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Enhancing atom mapping with multitask 
learning and symmetry‑aware deep graph 
matching
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Abstract 

Atom mapping involves identifying the correspondence between individual atoms in reactant molecules and their 
counterparts in product molecules. This process is crucial for gaining deeper insight into reaction mechanisms, such 
as defining reaction templates and determining which chemical bonds are formed or broken during a reaction. 
However, reliable atom mapping data are often limited or incomplete within chemical databases, rendering manual 
annotation impractical for large-scale datasets. To address this limitation, we propose the Symmetry-Aware Multitask 
Atom Mapping Network (SAMMNet), a model designed to automatically infer atom correspondences by incorporat-
ing an auxiliary self-supervised task during training. SAMMNet employs molecular graph representations and lever-
ages graph neural networks to capture both general and task-specific features, enabling enhanced predictive perfor-
mance. Our experimental results demonstrate that the multitask learning framework, coupled with symmetry-aware 
atom mapping, improves accuracy and robustness in atom mapping predictions. This makes our method a promising 
advancement for computational chemistry and related fields.

Scientific Contribution 

This study introduces SAMMNet, a novel Symmetry-Aware Multitask Atom Mapping Network, advancing atom 
mapping methodologies by integrating multitask learning and post-prediction symmetry refinement. Unlike prior 
approaches, SAMMNet leverages auxiliary self-supervised tasks to enhance molecular graph representations, improv-
ing mapping accuracy while addressing imbalanced reactions through graph padding techniques.

Keywords  Atom mapping, Graph matching, Multitask learning, Graph representation learning

Introduction
In a chemical reaction, reactant molecules are converted 
into product molecules by rearranging their atoms. This 
transformation involves breaking and forming bonds, 
altering the structure and distribution of atoms within 
the molecules. The process of identifying the corre-
spondence of atoms between reactants and products is 
described by atom mapping, which tracks how atoms are 
redistributed during the reaction.

In computer-aided synthesis, atom mapping is used to 
extract reaction rules from known chemical processes 
and predict the outcomes of new or unknown reactions. 

Communicated by Barbara Zdrazil.

*Correspondence:
Maryam Astero
maryam.astero@aalto.fi
Juho Rousu
juho.rousu@aalto.fi
1 Computer Science, Aalto University, Konemiehentie 2, 02150 Espoo, 
Finland

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-025-01030-3&domain=pdf


Page 2 of 17Astero and Rousu ﻿Journal of Cheminformatics           (2025) 17:87 

Furthermore, the importance of atom mapping extends 
beyond theoretical chemistry, playing a pivotal role in 
fields such as drug design, computational chemistry, and 
reaction prediction [1–4].

Despite its significance, atom mapping data is often 
incomplete or unavailable in many chemical reaction 
databases, limiting its practical utility. The labor-inten-
sive nature of manually determining atom mappings for 
large datasets has driven the development of computa-
tional methods to automate this process.

Various computational approaches, both heuristic and 
machine learning-based, have been proposed to address 
the atom mapping problem. Heuristic methods, such as 
graph isomorphism [5, 6] and optimization-based tech-
niques [7–9], rely on chemical principles and prede-
fined rules to determine atom correspondences. Graph 
isomorphism algorithms compare molecular graphs 
to identify identical substructures, while optimization 
methods minimize bond changes or maximize structural 
similarity between reactants and products. Later, hybrid 
approaches [10, 11] that combine graph isomorphism 
with optimization methods have demonstrated enhanced 
efficiency and accuracy, particularly in handling complex 
reactions.

In contrast, deep learning approaches offer a data-
driven alternative that excels in handling complex reac-
tions. These models learn from large datasets, identifying 
atom mappings based on patterns extracted from reac-
tants and products. Two main strategies have emerged: 
sequence-based and graph-based models. Sequence-
based models treat atom mapping as a sequence transla-
tion problem using SMILES (Simplified Molecular Input 
Line Entry System) strings. A notable example is RXN-
Mapper [12], which applies an unsupervised technique 
inspired by natural language processing (NLP), where 
attention mechanisms infer atom mappings without 
labeled data. However, sequence-based models face limi-
tations due to the non-unique nature of SMILES strings 
and their inability to account for molecular symmetry, 
which can result in inconsistent atom mappings.

Graph-based models represent molecular structures 
as graphs, where atoms are nodes and bonds are edges, 
providing a representation that aligns more naturally 
with molecular structure. Graph-based models, such as 
GraphormerMapper [13] and our previous work AMNet 
[14], can incorporate molecular features that produce 
richer and more informative embeddings. However, the 
combined complexity of graph-based and standard trans-
formers in GraphormerMapper poses computational 
challenges. AMNet, on the other hand, addresses molec-
ular symmetry by identifying topologically equivalent 
atoms, thereby improving mapping accuracy for reac-
tions with complex or symmetrical molecular structures. 

Despite its promise, AMNet’s design does not support 
processing imbalanced reactions, where discrepancies in 
atom counts arise between reactants and products due 
to the omission of reagents, solvents, or catalysts on the 
product side. While such imbalances are rare in natural 
reactions, they frequently occur in chemical databases 
due to incomplete data. Thus, a robust atom mapping 
algorithm must be capable of handling cases where only a 
subset of atoms is present.

Recent efforts to improve atom mapping have explored 
methods to augment data-driven approaches with addi-
tional sources of knowledge. For instance, Chen et al. [15] 
proposed an innovative framework that combines human 
expertise with machine learning to enhance atom map-
ping accuracy in organic reactions. While this method 
demonstrates considerable potential, its reliance on con-
tinuous human input poses challenges related to scal-
ability, increased costs, and the introduction of potential 
biases.

Building on AMNet [14], in this paper, we use molecu-
lar graphs to model reactants and products, and frame 
atom mapping as a graph matching problem. The goal is 
to identify an optimal alignment between reactant and 
product atoms while preserving the chemical structure 
and properties of the reaction.

