺ ≤ ̺ ≤ ¯̺, (57)

where

̺ =





√
p
2

(
1−

√
1− δ2

p

)
for M = GC

n,p√
2p

(
1−

√
1− δ2

4p

)
for M = VC

n,p

(58)

¯̺ =





1√
2

√
⌈δ2⌉ −

√
⌈δ2⌉ − δ2 for M = GC

n,p

√
2

√
⌈
δ2

4

⌉
−

√⌈
δ2

4

⌉
− δ2

4 for M = Un

(59)

and ⌈x⌉ is the smallest integer greater than x. It follows,

therefore, that the density is bounded by

Nµ
(
B(̺)

)
≤ ∆(C) ≤ min {1, Nµ (B(¯̺))} . (60)

A detailed proof can be found in Appendix F. Given two

points either on the Grassmann manifold or the unitary group,

their midpoint can be determinated according to their principal

angles. The bounds then follow by optimizing over the prin-

cipal angles. For the unitary group, the obtained lower bound

matches the spherical lower bound in Lemma 4, and can thus

be extended to any Stiefel manifold. We conjecture that the

upper bound (59) can be generalized to all Stiefel manifolds.

The lack of a closed-form geodesic equation between two

points, as explained in Remark 1 (or equivalently the absence

of the notion of principal angles), renders a tentative proof of

generalization difficult. Nevertheless, numerical experiments

support this generalization, and note that the upper bounds (59)

do not depend on any dimension parameter.

For the Grassmann manifold, the lower bound in Proposi-

tion 1 provides an improvement of the spherical embedding

bound (see Appendix F-D).

Corollary 2. For the Grassmann manifold, the lower bound

in Proposition 1 is tighter than the lower bound in Lemma 4.

These two bounds are equal if and only if p = n/2.

Figure 4 illustrates the upper and lower bounds (57) on the

kissing radius and shows that δ/2 is a good approximation for

̺ only when the minimum distance of the code is relatively

small. In general, since the chordal distance is not strictly

intrinsic, we have δ
2 < ̺. The bounds are also compared to

105 simulated midpoints between a fixed center and uniformly-

distributed random points. We stress that in this case the

bounds are tight in the sense that it is always possible to

construct two diagonal codewords fulfilling the bounds.
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(a) Grassmann manifold GC
8,4

(b) Unitary group U3 (c) Stiefel manifold VC
4,2

Fig. 4. Illustration of the kissing radius bounds (57) from Proposition 1. Bounds are compared to simulated midpoints between two randomly generated
codewords. It is also compared with the estimate δ/2, corresponding to the classical packing radius in flat geometry.

C. On High-Density Codes

Since the lower bound (58) is an increasing function of

δ, a large minimum distance always guarantees a good code

density but not necessarily the highest one.

1) Numerical Experiments: Figure 5 compares the density

of codes with sizes from N = 2 to N = 15 in GC
4,2 to the

density bounds (60) in Proposition 1. The Grassmannian GC
4,2

is embedded in S14
(

1√
2

)
, and the corresponding spherical

Rankin bound3 provides an upper bound on the maximum

possible minimum distance of Grassmannian codes. We have

generated Grassmannian codes according to two criteria: a

maximum-minimum-distance criterion, and a low-distortion4

criterion. For visibility, the densities from the latter are dis-

played at (N + 0.1) while for the former at (N − 0.1). For

3In this dimensionality, spherical codes achieve the simplex bound for N ≤
15, then the orthoplex bound for 16 ≤ N ≤ 30.

4The code distortion refers here to the average squared quantization error
of a uniform random source quantized to the code.

each code, two densities are displayed on Fig. 5: i) the density

as a Grassmann code, and ii) the density as a spherical code.

The bounds on Grassmann densities from Proposition 1 are

shown as range bars. The higher is the minimum distance of

the code, the higher is the bar.

Maximum-minimum-distance codes were obtained using

the Alternating Projection algorithm from [41]. The obtained

codes match the Rankin bound on squared minimum distance

with 10−4 numerical precision.

The Lloyd algorithm is used to create low-distortion codes.

It is expected to provide high density codes since the kissing

radius corresponds to the first border effect of Voronoi cells.

In [17], it was shown that distortions are bounded by idealized

codes that would have only one border effect, corresponding

to a kissing radius equal to rN , i.e. the upper bound (56) of

Lemma 4.

While the Alternating Projection algorithm generates nu-

merically optimal simplicial codes with maximum minimum

distance, their density appears to be always close to the corre-
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4,2 and their image code in S14
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as a function of the number of points. The error bars represent the density bounds (60)

from Proposition 1 according to the minimum distance of a code.

sponding lower bound. This means that the codes are strongly

simplicial configurations where all principal angles are almost

equal. Comparing to the codes generated by Lloyd algorithm,

the results for cardinalities 3, 4 and 5 clearly show the weak

relationship between maximizing the minimum distance and

maximizing the density. For N = 3, the Lloyd algorithm

produced an equivalent max-min-distance code, which is at

the density lower bound. For N = 4, it generated a code

with smaller minimum distance but larger density, reaching the

density upper bound. The configurations obtained for N = 4
correspond to codes numerically equivalent to the closed form

codes in Table II. For N = 5, the Lloyd algorithm produced

a code with minimum distance close to the optimum, as for

N = 3, but this time with a density reaching the upper bound,

while the code from the Alternating Projection algorithm is

close to the lower bound. For other cardinalities, the Lloyd

algorithm produced codes with greater or equal density but

smaller minimum distance than Alternating-Projection codes.

Lastly, an interesting characteristic of Grassmann codes is

that their density for N = 2 is not ∆ = 1, except for p =
n
2 . This comes from the fact that when p 6= n

2 one cannot

have two spherically antipodal points, c.f. the symmetry of

Lemma 2. For example, the density of two orthogonal lines

in GC
3,1 is equal to 0.5, and one can actually pack a third

orthogonal line to reach the density of 0.75.

2) Comments on Algebraic Constructions: For a given

minimum distance δ, the proof of Proposition 1 shows that to

achieve the largest density in GC
n,p or Un, a highly concentrated

distribution of principal angles should be targeted where

almost all non-zero principal angles should be at the maximum

value which is π
2 for GC

n,p and π for Un. Conversely, the lower

bound is achieved when all principal angles are equal.

When constructing group codes from orbits of a symmetry

group, the distribution of principal angles can be controlled.

The two infinite families of codes in Table III are orbit codes.

Cm
1 is an orbit under the action of the (m − 1)-fold tensor

product of the projective unitary representation of the Klein 4-

group V4 [56], i.e. a direct product of the group of symmetries

of a tetrahedron. As a result, the principal angles between two

points at minimum distance are
{
arccos 1√

3
, arccos 1√

3

}
and

the kissing radius is at the lower bound (58) of Proposition 1.

The code Cm
2 is an orbit of the fundamental representation

of the symmetric group S2m via permutation matrices in the

corresponding dimension. The resulting principal angles are

either
{

π
2 ,

π
2

}
or

{
0, π

2

}
if the two codewords have zero or one

column in common, respectively. Contrary to Cm
1 , the codes

Cm
2 reach the upper bound (59) of Proposition 1.