To further improve atom mapping performance and 
eliminate reliance on human input, we enhance our 
framework by adopting multitask learning (MTL) [16]. 
By leveraging auxiliary self-supervised tasks derived 
from the data, MTL enables the model to improve atom 
mapping accuracy without external intervention. This 
approach strengthens the model’s ability to learn robust, 
generalizable representations, leading to enhanced pre-
diction performance while maintaining scalability and 
efficiency.

We expand our framework to address the inherent 
challenges associated with imbalanced reaction data-
sets, where disparities in atom counts between reactants 
and products often arise due to the omission of auxiliary 
components such as reagents, solvents, or catalysts. To 
mitigate these issues, we employ a padding strategy, aug-
menting the smaller graph (typically the product) with 
zero entries. This ensures that the adjacency matrices and 
node features of both reactants and products are dimen-
sionally consistent, facilitating accurate pairwise similar-
ity computations and graph alignment. By harmonizing 
graph dimensions, our model effectively processes imbal-
anced reactions, mitigating errors or biases associated 
with size mismatches and maintaining the integrity of 
atom mapping tasks.

A notable departure from our previous work with 
AMNet [14] lies in how symmetry-aware refine-
ment is applied. In AMNet, symmetry detection was 
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embedded directly into the training process, poten-
tially constraining the learning dynamics and limiting 
the model’s adaptability. In this work, we use symmetry 
detection as a post-prediction enhancement. Specifi-
cally, an adaptation of the Weisfeiler–Lehman test [17] 
is employed to identify molecular symmetry after gen-
erating initial mappings. This post-prediction refine-
ment allows the model to focus on learning flexible and 
generalizable features during training. By refining the 
mappings after prediction, we improve the model’s abil-
ity to capture nuanced patterns and address challenges 
posed by symmetric molecular structures, enhancing 
both accuracy and adaptability.

Furthermore, we conduct a comprehensive evalua-
tion of three training strategies-vanilla training, trans-
fer learning [18], and multitask learning-to assess their 
effectiveness on atom mapping tasks. Vanilla train-
ing serves as a baseline, relying solely on labeled data 
to learn atom mappings. Transfer learning introduces 
a pretraining phase to acquire generalizable features, 
followed by fine-tuning for the specific task. In con-
trast, multitask learning simultaneously optimizes 
multiple objectives, leveraging shared representations 
to enhance accuracy and robustness. This systematic 
comparison highlights the strengths and limitations of 
each approach, underscoring the advantages of MTL in 
the advancement of atom mapping in chemical reaction 
modeling. Our main contributions are as follows:

•	 Development of a Multitask Learning Approach: We 
propose a novel multitask learning method that lev-
erages multiple tasks to improve atom mapping pre-
dictions.

•	 Graph Matching for Imbalanced Reactions: We 
address the challenge of imbalanced reactions in 
molecular graphs using graph matching techniques.

•	 Enhanced Atom Mapping Accuracy: We incorpo-
rate post-prediction symmetry detection to improve 
mapping accuracy.

•	 Comprehensive Comparison of Training Methods: 
We provide an extensive evaluation of training strate-
gies, including vanilla training, transfer learning, and 
multitask learning, for atom mapping.

Preliminaries
Problem formulation
Molecules can be naturally represented as graphs, where 
atoms are nodes and bonds are edges. Consequently, the 
atom mapping task can be framed as a graph matching 
problem, where the goal is to find the optimal corre-
spondence between atoms in two graphs, such as reac-
tants and products in a chemical reaction.

In this study, we address imbalanced reactions, where 
the number of atoms in the reactants and products dif-
fers. This imbalance often arises because datasets are 
based on reactions reported in scientific literature and 
patents, which primarily document the main products, 
omitting less significant byproducts [19, 20]. As a result, 
these datasets overrepresent “ideal” reactions and lack 
details on alternate reaction pathways. To address this 
issue, we propose reversing the conventional mapping 
order. Instead of mapping atoms from reactants to prod-
ucts, we map atoms in products to subgraphs of the reac-
tants. In simpler terms, this approach involves aligning 
the molecular graph of the products with corresponding 
substructures in the reactants, ensuring a more flexible 
and inclusive representation of the reaction.

We represent a chemical reaction as a pair of graphs 
– one for the reactants and one for the products, each 
of which may be disconnected. The task is to identify a 
mapping function M : VP → VR that connects each atom 
in the product molecules to its corresponding atom in 
the reactant molecules.

Figure 1 illustrates a graph representation of an imbal-
anced chemical reaction, with five components on the 
reactant graph and one on the product graph. The map-
ping function M assigns a unique label to each atom in 
the product molecules, linking it to the corresponding 
atom in the reactant molecules. This mapping ensures 
connectivity and preserves atom types. However, because 
of the presence of topologically equivalent atoms, more 
than one valid atom mapping may exist.

Graph matching
Graph matching is the process of finding an optimal cor-
respondence between the nodes of two graphs. Given a 
source graph ( GR ) and a target graph ( GP ), each repre-
sented by nodes V, a binary adjacency matrix A, a node 
feature matrix X, and an edge feature matrix E, the goal 
of graph matching is to establish a mapping that aligns 
nodes and edges between the two graphs. This alignment 
is represented by a binary correspondence matrix M, 
where each entry indicates whether a node in GR corre-
sponds to a node in GP.

Graph matching can be formulated as a quadratic 
assignment problem (QAP) [21–24], where the objective 
is to maximize the similarity score between correspond-
ing nodes. Ideally, this involves a bijective mapping, 
where each node in GR corresponds uniquely to a node in 
GP , allowing a similarity score between two graphs to be 
expressed as a distance metric between their adjacency 
matrices.

However, achieving a bijective mapping is not always 
possible. For example, if the two graphs differ in size, 
some nodes in the larger graph will lack correspondences 
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in the smaller graph. Additionally, symmetries within one 
or both graphs may lead to multiple possible correspond-
ences for each node. These challenges introduce com-
plexities in finding a unique matching solution, and we 
explore these cases further in Sect. 3.4.

To achieve node correspondence, a permutation matrix 
π is used to reorder the nodes in GP to align with those 
in GR . The objective is to find the permutation matrix 
π ∈ 0, 1|VR|×|VP | that maximizes the similarity score, com-
puted starting from the adjacency matrix of reactants, AR 
– with elements (AR)i,j , and products, AP – with elements 
(AP)i,j:

This discrete, non-convex optimization problem is GI-
hard, and finding the global optimum is challenging. To 
make this problem more tractable, the discrete permu-
tation constraint can be relaxed by replacing π with a 
continuous correspondence matrix M ∈ [0, 1]|VR|×|VP | . 
The entry Mi,i′ indicates the probability that node i in GR 
maps to node i′ in GP.

The relaxed problem then seeks an optimal corre-
spondence matrix M⋆ that maximizes the similarity score 
between the two graphs. This can be achieved by solving 
equation 2 [23, 24].

Graph matching models aim to learn a function that 
predicts the optimal correspondence between nodes in 

(1)π⋆ = arg max
π

∑

i,j

(AR)i,j(AP)π(i,j).

(2)

M⋆ = arg max
M

∑

i,j

∑

i′,j′

(AR)i,j(AP)i′,j′Mi,i′Mj,j′

s.t. 0 ≤
∑

i′∈VP

Mi,i′ ≤ 1 , ∀i ∈ VR,

0 ≤
∑

j∈VR

Mj,j′ ≤ 1 , ∀j′ ∈ VP .

two graphs, given their respective features and struc-
ture. This involves selecting a discriminant function 
f (GR,GP ,M,w) that maps graph pairs (GR,GP) to a space 
of possible mappings M , and finding an optimal function 
that maximizes:

Thus, solving this optimization problem approximates 
the solution to the graph matching problem.

To train the function Fw(GR,GP) , the empirical risk 
(average loss) on a training set must be minimized. The 
loss function penalizes deviations between the predicted 
and correct correspondence matrices. For each row in 
the correspondence matrix, representing each atom in 
the reactant graph, a discrete probability distribution 
over corresponding atoms in the product graph is com-
puted. This is minimized using a negative log-likelihood 
(NLL) loss:

where πgt(i) represents the index of the ground truth 
mapping.

Graph Neural Networks have demonstrated significant 
potential in graph matching tasks due to their ability to 
learn and encode complex structural and relational infor-
mation in graph data [24–27]. By iteratively updating 
node embeddings based on structural affinities, GNNs 
facilitate accurate node correspondences across graphs.

Graph neural networks
Graph Neural Networks (GNNs) are designed for graph-
structured data, capturing intricate relationships between 
nodes. GNNs perform graph representation learning 

(3)Fw(GR,GP) = arg max
M∈M

f (GR,GP ,M,w).

(4)L = −
∑

i∈VR

log
(

Mi,πgt(i)

)

,

Fig. 1  a An example of an imbalanced chemical reaction, where auxiliary components such as solvents or reagents are omitted from the product 
side; b One possible atom mapping, in which atoms of the same color are topologically equivalent. Note that only the main reaction components 
are atom mapped
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by embedding nodes or graphs into a vector space that 
preserves the graph’s structure, with connected nodes 
remaining close in the embedding space while uncon-
nected nodes are pushed apart.

In GNNs, nodes exchange information with their 
neighbors through a process called message passing, 
which updates each node’s features using information 
from its neighbors. For molecular graphs, node features 
describe atomic properties, edge features represent bond 
types, and the adjacency matrix represents connectivity. 
During message passing, features of each node i and its 
neighbors j are aggregated as shown in Equation 5:

where h(0)i  and e(0)ij  are initial node and edge features, 
respectively. The update function is differentiable, and 
aggregate is a permutation-invariant operator, such as 
mean, max, or sum.

Various GNN architectures utilize different aggrega-
tion and update functions. For example, GIN (Graph 
Isomorphism Networks) [28] uses summation-based 
aggregation, enhancing its capacity to distinguish graph 
structures but increasing computational demands. GCN 
(Graph Convolutional Networks) [29] averages neigh-
bors’ features, making it efficient for local structure 
learning. GraphSAGE [30] samples neighbors before 
aggregation, using mean, LSTM [31], or pooling. GAT 
(Graph Attention Networks) [32] employs attention to 
dynamically weigh neighbors during aggregation.

Through message passing, GNNs encode the graph’s 
structure and features into node embeddings that capture 
structural and semantic information, making them effec-
tive for tasks involving graph comparison and matching.

SAMMNet: symmetry‑aware multitask atom 
mapping network
We propose SAMMNet (Symmetry-Aware Multitask 
Atom Mapping Network), a novel multitask learning 
(MTL) framework that integrates an auxiliary task within 
a graph neural network (GNN) architecture with shared 
parameters. The shared parameters enable the model 
to capture intricate dependencies between the com-
plex molecular structures of reactants and products. By 
leveraging MTL, SAMMNet enhances molecular rep-
resentations through the simultaneous learning of com-
plementary tasks; this ultimately enhances predictive 
atom mapping performance.

MTL strengthens model robustness by leveraging auxil-
iary tasks, which serve as an implicit form of regularization. 
These tasks allow the model to focus on various structural 

(5)h
(t)
i = update(h

(t−1)
i , aggregate(h

(t−1)
i , h

(t−1)
j , e

(t−1)
ij )),

and contextual aspects of the graphs, resulting in richer fea-
ture learning. Examples of these tasks include node (atom) 
classification [33, 34], where the model predicts individual 
atom characteristics, such as atom type, to better under-
stand local chemical environments and atomic proper-
ties. Edge prediction [30, 33, 35] focuses on identifying the 
presence or type of bonds between nodes, capturing criti-
cal connectivity and spatial relationships within molecular 
graphs. Context prediction [33] involves inferring neigh-
boring subgraph structures based on an anchor subgraph, 
providing insights into subgraph-level interactions. Simi-
larly, tasks like molecular property prediction [36, 37] ena-
ble the model to learn global graph-level features related to 
molecule-wide properties such as solubility or toxicity.