In [44], a family of optimal max-min distance Grassmann

codes is presented from which the code C2 in Example 1

is a subset of. These codes are orbits of a large Clifford

group generalizing the symmetries of the square. This results

in highly symmetric codes where many principal angles are
π
2 . Nevertheless, the kissing radius of these codes typically

does not reach the upper bound (59). Consider the half-

subspaces construction in GC

n,n2
from [44], [57]. Its complex

extension [16] leads to a code of 2(n2 − 1) codewords. Due
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to its orbit structure, the collection of pairwise distances

or principal angles can be computed independently of the

reference codeword as described in [44]. For each codeword,

there is always an antipodal codeword at pairwise distance

δ2i,j = n, and 2(n2 − 2) others at distance δ2i,j = n
4 . The

codes thus meet the Rankin orthoplex bound. Among the

codewords at minimum distance from a given codeword, there

are (n2 − 4) that have principal angles {π
2 , . . . ,

π
2 , 0, . . . , 0}

(each value with multiplicity n
4 ), whereas the remaining n2

codewords have principal angles {π
4 , . . . ,

π
4 }. Thus roughly

half of the squared mid-distances are ̺2i,j = n
4 , and roughly

the other half are ̺2i,j = (2−
√
2)n

8 . These mid-distances thus

meet the upper bound (59) and lower-bound (58), respectively.

The kissing radius of this code family is hence the lower bound

̺ =

√
(2−

√
2)n

8 . It should be remarked that a mid-distance at

the lower bound (58), where principal angles between two

codewords are equal, corresponds to maximizing the diversity

product for the given chordal distance. Therefore, about half

of the codeword pairs have a good product diversity of 2−
n
2 ,

while the others have a product diversity 0. The codes in [16],

[44] provide thus a mixture of high chordal mid-distance (as

advocated in [46] by the chordal Frobenius-norm) and high

product diversity (as advocated in [45]), in addition to a high

chordal distance (as advocated in [18]). This observation may

provide further support to their good performance observed

in [16] when applied to space-time constellations.

D. Relation to Density of Spherical Codes.

As considered in this work, for manifolds isometrically

embedded in Euclidean spheres, an (N, δ)-code in M is also

an (N, δ)-spherical code. The density of a code in the manifold

differs from the density of its image code in the embedding

sphere. Combining the asymptotic equality from Theorem 2

between volume of balls in the manifold and hyperspherical

cap with the kissing radius bounds from Proposition 1, we

have the following comparison.

Proposition 2. The density of codes in the Stiefel and Grass-

mann manifolds are asymptotically greater than the density of

their image spherical codes in the high-dimensional regime of

Theorem 2. The inequality is strict for the Grassmann manifold

with N > 2.

This proposition is illustrated in Figure 5 where densities

of the image spherical codes of the considered Grassmann

codes are also depicted. One observes that the densities of the

image spherical codes are always less than the densities of the

original Grassmannian codes for N > 2.

We remark also few special cases. In the case p = 1, the

lower and upper bounds on the kissing radius in Proposition 1

are matching ̺ = ¯̺. Moreover with p = 1, the Stiefel manifold

is isometric to the embedding sphere, while for the Grassmann

manifold the volume of a ball has been calculated exactly

in [17]. In these cases the density can be computed exactly as

a function of the minimum distance.

Corollary 3. For any packing with p = 1, on manifolds GC
n,1

or VC
n,1,

̺ = ̺ = ¯̺ (61)

and

∆(C) =





N
(

1−
√
1−δ2

2

)n−1

for M = GC
n,1

NI 1
2
(1−

√
1−δ2/4)

(
2n−1

2 , 2n−1
2

)
for M = VC

n,1

.

(62)

Finally, for the specific case of n = 2, p = 1, the

Grassmann manifold is also isometric to the real sphere:

GC
2,1

∼= S2 [58, Ex. 17.23] [42], and the discussed density

of a code is consistent with the definition of the density for a

sphere packing from the literature [59].

E. Hamming-type Bounds

Bounds on density directly translate to Hamming-type

bounds on code cardinality and minimum distance.

1) Hamming Bound on Cardinality: According to Proposi-

tion 1, we have:

Corollary 4. For any (N, δ)-code in M, and given ̺ defined

in (58),

N ≤ 1

µ(B(̺))
. (63)

For the unitary group, this bound is equivalent to the one

derived in [23]. For the Grassmann manifold, a bound based

on spherical embedding and asymptotic analysis was provided

in [20]. Equation (63) provides a tighter bound.

2) Hamming-type Bound on Minimum Distance: From the

spherical embedding of the manifolds, we have the following

Hamming-type bound on the minimum distance:

Lemma 5. Given an (N, δ)-code in M isometrically embed-

ded in SD−1(R), and a rN satisfying (51), we have

δ2 ≤ 4r2N − r4N
R2

. (64)

This follows from a direct combination of (55) and

Lemma 4. For the unitary group, a similar bound was derived

in [23, Theorem 2.4]. For the Stiefel manifold, the result is

new. For the Grassmann manifold, a tighter bound is provided

as a by-product of Proposition 1, which is a generalization of

a bound for line packing in [60] to any value of p:

Lemma 6. Given a (N, δ)-code in GC
n,p, we have

δ2 ≤ 4r2N − 4

p
r4N . (65)

Remark 2. For the case p = 1 the bound of Lemma 6 reduces

to the following bound derived in [60, (32)]:

δ2 ≤ 4N
−1
n−1 − 4N

−2
n−1 . (66)

3) Illustration and Conjectured Improvement: The standard

Hamming bound (27) and the Hamming bound from the

kissing radius analysis (65) are displayed in Fig. 6 for the

Grassmannian GC
4,2 as a function of the code rate. One verifies

that (65) improves (27) and they are getting equivalent as

N → ∞. These Hamming bounds are also compared to the

spherical Rankin bounds. Rankin provided three consecutive

upper bounds in [1] on the number of spherical caps that can

be packed for a given angular radius. The two first bounds,
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Fig. 6. The standard Hamming bound (27), the Hamming bound from the
kissing radius analysis (65) and a conjectured improvement (67), compared
to the Rankin bound for codes in GC

4,2.

known as the simplex and orthoplex bounds, can be easily

inverted to bound the minimum distance. However, the third

bound is expressed through an integral which we numerically

inverted for Fig. 6. For GC
4,2, the Rankin bounds are tight at

the saturating value N = 30 [61], i.e. at rate 1.22. For higher

cardinality the Rankin bounds are not reachable. As expected,

the Hamming bounds become tighter than the Rankin bounds

for large code sizes.

By construction the Hamming bound is loose even if one

would be able to exactly compute the kissing radius ̺ as a

function of minimum distance. The manifold can never be

totally covered by packing balls (except for N = 2), and one

always has a gap between ̺ and rN . In order to sharpen the

Hamming bound one could use ¯̺ rather than ̺ to get a better

estimate of the minimum distance. It is very likely that in

general ¯̺≤ rN , which can be verified at the two ends of the

code size spectrum N = 2 and N → ∞. Inverting (59) gives

the following approximation,

δ2 .