Among these tasks, node classification is particularly 
effective for atom mapping due to its strong synergy with 
this objective. By learning about local atomic environ-
ments and chemical properties, node classification directly 
complements the atom mapping process, enabling greater 
accuracy and robustness in identifying atom correspond-
ences. This makes it a practical and efficient choice for 
enhancing graph-based molecular models.

Figure 2 illustrates the overview of the SAMMNet. Here, 
AP and XP represent the adjacency matrix and node fea-
tures of the product molecules, while AR and XR corre-
spond to the reactant molecules. Additionally, ÃP and X̃P 
denote the adjacency matrix and node features of the prod-
uct molecules with masked atoms, which are used during 
the auxiliary node classification task in multitask learning.

Main task: atom mapping
The core objective of SAMMNet is to perform atom map-
ping by aligning atoms in the reactant and product mol-
ecules. The process begins by transforming reactant and 
product molecular structures into graph representations, 
where atoms serve as nodes and bonds as edges, preserv-
ing their structural and relational properties. These graph 
representations are then processed by a Graph Neural Net-
work (GNN) to generate node embeddings that encapsu-
late molecular features. The resulting embeddings, denoted 
as Hp and HR , are computed using a GNN as follows:

Once node embeddings are obtained, pairwise similarity 
scores between nodes are calculated using the dot prod-
uct of HP and HR , represented as M̂ = �HP ,HR� . This 
similarity matrix, M̂ , is further refined through Sinkhorn 
normalization to yield a doubly stochastic matrix M, 

(6)
HP =GNN(AP ,XP)

HR =GNN(AP ,XP).
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which ensures probabilistic alignment between reactant 
and product atoms:

The most likely correspondences are determined 
using the Argmax function on M, identifying optimal 
atom mappings. SAMMNet applies a post-prediction, 

(7)M = Sinkhorn(M̂).

symmetry-aware refinement step, leveraging the Weis-
feiler–Lehman test to resolve ambiguities caused by 
molecular symmetry.

Auxiliary task: node classification
In SAMMNet, the auxiliary task is node classification, 
implemented with a masking strategy inspired by BERT 

Fig. 2  Overview of the SAMMNet Framework and its Multitask Learning Strategy. The model processes input molecular graphs through a shared 
GNN encoder and then branches into two distinct supervision pathways. The Atom Mapping branch (orange path) computes pairwise node 
similarity between reactant and product atoms, refines the similarity matrix using the Sinkhorn algorithm for optimal assignment, and incorporates 
symmetry-aware refinement via the Weisfeiler–Lehman (WL) test (green path). The Node Classification branch (blue path) masks a subset of atom 
features and trains the model to predict the original atom types. The individual loss components from these tasks are combined into a weighted 
sum, enabling joint optimization of the entire framework
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[38] and similar approaches [33, 39]. Specifically, 15% 
of the atoms in the product graph are masked, and the 
model predicts the types of these atoms using a linear 
classifier (MLP in Fig. 2) applied to the GNN-generated 
embeddings.

The node classification task enhances the SAMMNet 
model’s performance for atom mapping by providing a 
synergistic relationship with the core task. By predict-
ing atom types based on local chemical environments, 
node classification improves the model’s understanding 
of atomic interactions and bonding patterns. This task 
enriches the model’s node embeddings, which captures 
more nuanced structural features of molecules. Addi-
tionally, the inclusion of node classification acts as a 
regularization effect, balancing the learning process 
and preventing overfitting.

Model training and loss optimization
SAMMNet optimizes two objectives: atom mapping 
(AM) and node classification (NC). The total loss func-
tion is a weighted combination of the losses from these 
two tasks, encouraging the model to balance its learn-
ing across both objectives. The overall loss function is 
defined as follows:

where:

•	 LAM is the negative log-likelihood loss for the atom 
mapping task, defined as: 

 here πgt(·) denotes the ground truth correspondence 
matrix, indicating the correct atom matches between 
product and reactant graphs.

•	 LNC is the cross-entropy loss for the node classifi-
cation task, computed as follows: 

 in this equation, N represents the number of classes 
(unique atoms), yi is the true label of the atom, and ŷi 
is the predicted probability for class i.

•	 �AM and �NC are weighting factors that control the 
contribution of each task to the total loss.

By jointly optimizing these objectives, the model can 
take advantage of the information shared between 

(8)Ltotal = �AM · LAM + �NC · LNC,

(9)LAM = −
∑

i∈VP

log(Mi,πgt(i)),

(10)LNC = −

N
∑

i=1

yi log(ŷi),

tasks, resulting in an improvement in the quality of 
predictions.

Symmetry‑aware refinement
Molecular symmetry arises when a molecule has indis-
tinguishable components, such as atoms or groups, due 
to its structural arrangement. Recognizing molecular 
symmetry helps resolve ambiguities in atom mapping, 
ensuring more precise alignment between reactants 
and products, particularly in complex reactions involv-
ing symmetric molecules. These symmetric features 
result in topologically equivalent atoms, which are 
chemically indistinguishable because they share iden-
tical chemical environments, bonding patterns, and 
reactivity during chemical processes. An illustration of 
equivalent atoms is provided in Fig. 1b.

Accurately identifying and mapping such atoms is 
critical, as it significantly improves the accuracy and 
efficiency of atom mapping, making it a key component 
of chemical reaction modeling.

To identify topologically equivalent atoms, we 
adapted the Weisfeiler–Lehman (WL) test-a widely rec-
ognized algorithm for determining graph isomorphism. 
The WL test operates by iteratively refining node labels 
within a graph based on each node’s local neighbor-
hood structure. In our approach, we apply the WL test 
to a single molecular graph, treating two atoms as topo-
logically equivalent if they share the same element and 
have identical three-hop neighboring atoms. Further 
details on this identification process are provided in 
[14].

Unlike AMNet [14], which integrated symmetry-aware 
refinement directly into the training process, our current 
approach applies symmetry detection as a post-predic-
tion enhancement. This post-prediction refinement offers 
greater adaptability by avoiding potential constraints on 
learning dynamics that may arise from embedding sym-
metry-awareness during training. By refining the pre-
dicted mappings, we achieve more nuanced and precise 
alignments of atoms, thereby enhancing the overall accu-
racy and reliability of our atom mapping framework.

Handling imbalanced reactions
SAMMNet addresses the challenges of imbalanced reac-
tions, where discrepancies in atom counts between reac-
tants and products arise from missing reagents, solvents, 
or catalysts. To mitigate this, the smaller graph (typically 
the product graph) is padded with zero entries to match 
the size of the reactant graph. This ensures consistency 
in adjacency matrices and node features, facilitating 
accurate pairwise similarity computations and graph 
alignment.
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By standardizing input dimensions, SAMMNet 
remains robust across both balanced and imbalanced 
reactions, preserving the fidelity of the atom mapping 
process. This flexibility makes SAMMNet particularly 
well-suited for processing diverse chemical datasets.

An illustrative example
Figure  3 illustrates the complete SAMMNet workflow 
applied to a sample chemical reaction (Fig. 3a), where the 
reactant and product molecules are represented as input 

graphs. The process begins with the computation of a 
similarity matrix (Fig.  3b) that evaluates potential atom 
matches based on structural and feature-based simi-
larities between the reactant and product graphs. This 
matrix is refined through Sinkhorn normalization to pro-
duce a soft matching matrix (Fig. 3c), which probabilisti-
cally aligns atoms between the two molecular graphs.

To further enhance mapping accuracy, SAMMNet 
identifies equivalent atoms within the molecular graphs 
(Fig.  3d). By recognizing and grouping symmetrically 

Fig. 3  Overview of the atom mapping process using the SAMMNet using GIN as the backbone. a A sample chemical reaction depicting 
reactant and product molecules, with numbers indicating atom indices. b The similarity matrix represents potential matches based on structural 
and feature similarities between atoms. c The soft matching output, obtained through Sinkhorn normalization of the similarity matrix, refines atom 
correspondences probabilistically. d Identification of equivalent atoms, where topologically equivalent atoms are highlighted with the same color 
to signify their symmetrical relationships within the molecular graph. e Predicted atom mappings where the small numbers indicate atom indices, 
while atom labels represent the final atom mapping predictions
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equivalent atoms, this step resolves ambiguities that arise 
in mapping, especially for molecules with symmetric struc-
tures. Importantly, structural consistency is maintained 
through considerations for minimum edits. For instance, if 
atom 4 in the product is mapped to atom 7 in the reactant, 
then atom 5 in the product must align with atom 8 rather 
than atom 17 to preserve the molecular structure.

Finally, SAMMNet generates the predicted atom map-
pings (Fig. 3e), showcasing accurate and consistent corre-
spondences between reactant and product atoms.

Experiments
Dataset
The atom mapping data used in this study is based on the 
USPTO-50 K dataset, originally derived by Lowe through 
data mining of reactions from United States Patent and 
Trademark Office (USPTO) patents [19]. Schneider et  al. 
[40] refined and filtered these reactions to yield approxi-
mately 50,000 atom-mapped examples. Detailed reac-
tion statistics and preprocessing steps are provided in 
Appendix 1.

During preprocessing, we removed reactions with dupli-
cate products. Additionally, many reactions exhibit an 
imbalance in atom counts between reactants and products 
due to missing reagents, solvents, or catalysts in the prod-
uct graph. To address this, we zero-padded the smaller 
graph (typically the product) to match the size of the cor-
responding reactant graph.

To ensure a robust evaluation, we randomly split the 
USPTO-50 K dataset into training, validation, and test sets 
with an 8:1:1 ratio. The validation set is used during train-
ing for model selection and early stopping. This splitting 
was repeated five times to account for potential data distri-
bution variance.

To assess the model’s robustness and generalization 
capabilities, we also tested it on the Golden dataset, which 
includes 1,851 curated reaction examples. For this bench-
mark, the model was trained solely on the USPTO-50 K 
training set and evaluated on the Golden dataset.

Table  1 summarizes the data usage across all 
experiments.

To generate molecular graphs, we used a comprehensive 
range of atom and bond features. These features were com-
puted using the RDKit open-source package and encoded 
as one-hot vectors, which were then concatenated to form 
a detailed representation of the molecular structure. This 

feature vector encapsulates intricate details about atoms 
and bonds, enabling the model to capture the complexities 
of the molecular structures. For a complete list of the atom 
features, please refer to the AMNet paper [14].

Evaluation
To evaluate each model’s effectiveness, we report both 
the average accuracy and the symmetry-aware accuracy 
of the predictions on the test dataset. The average atom 
mapping accuracy is calculated by averaging the accura-
cies of the predicted atom mappings for each reaction 
across the entire test set. Symmetry-aware accuracy is 
computed by first identifying topologically equivalent 
atoms, following a method similar to [14]. A predicted 
atom is considered correctly mapped if it belongs to the 
set of equivalent atoms and its neighbors align with the 
neighbors of these equivalent atoms.

To ensure the robustness and reliability of our results, 
we repeated each experiment using five different dataset 
splits. This approach minimizes the potential influence 
of any particularly favorable or unfavorable splits on the 
reported performance metrics.

Setup
To explore the generalization capabilities and robustness 
of our approach, we employed three different GNN archi-
tectures to establish correspondences between molecular 
graphs. Using various GNNs enables a comprehensive 
comparison of how architectural differences influence 
performance on atom mapping accuracy.

The choice of architecture is particularly important in 
multitask learning, where models must generalize effec-
tively across multiple related tasks while maintaining 
robust performance. Previous studies have demonstrated 
that GNN architecture significantly influences the suc-
cess of graph-based tasks. For instance, Hu et  al. [33] 
showed that pretraining on certain GNN variants, such 
as GIN [28], can significantly enhance performance on 
downstream tasks. In contrast, architectures like GAT 
[32] may experience performance degradation post-pre-
training [33]. Thus, selecting the appropriate architecture 
is vital for optimal results.