⌈2r2N⌉ −
(
⌈2r2N⌉ − 2r2N

)2

for M = GC
n,p

4⌈ r2N
2 ⌉ − 4

(
⌈ r2N

2 ⌉ − r2N
2

)2

for M = VC
n,p

,

(67)

which is guaranteed to be an upper bound as N → ∞. This

conjectured improvement is displayed for GC
4,2 in Fig. 6. Here,

rN is computed from (52) from [17] as in this case it is exact

for any N ≥ 2. Interestingly, it meets the Rankin orthoplex

bound at N = 32, i.e. close to N = 30 where this bound is

saturating.

VI. CONCLUSION

The density of Grassmann and Stiefel codes with chordal

distance has been investigated. The analysis pertains to treat

the codes as subclasses of spherical codes since the chordal

distance induces embeddings in Euclidean hyperspheres. The

investigation is motivated by an exotic behavior: in this context

maximizing the density of a code is not equivalent to maxi-

mizing its minimum distance. We addressed both critical steps

to compute a code’s density, which are computing the volume

of balls and the kissing radius. For the volume of balls, our

main results included a proper scaling of the manifold volume

consistent with the chordal distance, which is needed in

small ball approximation. Moreover, an asymptotic Gaussian

behavior of chordal distances in the high-dimensional regime

leading to an asymptotic equivalence between the volume of

balls in the manifolds and the volume of caps in the embedding

spheres was found. Then the kissing radius and density of

codes were bounded as a function of the minimum distance

of the codes. It was concluded that Stiefel and Grassmann

codes have larger density than their image spherical codes

in high dimensions. Finally, as a by-product of the analysis,

refinements of the standard Hamming bounds for Stiefel and

Grassmann codes were provided.

APPENDIX A

PROOF OF LEMMA 1–HYPERSPHERICAL CAP AREA

A. Proof of (31)

The area of a hyperspherical cap is given in [62] in which

the radius of the cap is measured by an angle 0 ≤ φ ≤ π
2 . This

translates in our notation to a radius of r2 = 2R2(1− cosφ),

that gives sin2 φ = r2

R2 (1− r2

4R2 ) and directly leads to

vol(CD,R(r)) =
AD(R)

2
I r2

R2 (1− r2

4R2 )

(
D − 1

2
,
1

2

)
(68)

for r ≤
√
2R.

The result further simplifies by normalizing by the overall

area of the sphere AD(R) and using the identity Ix(a, a) =
1
2I4x(1−x)

(
a, 1

2

)
valid for 0 ≤ x ≤ 1

2 [63, (8.17.6)] [64]. The

volume for larger radius r ≥
√
2R can be computed by the

complementary cap, i.e.

σ(CD,R(r)) = 1− σ(CD,R(
√
4R2 − r)), (69)

and using the identity Ix(a, b) = 1− I1−x(b, a) [63, (8.17.4)]

[64]. Altogether, one obtains (31) for the whole range of the

radius 0 ≤ r ≤ 2R.

B. Proof of (32) – Small Cap

We start from (68) which after normalization gives

σ(CD,R(r)) =
1

2
I r2

R2 (1− r2

4R2 )

(
D − 1

2
,
1

2

)
. (70)

Expressing the regularized incomplete beta function Ix(a, b) =
Bx(a, b)/B(a, b) with the Beta function B(a, b) =
Γ(a)Γ(b)/Γ(a+ b) and the incomplete Beta function Bx(a, b)
gives

σ(CD,R(r)) =
1

2
√
π

Γ(D2 )

Γ(D−1
2 )

B r2

R2 (1− r2

4R2 )

(
D − 1

2
,
1

2

)
.

(71)

From the identity Bx(a, b) = xa

a F (a, 1 − b; a + 1;x) [63,

(8.17.7)] where F (a, b; c; z) is the hypergeometric function
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given by [63, (15.2.1)], it can be verified that Bx(a, b) =
xa

a (1 +O(x)) as x → 0, which in turn gives

σ(CD,R(r)) =
1

2
√
π

Γ(D2 )

Γ(D+1
2 )

rD−1

RD−1
(1 +O(r2)) (72)

as r → 0.

C. Proof of (33) – Large Dimension

The normalized volume of a cap CD,R(r) can be inter-

preted as the probability that a uniformly distributed vector

x ∈ SD−1(R) is at distance less than r from a fixed point

e. Without loss of generality, we choose the center of the cap

to be e = [R, 0, . . . , 0]T and express the chordal distance by

d2c(e,x) = 2R2
(
1− x1,D/

√
D
)

where x1,D =
√
D

R2 〈e,x〉 is

the first coordinate of x normalized by the sphere radius and

scaled. Noting that

0 ≤ dc(e,x) ≤ r ⇔
√
D ≥ x1,D ≥

√
D

(
1− r2

2R2

)
,

the volume is

σ(CD,R(r)) = Pr{x ∈ SD−1(R) | 0 ≤ dc(e,x) ≤ r}

= Fx1,D

(√
D
)
− Fx1,D

(√
D

(
1− r2

2R2

))
(73)

where Fx1,D
is the cumulative distribution function of the ran-

dom variable x1,D. Note that since the constraint 0 ≤ dc(e,x)

is always satisfied, one has Fx1,D

(√
D
)
= 1.

With D → ∞, x1,D converges in distribution to a standard

Gaussian random variable ∼ N (0, 1) [34], [35], i.e.

lim
D→∞

Fx1,D
(z) =

1

2

(
1 + erf

(
z√
2

))
(74)

where

erf(x) =
2√
π

∫ x

0

e−t2dt (75)

is the Gauss error function. Therefore, with z =√
D

(
1− r2

2R2

)
fixed, we have

lim
D→∞

σ(CD,R(r)) = 1− lim
D→∞

Fx1,D
(z)

=
1

2
− 1

2
erf

(√
D

(
1− r2

2R2

))
. (76)

Finally, in order to provide a finite-size approximation that

satisfies the basic property of a measure, σ(CD,R(0)) = 0,

in addition to converging to the asymptotic form above,

we use in (73) the finite-size correction Fx1,D
(
√
D) ≈

1
2

(
1 + erf

(√
D
))

→ 1 which corresponds to approximating

x1,D to be Gaussian also in the finite-size regime. This leads

to the given expression.

APPENDIX B

PROOFS OF OVERALL VOLUMES

M is an m-dimensional Riemann manifold with infinitesi-

mal metric

ds2 =

m∑

j,k=1

gjkdxjdxk (77)

in local coordinates {xj}mj=1. The volume element of M
is [65]

dω =
√

det{gjk}mj,k=1dx1 . . . dxm. (78)

Now, consider the Euclidean space of m×m complex matri-

ces with its canonical inner product (Cm×m, 〈·, ·〉 = RTr ·H ·)
from which the Riemann metrics considered are constructed.

Given M ∈ C
m×m we have

ds2 = RTr(dMHdM) = ‖dM‖2F

=
m∑

j,k=1

R(dMjk)
2 + I(dMjk)

2. (79)

Restricting the metric to the space of skew-Hermitian matrices,

with A ∈ u(m) we get

ds2A = −Tr(dA2) =

m∑

j=1

|dAjj |2 + 2
∑

j<k

|dAjk|2 (80)

and the corresponding volume element

dωA = 2
m(m−1)

2

m∏

j=1

|dAjj |
m∏

j<k

R(dAjk)I(dAjk). (81)

Note here that the off-diagonal elements are counted twice,

leading to an overall scaling factor of 2
m(m−1)

2 . The overall

volumes of the manifolds need to be scaled accordingly to be

consistent with the chosen metric.

A. Volume of Unitary Group

Given a unitary matrix U ∈ Un, by differentiating UHU =
I , we obtain

UHdU + dUHU = 0 (82)

showing that the differential form UHdU is skew-Hermitian.

Due to the unitary invariance of the metric ds2, its restriction

to Un can be expressed in terms of the global form UHdU .

Then, the infinitesimal metric is

ds2U = −Tr(UHdU)2

=

n∑

j=1

|(UHdU)jj |2 + 2
∑

j<k

|(UHdU)jk|2 (83)

and the volume form in local coordinates is

dωU = 2
n(n−1)

2 dνU , (84)

where

dνU =

n∏

j=1

|(UHdU)jj |
n∏

j<k

R((UHdU)jk)I((U
HdU)jk)

(85)

is a common volume element normalized so that
∫
Un

dνU =

2nπn2

Γ̃n(n)
[66], [67]. Finally with the metric considered,

vol Un =
2

n(n+1)
2 πn2

Γ̃n(n)
, (86)

where the complex multivariate gamma function is

Γ̃p(n) = π
p(p−1)

2

p∏

i=1

Γ(n− i+ 1). (87)
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B. Volume for Stiefel Manifold in Theorem 1

Now let Y ∈ VC
n,p and U ∈ Un such that UHY = In,p, i.e.

the first p columns of U =
(
Y Y ⊥) are the columns of Y .

The differential form UHdY is “rectangular skew-Hermitian”,

i.e. UHdY =

(
Y HdY
Y ⊥HdY

)
where Y HdY is p-by-p skew-

Hermitian. Similarly, due to unitary invariance of the metric,

the volume element for the Stiefel manifold can be expressed

in terms of the global form UHdY and is given in local

coordinates as

dωY = 2
p(p−1)

2 dνY , (88)

where

dνY =

p∏

i=1

|(UHdY )ii|

×
p∏

k=1

n∏

j=k+1

R((UHdY )jk)I((U
HdY )jk) (89)

is a common volume element normalized so that
∫
VC

n,p
dνY =

2pπnp

Γ̃p(n)
[66], [67]. Finally,

vol VC

n,p =
2

p(p+1)
2 πnp

Γ̃p(n)
. (90)

C. Volume for Grassmann Manifold

The volume of the Grassmann manifold directly follows

from the quotient geometry over the Stiefel manifold associ-

ated with dg:

vol GC

n,p =
vol VC

n,p

vol Up
. (91)

Alternatively it can be computed from the quotient geometry

over the unitary group associated with dg∗

vol GC

n,p = 2−
dim
2

vol Un

vol Upvol Un−p
, (92)

where the scaling coefficient comes from the
√
2 in the

definition of dg∗ compared to dg .

APPENDIX C

PROOF OF LEMMA 2–COMPLEMENTARY BALLS

a) Stiefel Manifold: Consider the center to be In,p ∈
VC
n,p. It has a unique antipodal point (i.e. a farthest possible

point from In,p) which is −In,p and we have

dc(In,p,−In,p) = 2
√
p , dmax. (93)

Given a point Y ∈ VC
n,p such that dc(I,Y ) ≥ r, it is a direct

verification that dc(−I,Y ) ≤
√
dmax − r2, thus Y /∈ BI(r)

implies Y ∈ B−I(
√
dmax − r2) and finally

µ(B(r)) + µ(B(
√
dmax − r2)) = 1. (94)

b) Grassann Manifold: From the mapping (18), the

Grasmmann manifolds GC
n,p and GC

n,n−p are both embedded

in the same sphere Sn2−2(
√

p(n−p)
2n

). The definition of chordal

distance thus directly extends between any [Y ] ∈ GC
n,p and

[Z] ∈ GC
n,n−p as

d2c([Y ], [Z]) = ‖Π̄Y − Π̄Z‖2F
=

2p(n− p)

n
− ‖Y HZ‖2F (95)

The distance reaches its maximum at dmax =
√

2p(n−p)
n with

[Z] = [Y⊥], where the Y⊥ is the orthogonal complement of

Y such that
(
Y Y⊥

)
is a unitary matrix. The maximum

distance is exactly twice the embedding radius, dmax = 2R,

i.e. [Y⊥] is the antipodal of [Y ] on the embedding sphere. The

final result follows by the same argumentation as for the Stiefel

manifold. Here the Pythagorean theorem gives d2c([Y ], [Z])+

d2c([Y⊥], [Z]) = 2p(n−p)
n .

APPENDIX D

PROOF OF THE ASYMPTOTIC GAUSSIANITY OF THE

CHORDAL DISTANCES IN LEMMA 3

Before proceeding the proof, we first state some useful

definitions and intermediary results.

A. The Hypergeometric Function of Complex Matrix Argu-

ment

For an n × n Hermitian matrix A, the hypergeometric

function of a complex matrix argument is defined as [68],

[69]

pF̃q (a1, . . . , ap; b1, . . . , bq;A) =
∞∑

k=0

∑

κ

(a1)κ · · · (ap)κ
(b1)κ · · · (bq)κ

Cκ(A)

k!
, (96)

where κ denotes a partition of integer k into no more than n
parts, i.e. k = κ1+κ2+ · · ·+κn with κ1 ≥ κ2 · · · ≥ κn ≥ 0,

the sum is over all partitions, and

(a)κ =

n∏

j=1

(a− j + 1)κj
=

n∏

j=1

(κj + a− j)!

(a− j)!
(97)

is the multivariate hypergeometric coefficient [68, Eq. (84)].

In (96), Cκ(A) denotes a zonal polynomial [68], [69], which

is a homogenous symmetric polynomial of degree k in the n
eigenvalues of A. Denoting the j-th eigenvalue of A by aj ,

the zonal polynomial can be represented as [68, Eq. (85)],

Cκ(A) = χκ(1)χκ(A), (98)

where

χκ(1) =
k!
∏

1≤i<j≤n(κi − κj − i+ j)
∏n

j=1(κj + n− j)!
(99)

and

χκ(A) =
det

(
a
κj+n−j
i

)

det
(
an−j
i

) (100)
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is a Schur polynomial5. Schur polynomials form a basis in the

space of homogeneous symmetric polynomials in n variables

of degree k for all k ≤ n. In particular, we have [68, Eq. (17)]

(TrA)k =
∑

κ

Cκ(A). (101)

We will need the following identity6 [69, Eq. (6.2.3)]

∫

X

etr (−XZ) (det (X))
n−p

× rF̃s (a1, . . . , ar; b1, . . . , bs;X) dX =

r+1F̃s

(
a1, . . . , ar, n; b1, . . . , bs;Z

−1
)
(det (Z))

−n
Γ̃p(n),

(102)

where X , Z are p×p Hermitian matrices and Γ̃p(n) is defined

in (87).

We will prove the following lemma.

Lemma 7. For any p× n complex matrix S, we have

∫

Y ∈VC
n,p

etr (2R (SY )) dµ(Y ) = 0F̃1

(
n;SSH

)
. (103)

where dµ(Y ) is the uniform measure.