To ensure fair and reliable comparisons, we maintained 
consistent hyperparameter settings across all models, 
standardizing the experimental setup. After experiment-
ing with several configurations, we determined that 
an embedding dimension of 512 and employing three 
message-passing layers yielded optimal results, as these 
values have been shown to provide a balanced trade-off 
between model performance and computational effi-
ciency. Model optimization was performed using the 
ADAM optimizer with a fixed learning rate of 0.0001. To 
prevent overfitting, we employed early stopping during 

Table 1  Dataset splits used in this study

Dataset Training Validation Testing

USPTO-50 K 40,328 4,836 4,836

Golden – – 1,851
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the training phase. Additionally, we incorporated the 
Jumping Knowledge (JK) technique [41], which aggre-
gates node embeddings across multiple message-passing 
iterations. This technique enhances the model’s capacity 
to capture complex graph structures and improves node 
feature representation. All models were implemented 
using PyTorch and the PyTorch Geometric libraries [42].

Comparison of training strategies
To comprehensively evaluate the effectiveness of our 
proposed multitask learning framework, we compare it 
against two alternative training strategies: vanilla training 
and transfer learning. This comparison allows us to assess 
the impact of including an auxiliary node classification 
task, as well as the benefits of pretraining in improving 
model performance for atom mapping.

Multitask learning (MTL)
In the multitask learning setup, the model is trained 
jointly on two objectives-atom mapping and node 
classification-throughout the entire training process. 
Both losses are optimized simultaneously. The goal is 
to enhance the model’s atom mapping performance by 
introducing an auxiliary task that provides structural reg-
ularization and richer representations.

The atom mapping loss is optimized using the objec-
tive in Eq. 9, while the node classification component is 
trained using the loss in Eq. 10. The combined loss Eq. 8 
encourages the GNN to learn atomic-level features that 
are beneficial to both tasks. This approach is fully end-to-
end and does not rely on transfer or staged learning.

Vanilla training
The vanilla training baseline focuses exclusively on the 
atom mapping task, using a single loss function without 
any auxiliary tasks. The GNN processes the input molec-
ular graphs to produce atom-level embeddings, from 
which a similarity matrix is computed between reactant 
and product atoms. This matrix is refined via the Sink-
horn algorithm to produce a valid correspondence. The 
training objective is to minimize the negative log-likeli-
hood of the true atom mapping, as defined in Eq. 9. This 
simple yet strong baseline allows us to isolate the impact 
of multitask or pretraining strategies.

Transfer learning
To evaluate the benefit of task-specific pretraining, 
we also implement a transfer learning strategy. This 
approach separates training into two stages: a pretraining 
phase, where the model learns general molecular repre-
sentations, followed by a fine-tuning phase focused on 
atom mapping.

During pretraining, the model performs a self-super-
vised node classification task using a masking strat-
egy inspired by BERT. Specifically, 15% of the atoms in 
the product graph are masked, and the model learns to 
predict their atom types based on their surrounding 
chemical environment. This is optimized using the node 
classification loss in Eq. 10, and encourages the GNN to 
capture general structural features of molecules.

In the fine-tuning phase, the model weights from pre-
training are used to initialize training for the atom map-
ping task. This phase optimizes the atom mapping loss 
(Eq. 9) in the same way as the vanilla model. The transfer 
learning strategy thus allows us to assess how well knowl-
edge learned in a general pretraining task can improve 
performance on the specific downstream task of atom 
mapping.

Although both pretraining and fine-tuning phases use 
the same dataset, they serve different task objectives-
node classification and atom mapping, respectively. Since 
the input data remains the same but the target tasks dif-
fer, there is no risk of overfitting; the model learns gen-
eral molecular representations during pretraining and 
then specializes in atom-to-atom correspondence during 
fine-tuning.

Appendices 2 and 3 provide architectural and imple-
mentation details for both vanilla and transfer learning 
models.

Results and discussion
We compared the MTL approach against vanilla and 
transfer learning (TL) strategies, followed by a bench-
mark evaluation of our best-performing model using the 
golden dataset. The evaluation metrics included initial 
atom mapping accuracy and symmetry-aware accuracy, 
which accounts for the correct assignment of topologi-
cally equivalent atoms. To ensure robustness and reli-
ability, each experiment was repeated five times with 
different dataset splits, and the average results were 
reported to minimize the impact of potential data biases.

Performance on USPTO‑50 K dataset
The results on the USPTO-50 K dataset demonstrate the 
superiority of multitask learning (MTL) over both vanilla 
and transfer learning (TL) approaches across various 
GNN architectures. Table  2 presents a comprehensive 
comparison, showing that MTL consistently outperforms 
its counterparts in both initial and symmetry-aware 
accuracy.

MTL consistently demonstrates superior perfor-
mance, with the GIN model achieving an initial accu-
racy of 88.51% and a symmetry-aware accuracy of 
97.37%, marking a substantial improvement. Similarly, 
both GCN and GraphSAGE models showed notable 
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gains under MTL, suggesting that simultaneous train-
ing on multiple tasks helps the models develop more 
robust and generalized feature representations. The 
enhanced performance of MTL can be attributed to its 
ability to learn shared representations, which reduces 
overfitting and improves generalization by exposing 
the models to related tasks. These results underscore 
the effectiveness of multitask learning in handling 
complex molecular structures and improving atom 
mapping accuracy. These findings align with previous 
studies, such as [43–45], which highlight the success 
of MTL when the auxiliary tasks are well-aligned with 
the graph structure.

In contrast, the vanilla approach yielded lower 
results. The GIN model achieved an initial accu-
racy of 87.64% and a symmetry-aware accuracy of 
96.46%, making it the top performer in this category. 
Meanwhile, GCN and GraphSAGE models attained 
slightly lower initial accuracies of 86.34% and 86.21%, 
respectively.

The transfer learning (TL) approach resulted in 
lower initial and symmetry-aware accuracies across all 
models compared to the vanilla approach. While GIN 
remained the top performer under TL, its performance 
slightly declined, reaching an initial accuracy of 86.65% 
and a symmetry-aware accuracy of 95.5%. Both GCN 
and GraphSAGE showed similar reductions in accu-
racy, indicating that the transferred knowledge might 
not fully align with the atom mapping task. This could 
be due to challenges in domain adaptation and the risk 
of catastrophic forgetting during fine-tuning. These 
observations are consistent with findings in existing 

literature, such as [39], which question the assump-
tion that GNN pretraining is universally beneficial for 
molecular representations.

Balancing task contributions
To assess the impact of balancing the contributions of 
atom mapping (AM) and node classification (NC) tasks 
within the SAMMNet framework, we conducted exper-
iments by varying the values of �AM (weight for the 
atom mapping loss) and �NC (weight for the node clas-
sification loss) in our multitask learning objective func-
tion. The goal of these experiments was to understand 
the trade-offs between the two tasks and evaluate how 
different weight configurations influence model perfor-
mance. We use GIN as the GNN backbone. The other 
hyperparameter remained unchanged.

The performance metrics for each configuration are 
summarized in Table 3. 

The results in Table  3 demonstrate that the high-
est performance was achieved when placing greater 
emphasis on the atom mapping task ( �AM = 0.7 , 
�NC = 0.3 ). This finding indicates that while auxiliary 
tasks, such as node classification, provide useful con-
textual information and regularization benefits, pri-
oritizing the primary task of atom mapping is critical 
for maximizing accuracy. Emphasizing atom mapping 
allows the model to focus more intensively on learning 
precise atom correspondences, which is essential for 
the overall success of the framework.

In contrast, balanced multitask learning ( �AM = 1 , 
�NC = 1 ) yielded high but slightly lower performance, 
suggesting that while the auxiliary task aids learning, an 
equal weighting may dilute the model’s attention on the 
primary task. Similarly, configurations with a heavier 
emphasis on node classification ( �AM = 0.3 , �NC = 0.7 ) 
underperformed compared to the atom mapping-
focused setting, indicating that auxiliary tasks alone 
cannot compensate for the loss of primary task focus.

Vanilla training showed slightly lower performance, 
emphasizing the necessity of integrating auxiliary tasks 

Table 2  Performance comparison on USPTO-50 K dataset across 
different training approaches

Bold values indicate the best-performing results for each evaluation metric

Model Initial accuracy (%) 
± std

Symmetry-aware 
accuracy (%) ± 
std

SAMMNet

GIN 88.51 ± 0.07 97.37 ±0.06

GCN 87.18 ± 0.12 95.66 ± 0.08

GraphSAGE 88.20 ± 0.11 97.02 ± 0.05

Vanilla

GIN 87.64 ± 0.09 96.46 ± 0.06

GCN 86.34 ± 0.11 94.89 ± 0.08

GraphSAGE 86.21 ±0.1 95.32 ±0.07

Transfer learning

GIN 86.65 ± 0.1 95.5 ± 0.04

GCN 85.15 ± 0.12 93.73 ± 0.08

GraphSAGE 84.78 ± 0.14 93.87 ± 0.05

Table 3  SAMMNet performance for different �AM and �NC 
configurations

Bold values indicate the best-performing results for each evaluation metric

 �AM  �NC Description Initial 
accuracy (%) 
± std

Symmetry-aware 
accuracy (%) ± 
std

0.5 0.5 Balanced MTL 87.3 ± 0.09 96.2 ± 0.14

0.3 0.7 Emphasis on NC 86.7 ± 0.1 95.0 ± 0.05

0.7 0.3 Emphasis on AM 88.51 ± 0.07 97.37 ± 0.06

1.0 0.0 Pure Vanilla training 87.6 ± 0.08 96.5 ± 0.07

0.0 1.0 Pure node classification 69.9 ± 1.2 76.6 ± 0.9
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to enrich the learning process. Pure node classification 
( �AM = 0 , �NC = 1 ) demonstrated limited performance 
on the primary task, emphasizing the need for balance 
in multitask learning.

Impact of reaction completeness on SAMMNet 
performance: a comparison with AMNet
In this subsection, we explore the impact of reaction 
completeness (balanced vs. imbalanced reactions) on 
SAMMNet’s training and testing performance. To pro-
vide a comprehensive analysis, we examine how vari-
ations in reaction completeness influence the model’s 
ability to map atoms accurately under different condi-
tions. This experiment also allows to compare SAMMNet 
with AMNet, our previous proposal specifically designed 
for balanced reactions, to evaluate SAMMNet’s flexibility 
and ability to generalize beyond controlled conditions.

The experiments reported in previous sections are per-
formed by using the USPTO-50 K dataset, which predom-
inantly consists of imbalanced reactions and is therefore 
unsuitable for testing AMNet. To benchmark SAMMNet 
against AMNet under balanced conditions, we employed 
the USPTO-15 K dataset, which contains 15,000 reactions 
with complete atom correspondence [14].

We evaluated SAMMNet and AMNet using the follow-
ing configurations: 

1.	 Train/Test on USPTO-50 K (imbalanced reactions).
2.	 Train on USPTO-15 K (balanced reactions)/Test on 

USPTO-50 K.
3.	 Train on USPTO-50 K/Test on USPTO-15 K.
4.	 Train/Test on USPTO-15 K (balanced reactions).
5.	 AMNet results from [14] on USPTO-15 K (balanced 

reactions).

Table  4 summarizes the performance of SAMMNet 
and AMNet across various training and testing con-
figurations, emphasizing the impact of reaction com-
pleteness. When trained and tested on the imbalanced 
USPTO-50 K dataset, SAMMNet achieves a high 
symmetry-aware accuracy of 97.37%, demonstrat-
ing its robustness in handling typical mixed datasets. 

Its performance declines to 91.78% when trained on 
the balanced USPTO-15 K and tested on the mixed 
USPTO-50 K dataset. While this level of accuracy 
remains suitable for practical applications, this drop 
suggests that balanced training data alone may not suf-
ficiently prepare the model for the challenges of imbal-
anced datasets.

Notably, SAMMNet achieves its highest accuracy 
of 98.02% when trained and tested on the balanced 
USPTO-15 K dataset, outperforming AMNet (97.30%). 
This result underscores SAMMNet’s ability to capture 
richer molecular representations through its multitask 
learning framework.