Proof: First, note that it is equivalent to show that

(
detSSH

)n−p
∫

Y

etr
(
SY + Y HSH

)
dµ(Y ) =

(
detSSH

)n−p
0F̃1

(
n;SSH

)
. (104)

We will show that the matrix-variate Laplace transforms of

both sides of the above equation are the same. The Laplace

transform of the left-hand-side (LHS) is

TLHS(Z) =

∫

SSH

etr
(
−SSHZ

) (
detSSH

)n−p

×
∫

Y

etr
(
SY + Y HSH

)
dµ(Y )d

(
SSH

)

=
Γ̃p(n)

πnp

∫

Y

∫

S

etr
(
−SSHZ

+SY + Y HSH
)
dSdµ(Y ). (105)

The equality above is established by utilizing the decomposi-

tion [69, Th. 4.5] S = LU where L is a p×p lower triangular

matrix with positive diagonal elements and UH ∈ VC
n,p, which

leads to the fact that [69, Coroll. 4.5.3]

dS = 2−p
(
detSSH

)n−p
d
(
SSH

)
dνU , (106)

where here [69, Coroll. 4.5.2] the measure on the Stiefel

manifold is normalized so that
∫
VC

n,p
dνU = 2pπnp

Γ̃p(n)
. Applying

the transform S = Z−1/2T with dS = (detZ)
−n

dT

5When some eigenvalues of A are equal, the corresponding Schur polyno-
mials (100) are obtained by using l’Hospital’s rule.

6etr(·) = eTr(·) denotes exponential of trace.

in (105), we have

TLHS(Z) =
Γ̃p(n) (detZ)

−n

πnp

∫

Y

∫

T

etr
(
−TT

H

+Z−1/2
TY + Y HTH(Z−1/2)H

)
dT dµ(Y )

=
Γ̃p(n) (detZ)

−n
etr

(
Z−1

)

πnp
×

∫

Y

∫

T

etr
(
−
(
T − Y H(Z−1/2)H

)

(
T − Y H(Z−1/2)H

)H
)
dT dµ(Y )

= Γ̃p(n) (detZ)
−n

etr
(
Z−1

)
, (107)

where the last step is established by the fact that p(X) =
1

πnp etr
(
− (X −M) (X −M)

H
)

is a matrix-variate Gaus-

sian density function.

The Laplace transform of the right-hand side (RHS) of (104)

is

TRHS(Z) =

∫

SSH

etr
(
−SSHZ

) (
det

(
SSH

))n−p

× 0F̃1

(
n;SSH

)
d
(
SSH

)

= Γ̃p(n) (det (Z))
−n

1F̃1

(
n;n;Z−1

)

= Γ̃p(n) (det (Z))
−n

0F̃0

(
Z−1

)

= Γ̃p(n) (det (Z))
−n

etr
(
Z−1

)

= TLHS(Z), (108)

where the second equality is obtained by the identity (102). By

the uniqueness of Laplace transforms, we complete the proof

of the lemma.

B. Stiefel Manifold

We now prove Lemma 3 in the case of the Stiefel manifold.

The expansion of the chordal distance in terms of an inner

product in the ambient space gives

d2c(In,p,Y ) = ‖In,p − Y ‖2F = 2p− 2RTr(IH
n,pY ). (109)

Accordingly, define the linear statistic

Yn =

√
2n

p
RTr(IH

n,pY ), (110)

so that the distance is d2c(In,p,Y ) = 2p
(
1− 1√

2pn
Yn

)
.

This type of linear statistic converges in distribution to a

standard Gaussian random variable as n approaches infin-

ity [35]. To see this, consider the moment generating function

of Yn which can be represented as a hypergeometric function

of matrix argument using Lemma 7 with S =
√

n
2pνI

H
n,p,

E
[
eνYn

]
= 0F̃1

(
n;

nν2

2p
IH
n,pIn,p

)

= 0F̃1

(
n;

nν2

2p
Ip

)
. (111)

Note that it corresponds to the partition function of the

von-Mises Fisher distribution [55] with parameter matrix√
2n
p νIn,p.
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By the definition of the hypergeometric function (96), we

can further write

E
[
eνYn

]
=

∞∑

k=0

∑

κ

1

(n)κ

Cκ

(
nν2

2p Ip

)

k!

=

∞∑

k=0

(
nν2

2p

)k

k!

∑

κ

Cκ(Ip)

(n)κ
, (112)

where the last equality is established by (100). Since the

leading order term in (n − j + 1)κj
equals nκj , by (97), for

large n we have

(n)κ =

n∏

j=1

(n− j + 1)κj
∼ nκ1+···+κn = nk. (113)

Using (101), the sum in (112) for large n becomes

∑

κ

Cκ(Ip)

(n)κ

n→∞
=

1

nk

∑

κ

Cκ(Ip) =
1

nk
Trk(Ip) =

pk

nk
,

(114)

and we arrive at the result,

lim
n→∞

E
[
eνYn

]
=

∞∑

k=0

(
ν2

2

)k

k!
= e

ν2

2 , (115)

which is the moment generating function of a zero mean and

unit variance Gaussian distribution.

Furthermore, we can directly identify in (112) the finite-

size moments of Yn from the series expansion of the moment

generating function E
[
eνYn

]
=

∑∞
l=0

νl

l! E
[
Y l
n

]
. For any n,

the mean is E [Yn] = 0 since there are no odd powers of ν
in (112). The variance follows from the (k = 1)-term in (112)

for which there is only one partition κ = {1, 0, . . . , 0} such

that (n)κ = n, χκ(1) = 1, Cκ(Ip) = χκ(Ip) = p, and thus

Var [Yn] = 1 also for any finite n.

As a byproduct, this convergence can be written in terms

of the chordal distance as
√

n

2p

(
d2c(In,p,Y )− 2p

) d−→ N (0, 1) as n → ∞, (116)

and where the finite-size regime mean and variance are exactly

E
[
d2c(In,p,Y )

]
= 2p and Var

[
d2c(In,p,Y )

]
= 2p

n .

C. Grassmann Manifold

The case of the Grassmann manifold can be deduced as a

by product of the volume computation in [33] by setting q = p
(i.e. the dimension of the center of the ball and the elements

in the ball have the same dimension). We provide below al-

ternative lines of derivation from the hypergeometric function

interpretation consistent with the Stiefel case discussed above.

If Y is uniformly distributed on the Stiefel manifold, then

[Y ] is uniformly distributed on the Grassmann manifold.

A point [Y ] on the Grassmann manifold can be uniquely

defined by its projection matrix ΠY = Y Y H . Looking at

the uniform measure as a probability measure, the mapping

Y → ΠY maps the uniform distribution on VC
n,p to the

uniform distribution on GC
n,p. Namely, if Y has the same

distribution as UY for all U ∈ Un, then ΠUY has the

same distribution as UΠY UH for all U ∈ Un. Accordingly,

consider

d2c([In,p], [Y ]) =
1

2
‖E −ΠY ‖2F

= p− Tr(Y HEY ) (117)

with E = In,pI
H
n,p and such that Y is uniformly distributed

on the Stiefel manifold VC
n,p.

The chordal distance can thus be expressed as a function

of a linear statistic Zn,p = Tr(Y HEY ). This type of linear

statistic is asymptotically Gaussian for n, p → ∞ and n− 2p
constant as shown in [33]7 through its interpretation as the

sum of squared principal cosines distributed according to the

Jacobi ensemble [70, Sec. 2.1.2.] and using [71, Th. 2].

The moment-generating function of Zn,p corresponds to

the partition function of the Bingham distribution [55] with

parameter matrix νE, which can be expressed as a confluent

hypergeometric function of complex matrix argument. This

can be verified by matrix-variate Laplace transforms, as in the

proof of Lemma 7. It follows that the moments of Zn,p can

also be computed by identification from the definition of the

hypergeometric function (96):

E
[
eνZn,p

]
=

∞∑

k=0

νk

k!
E
[
Zk
n,p

]

= 1F̃1 (p, n; νE)

=

∞∑

k=0

νk

k!

∑

κ

(p)κ
(n)κ

Cκ(E). (118)

The mean of Zn,p is given for k = 1 for which there is only

one partition such that χκ(E) = p, and E [Zn,p] =
p2

n . For

the second moments with k = 2, the possible partitions are

κ = {2, 0, . . . , 0} and κ = {1, 1, 0, . . . , 0}. The corresponding

Schur polynomials for each partition are χκ(E) = p
2 (p + 1)

and χκ(E) = p
2 (p−1), respectively; while for both partitions

one has
(p)κ
(n)κ

= p(p+1)
n(n+1) and χκ(1) = 1. One obtains after

some manipulations E
[
Z2
n,p

]
= p2(np2−2p+n)

n(n2−1) and thus the

variance Var [Zn,p] =
p2(n−p)2

n2(n2−1) . Therefore, we have

n
√
n2 − 1

p(n− p)

(
Zn,p −

p2

n

)
d−→ N (0, 1) .

Equivalently, the squared chordal distance for the Grassmann

manifold converges in distribution to a Gaussian random

variable as

n
√
n2 − 1

p(n− p)

(
d2c([In,p], [Y ])− p(n− p)

n

)
d−→ N (0, 1)

with n, p → ∞ and n − 2p constant, and its finite-regime

mean and variance are exactly E
[
d2c([In,p], [Y ])

]
= p(n−p)

n

and Var
[
d2c([In,p], [Y ])

]
= p2(n−p)2

n4−n2 .

7One has Zn,p =
∑p

i=1 cos
2 θi from the definition of the chordal

distance (17). Computing the moment-generating function, one gets
E
[

eνZn,p
]

= epνDp(iν) where Dp(ν) is defined in [33, Eq. (22)].
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APPENDIX E

PROOF OF THE VOLUME COMPARISON IN THEOREM 2

Now with Lemma 3, we are in position to prove Theorem 2.

The result follows by identification of the asymptotic forms

between the manifold and the embedding sphere.

A. Stiefel Manifold

By choosing without loss of generality In,p as the center of

the ball and noting that

0 ≤ dc(In,p,Y ) ≤ r ⇔
√

2np ≥ Yn ≥
√

n

2p
(2p− r2)

where Yn =
√

n
2p

(
2p− d2c(In,p,Y )

)
; identification of the

normalized volume of the ball as a probability measure gives

µ(B(r)) = Pr{Y ∈ VC

n,p | 0 ≤ dc(In,p,Y ) ≤ r}

= FYn

(√
2np

)
− FYn

(√
2np

(
1− r2

2p

))
(119)

where FYn
(z) is the cumulative distribution of the random

variable Yn with Y being uniformly distributed on VC
n,p. Note

that FYn
(
√
2np) = 1 by definition of the chordal distance.

As shown via Lemma 3, Yn converges in distribution to a

standard Gaussian random variable, and thus with n → ∞ and

z =
√
2np

(
1− r2

2p

)
fixed, one has

lim
n→∞

µ(B(r)) = 1− lim
n→∞

FYn
(z)

=
1

2
− 1

2
erf

(√
np

(
1− r2

2p

))
. (120)

The final asymptotic expression is obtained by using the

finite-size correction FYn
(
√
2np) ≈ 1

2

(
1 + erf

(√
2np

))
→ 1

in (119) in order to provide an approximation that simulate-

neously satisfies µ(B(0)) = 0 and the asymptotic limit (120).

This leads to (49).

Finally, one verifies that the asymptotic volume of a ball

in (49) is exactly the asymptotic volume of a cap in the

embedding sphere VC
n,p →֒ S2np−1(

√
p) by identification with

D = 2np and R =
√
p in (33).

B. Grassmann Manifold

Again from the results of [33], one may directly obtain (50)

by setting q = p. Alternatively, the volume of a ball of radius

r centered around [In,p] can be expressed as

µ(B(r)) = Pr{[Y ] ∈ GC

n,p | 0 ≤ dc([In,p], [Y ]) ≤ r}
= Pr{Y ∈ VC

n,p | 0 ≤ dc([In,p], [Y ]) ≤ r}
= FZ̃n,p

(√
n2 − 1

)

−FZ̃n,p

(√
n2 − 1

2

(
1− n r2

p(n− p)

))
, (121)

where FZ̃n,p
(z) is the cumulative distribution of the random

variable Z̃n,p = n
√
n2−1

p(n−p)

(
p(n−p)

n − d2c([In,p], [Y ])
)

such that

Y is uniformly distributed on the Stiefel manifold VC
n,p.

As shown in Lemma 3, Z̃n,p converges in distribution to a

standard Gaussian random variable as n, p → ∞ with (n−2p)

fixed. Thus with z =
√

n2−1
2

(
1− n r2

p(n−p)

)
also fixed, one has

lim
n,p→∞

µ(B(r)) = 1− lim
n,p→∞

FZ̃n,p
(z))

=
1

2
− 1

2
erf

(√
n2 − 1

2

(
1− n r2

p(n− p)

))
.

(122)

Again, the final asymptotic expression (50) is obtained

by using the finite-size correction FZ̃n,p

(√
n2 − 1

)
≈

1
2

(
1 + erf

(√
n2 − 1

))
→ 1 in (121) in order to provide a vol-

ume approximation that simultaneously satisfies µ(B(0)) = 0
and the asymptotic condition (122).

Finally, one verifies also here that the asymptotic volume

of a ball in (50) equals the asymptotic volume of a cap

in the embedding sphere GC
n,p →֒ Sn2−2

(√
p(n−p)

2n

)
by

identification with D = n2 − 1 and R =
√

p(n−p)
2n in (33).

APPENDIX F

PROOF OF KISSING RADIUS BOUNDS IN PROPOSITION 1

Consider a code C = {C1, . . . ,CN} with pairwise

distances among the codewords {δi,j}i6=j such that δ =
min{δi,j}. Between each codeword there is a different mid-

distance {̺i,j}i6=j and the kissing radius ̺ = min ̺i,j . The

detailed derivations below provide a lower and upper bound

on a mid-distance ̺(δi,j) ≤ ̺i,j ≤ ¯̺(δi,j) as function of the

distance δi,j . It can be verified that the obtained bounds ̺ and

¯̺ are increasing functions. It then follows that min{̺(δi,j)} =
̺(min{δi,j}) and min{ ¯̺(δi,j)} = ¯̺(min{δi,j}), and one has

̺(δ) ≤ ̺ ≤ ¯̺(δ).

A. Grassmann Manifold

The principal angles θ = (θ1, . . . , θp) between two code-

words Ci, Cj separated by δ satisfies
∑p

i=1 sin
2(θi) = δ2.

Without loss of generality, the code may be rotated so that

the Stiefel representatives of these codewords are of the form

Ci = In,p and Cj = [(diag(cos θ) diag(sin θ))T ] [13].

The chordal distance is measured along the geodesic.

The principal angles between the midpoint Mi,j (on the

geodesic joining Ci and Cj) and a codeword Ci or Cj are

( θ12 , . . . ,
θp
2 ) [14]. It follows that the squared chordal distance

between the midpoint on the geodesic and an extremity of the

geodesic is

̺2 =

∥∥∥∥sin
θ

2

∥∥∥∥
2

2

=

p∑

i=1

sin2
θi
2
. (123)

Finding lower and upper bounds reduces to solving the

following optimization problems:

minimize/maximize
θ∈[0, π

2 ]p
‖ sin θ

2 ‖22
subject to ‖ sinθ‖22 = δ2.

(124)
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First, to find the minimum, consider the corresponding

Lagrange function

Λ(θ1, . . . , θp, λ) = ‖ sin θ

2
‖22 + λ

(
‖ sinθ‖22 − δ2

)
. (125)

Solving:

∂Λ

∂θi
= sin θi(1/2 + 2λ cos θi) = 0 for i = 1 . . . p (126)

∂Λ

∂λ
=

p∑

i=1

sin2 θi − δ2 = 0 (127)

yields a set of stationary points where at least x angles are

nonzero such that x ≥ ⌈δ2⌉ and equal to θ∗ = arcsin δ√
x

.

It is then easy to verify that the objective funtion f(x) =∑p
i=1 sin

2 θi
2 = x/2(1 −

√
1− δ2/x) is a strictly decreasing

function on [⌈δ2⌉, p] and thus is minimized for x = p. The

result follows.

Maximization in (124) is obtained when a minimum number

of angles is maximized, i.e., with (θ⋆1 , . . . , θ
⋆
p) ∈ [0, π

2 ]
p such

that θ⋆1 = · · · = θ⋆⌊δ2⌋ = π
2 , θ⋆⌈δ2⌉ = arcsin(

√
δ2 − ⌊δ2⌋) and

θ⋆⌈δ2⌉+1 = · · · = θ⋆p = 0. This can be verified by contradiction

as in [23]: Defining si = sin2 θi and t(si) = (1−√
1− si)/2,

consider the equivalent problem of maximizing
∑

t(si) such

that
∑

si = δ2 and without loss of generality 1 ≥ s1 ≥
s2 · · · ≥ sp ≥ 0. By contradiction, assume that

∑
t(si) is

maximum at a with ai > 0∀i. It is possible to find a b with

bi ≥ ai for 1 ≤ i ≤ p − 1 and bp = 0. Since t′(·) is strictly

increasing, it follows from the mean value theorem that there

exist c ∈ (ap−1, bp−1) and d ∈ (0, ap) such that

∑
t(bi)− t(ai) ≥ t′(c)

p−1∑

i=1

(bi − ai) + t′(d)(ap − bp)

= (t′(d) + t′(c))ap > 0, (128)

where the last equality is due to the constraint
∑

bi =
∑

ai =
δ2, which is in contradiction with the fact that

∑
t(ai) is a

maximum. Repeating the procedure from sp to s⌈δ2⌉ leads to

the results. Lastly, the maximum is

p∑

i=1

sin2
θ⋆i
2

=
⌊δ2⌋
2

+
1−

√
1− (δ2 − ⌊δ2⌋)

2

=
1

2

(
⌈δ2⌉ −

√
⌈δ2⌉ − δ2

)
. (129)

B. Unitary Group

A simple adaptation of the proof for the unitary group can

be done, see also [23] where similar optimization problems

are considered. Consider a unitary code C with minimum

distance δ. The angles (θ1, . . . , θn) between two codewords

Ci, Cj separated by δ now satisfies
∑n

i=1 sin
2( θi2 ) = δ2

4 .

Again, the chordal distance is measured along the geodesic

and the principal angles between the midpoint and a codeword

are ( θ12 , . . . ,
θn
2 ). It follows that the squared chordal distance

between the midpoint on the geodesic and an extremity of the

geodesic is

̺2 = 4

n∑

i=1

sin2
θi
4
. (130)

Finding lower and upper bounds reduces to solving the

following optimization problems:

minimize/maximize
θ∈[−π, π]n

4‖ sin θ

4 ‖22
subject to ‖ sin θ

2 ‖22 = δ2

4 .
(131)

By using the change of variables φ = (θ + π)/2, γ = δ
2

and ρ = ̺
2 , we recover the optimization problem (124). The

result follows.

C. Stiefel Manifold

For a generic Stiefel manifold, the notion of principal angles

does not exist. The obtained lower bound for the unitary

group is actually matching the kissing radius bound from the

spherical embedding. This result thus directly extends to all

Stiefel manifolds. However, we were not able to generalize

the upper bound. We provide some discussion below.

Without loss of generality, we can assume that the first point

is In,p and the second point is Y . If Y is block unitary as

Y = [U 0]T , where U ∈ Up then the geodesic between this

two points stays in Up embedded in VC
n,p, and the upper bound

from the unitary group would apply.

For a generic Y , the distance only depends on the diagonal

element of Y = {Yij}:

d2c(In,p,Y ) = 2(p−R(Tr(IH
n,pY )) = 2

(
p−

p∑

i=1

R(Yii)

)

= 2

(
p−

p∑

i=1

cos θi

)
= 4

p∑

i=1

sin2
θi
2

= 4p sin2
θ

2
, (132)

where without of loss of generality, we have written cos θi =
R(Yii) and cos θ = 1

p

∑p
i=1 cos θi. The angles {θi} then

correspond the canonical embbeding of the Stiefel manifold

in (S2n−1)p, the angle θ to the embedding in S2np−1(
√
p).

The geodesic is not along these angles, and the midpoint,

say MY , on the geodesic is not at { θi
2 } nor at θ

2 . However

since we have an isometry for these embeddings,

d2c(In,p,MY ) ≥ 4

p∑

i=1

sin2
θi
4

≥ 4p sin2
θ

4
. (133)

From this, by maximizing the right hand-side of the first

inequality, we can deduce that the maximum is greater or equal

to the upper bound of the unitary group, i.e.

max
Y

d2(In,p,MY ) ≥ ¯̺. (134)

A generalization would imply that maxY d2(In,p,MY ) = ¯̺.

D. Proof of Corollary 2

For the Grassmann manifold with R2 = p(n−p)
2n , it can be

easily verified that p ≤ 4R2 with equality if and only if p =
n/2. Then, since x/2(1−

√
1− δ2/x) is a strictly decreasing

function, it follows that ̺s ≤ ̺ with equality if and only if

p = n/2.
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l’École Norm. Supér., vol. 23, pp. 9–32, 1906.

[35] D. S. P. Richards, “High-dimensional random matrices from the classical
matrix groups, and generalized hypergeometric functions of matrix
argument,” Symmetry, vol. 3, pp. 600–610, 2011.

[36] J. Breuer and M. Duits, “Central limit theorems for biorthogonal
ensembles and asymptotics of recurrence coefficients,” J. Amer. Math.
Soc., vol. 30, no. 1, pp. 27–66, Jan. 2017.

[37] P. Sole, “Packing radius, covering radius, and dual distance,” IEEE
Trans. on Inf. Theory, vol. 41, no. 1, pp. 268–272, Jan. 1995.

[38] A. Schenk, R. Fischer, and L. Lampe, “A stopping radius for the sphere
decoder and its application to MSDD of DPSK,” IEEE Comm. Letters,
vol. 13, no. 7, pp. 465–467, July 2009.

[39] A. Schenk and R. Fischer, “A stopping radius for the sphere decoder:
Complexity reduction in multiple-symbol differential detection,” in Proc.
Int. ITG Conf. Source and Channel Coding, Jan. 2010, pp. 1–6.

[40] H.-C. Wang, “Two-point homogeneous spaces,” Ann. Math., vol. 55,
no. 1, pp. 177–191, Jan. 1952.

[41] I. S. Dhillon, R. W. Heath Jr, T. Strohmer, and J. A. Tropp, “Constructing
packings in Grassmannian manifolds via alternating projection,” Exper.
Math., vol. 17, no. 1, pp. 9–35, 2008.

[42] R.-A. Pitaval, H.-L. Maattanen, K. Schober, O. Tirkkonen, and R. Wich-
man, “Beamforming codebooks for two transmit antenna systems based
on optimum Grassmannian packings,” IEEE Trans. Inf. Theory, vol. 57,
no. 10, pp. 6591–6602, Oct. 2011.

[43] J. Creignou, “Constructions of Grassmannian simplices,” eprint
arXiv:cs/0703036, Mar. 2007.

[44] A. R. Calderbank, R. H. Hardin, E. M. Rains, P. W. Shor, and N. J. A.
Sloane, “A group-theoretic framework for the construction of packings
in Grassmannian spaces,” J. Algebraic Combin., vol. 9, pp. 129–140,
1999.

[45] B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for
multiple-antenna communications in Rayleigh flat fading,” IEEE Trans.
Inf. Theory, vol. 46, no. 2, pp. 543–564, Mar. 2000.

[46] R. H. Gohary and T. N. Davidson, “Noncoherent MIMO communication:
Grassmannian constellations and efficient detection,” IEEE Trans. Inf.
Theory, vol. 55, no. 3, pp. 1176–1205, Mar. 2009.

[47] A. M. Chudnov, “On minimax signal generation and reception algo-
rithms (rus.),” Probl. Inform. Trans., vol. 22, no. 4, p. 4954, 1986.

[48] ——, “Game-theoretical problems of synthesis of signal generation and
reception algorithms (rus.),” Probl. Inform. Trans., vol. 27, no. 3, p.
5765, 1991.

[49] L. K. Hua, Harmonic Analysis of Functions of Several Variables in
the Classical Domains. American Mathematical Society: Providence,
Chinese original 1958, Russian translation, Moskva 1959.

[50] K. Zyczkowski and H.-J. Sommers, “Hilbert-Schmidt volume of the set
of mixed quantum states,” J. Phys. A: Math. Gen., vol. 36, no. 39, pp.
10 115–10 130, 2003.

[51] I. Kim, S. Park, D. Love, and S. Kim, “Improved multiuser MIMO
unitary precoding using partial channel state information and insights
from the Riemannian manifold,” IEEE Trans. Wireless Commun., vol. 8,
no. 8, pp. 4014–4023, Aug. 2009.

[52] A. Gray, “The volume of a small geodesic ball of a Riemannian
manifold,” Michigan Math. J., vol. 20, no. 4, pp. 329–344, 1974.

[53] M. Belkin and P. Niyogi, “Towards a theoretical foundation for
Laplacian-based manifold methods,” J. Comput. Syst. Sci., vol. 74, no. 8,
pp. 1289–1308, 2008.

[54] M. Belkin, “Problems of learning on manifolds,” Ph.D. dissertation,
University of Chicago, 2003.



24

[55] Y. Chikuse, Statistics on special manifolds. Lecture Notes in Statistics
174, Springer, New York, 2003.

[56] R. A. Pitaval and O. Tirkkonen, “Grassmannian packings from orbits of
projective group representations,” in Proc. Asilomar Conf. on Sig., Syst.
and Comp., Nov. 2012, pp. 478–482.

[57] P. W. Shor and N. J. A. Sloane, “A family of optimal packings in
Grassmannian manifolds,” J. Algebraic Combin., vol. 7, no. 2, pp. 157–
164, 1998.

[58] R. Bott and L. W. Tu, Differential forms in algebraic topology. Springer
– Verlag, 1982.

[59] B. W. Clare and D. L. Kepert, “The closest packing of equal circles
on a sphere,” Proc. Roy. Soc. London Ser. A, vol. 405, no. 1829, pp.
329–344, 1986.

[60] P. Xia, S. Zhou, and G. Giannakis, “Achieving the Welch bound with
difference sets,” IEEE Trans. Inf. Theory, vol. 51, no. 5, pp. 1900–1907,
May 2005.

[61] R.-A. Pitaval, O. Tirkkonen, and S. Blostein, “Low complexity MIMO
precoding codebooks from orthoplex packings,” in Proc. IEEE Int. Conf.
Commun., June 2011, pp. 1–5.

[62] S. Li, “Concise formulas for the area and volume of a hyperspherical
cap,” Asian J. Math. Stat., vol. 4, no. 1, pp. 66–70, 2011.

[63] “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/,
Release 1.0.10 of 2015-08-07, online companion to [64]. [Online].
Available: http://dlmf.nist.gov/

[64] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, Eds., NIST
Handbook of Mathematical Functions. New York, NY: Cambridge
University Press, 2010, print companion to [63].

[65] L. Pastur and M. Shcherbina, Eigenvalue Distribution of Large Random
Matrices. American Mathematical Society, 2011.

[66] R. J. Muirhead, Aspects of Multivariate Statistical Theory. John Wiley
& Sons, New York, 1982.

[67] A. Edelman, “Eigenvalues and condition numbers of random matrices,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1989.

[68] A. T. James, “Distributions of matrix variates and latent roots derived
from normal samples,” Ann. Math. Statist., vol. 35, no. 2, pp. pp. 475–
501, May 1964.

[69] A. M. Mathai, Jacobians of Matrix Transformations and Functions of
Matrix Arguments. Singapore: World Scientific, 1997.

[70] I. M. Johnstone, “Multivariate analysis and jacobi ensembles: Largest
eigenvalue, Tracy–Widom limits and rates of convergence,” Ann. Stat.,
vol. 36, no. 6, pp. 2638–2716, 2008.

[71] K. Johansson, “On random matrices from the compact classical groups,”
Ann. Math., vol. 145, no. 3, pp. 519–545, May 1997.

Renaud–Alexandre Pitaval received a ‘Diplôme d’Ingénieur” in 2008 from
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