Benchmarking SAMMNet: performance evaluation 
on the golden dataset against state‑of‑the‑art methods
To ensure a fair comparison between SAMMNet and a 
state-of-the-art method, we selected the Golden data-
set to guarantee no overlap between the training and 
test sets across models. To further evaluate the effec-
tiveness of our proposed multitask learning model, 
we compared it specifically with RXNMapper, a state-
of-the-art atom mapping method, using the golden 
dataset. We chose to focus on RXNMapper for this 
comparison due to its status as a widely recognized and 
popular baseline in the field of automated atom map-
ping, supported by its strong performance on large 
datasets.

RXNMapper maps product atoms to reactant atoms, 
often resulting in an unintended permutation of atom 
order. To ensure a fair comparison between RXN-
Mapper’s predictions and manually curated data, we 
standardized its output to mitigate the effects of this 
permutation, similar to our prior approach outlined in 
[14]. Additional details on the standardization process 
can also be found in [14].

We assessed each method’s accuracy by evaluating the 
complete alignment of predicted atom mappings with the 
ground truth mapped reactions. Specifically, a method was 
considered accurate if the predicted atom correspondence 
matched exactly with the ground truth correspondences. 
Our proposed model achieved a symmetry-aware accuracy 

Table 4  Symmetry-aware accuracy of SAMMNet and AMNet for different configurations

“NA” denotes that the value is unavailable for the configuration

Bold values indicate the best-performing results for each evaluation metric

Configuration SAMMNet (%) ± std AMNet (%) ± std

Train/Test on USPTO-50 K 97.37 ± 0.06 NA

Train on USPTO-15 K/Test on USPTO-50 K 91.78 ± 0.09 NA

Train on USPTO-50 K/Test on USPTO-15 K 95.42 ± 0.12 NA

Train/Test on USPTO-15 K 98.02± 0.05 97.30 ± 0.10
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of 86.3% in atom mapping predictions, while RXNMapper 
correctly mapped atoms for 84.5% of reactions.

Conclusion and future work
This study highlights the efficacy of multitask learn-
ing strategies for complex atom mapping tasks by sys-
tematically comparing it, vanilla training, and transfer 
learning approaches.

Our findings demonstrate that MTL is a powerful 
framework for enhancing graph-based models by miti-
gating overfitting, capturing nuanced relationships, 
and improving accuracy, particularly when combined 
with symmetry-aware atom mapping. SAMMNet’s 
multitask paradigm, which simultaneously trains on 
node classification and atom mapping tasks, enables 
the development of richer, more generalized molecu-
lar representations. This dual-task approach leverages 
inherent regularization, reduces overfitting risks, and 
enhances generalizability, even in complex reactions, 
highlighting its versatility across diverse scenarios.

Moving forward, we plan to extend the application 
of MTL to a broader range of molecular datasets and 
more complex auxiliary tasks. Additionally, we aim 
to develop strategies to minimize domain shift and 
mitigate catastrophic forgetting within transfer learn-
ing frameworks, thereby enhancing the performance 
of graph-based models across various tasks. This line 
of research holds the potential to drive significant 
advancements in chemical reaction modeling and 
related scientific fields.

Appendix 1: USPTO‑50k dataset statistics
This section provides an overview of atom and molecule 
distributions in reactants and products across a dataset 
of chemical reactions, highlighting key patterns and vari-
ations (Figs. 4, 5, 6).

Appendix 2: Vanilla model architecture
The vanilla model focuses exclusively on predicting atom 
correspondences, without leveraging auxiliary tasks or 
pretraining. This model refines atom mappings through 
a similarity function and Sinkhorn normalization, which 
adjusts the correspondences matrix into a doubly sto-
chastic format, ensuring each product node is uniquely 
matched with a reactant node.

Figure  7 illustrates the architecture of the vanilla 
model, detailing how it processes molecular graphs to 
predict atom mappings.

Appendix 3: Transfer learning model architecture
The transfer learning model adapts a Graph Neural Net-
work to leverage pre-trained representations and adapt 
them for atom mapping. This approach begins with a 
pre-training phase on node classification to capture gen-
eral molecular features. The pre-trained GNN is then 
fine-tuned on the specific atom mapping task using the 

Fig. 4  Logarithmic distribution of atom counts in reactants and products
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Fig. 5  Distribution of reactions binned by the number of atoms in reactants and products

Fig. 6  Logarithmic distribution of atom frequencies in reactants and products. The bar heights indicate the relative abundance of each atom, 
scaled to log to accommodate a wide range of frequencies



Page 15 of 17Astero and Rousu ﻿Journal of Cheminformatics           (2025) 17:87 	

Fig. 7  Overview of the vanilla model architecture
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transfer learning technique. This process allows the 
model to leverage prior knowledge and generalize better 
to new, unseen datasets.

Figure  8 illustrates the architecture of the transfer 
learning model, showing how it processes molecular 
graphs and adapts pre-trained features for accurate atom 
mapping.

Acknowledgements
M.A. acknowledges Elena Casiraghi for her invaluable assistance in reviewing 
this work and providing constructive feedback. We acknowledge the gener-
ous support from the Wihuri Foundation as well as the Jane and Aatos Erkko 
Foundation (BIODESIGN project), which contributed to the advancement of 
this study. Additionally, this research has in part been funded by the Research 
Council of Finland (Grants 339421 and 345802).

Author contributions
M.A. contributed to the conceptualization, model development, experimental 
analysis, and manuscript preparation. J.R. provided support in conceptualiza-
tion, supervision, and critical review of the manuscript. All authors have care-
fully reviewed and approved the final version of the manuscript.

Fig. 8  Overview of the transfer learning model architecture



Page 17 of 17Astero and Rousu ﻿Journal of Cheminformatics           (2025) 17:87 	

Availability of data and materials
For further reference, the code used in this study is available on GitHub at 
https://​github.​com/​marya​maste​ro/​SAMMN​et.

Declarations

Competing interests
The authors declare no competing interests.

Received: 17 December 2024   Accepted: 12 May 2025

References
	1.	 Jin W, Coley C, Barzilay R, Jaakkola T (2017) Predicting organic reaction 

outcomes with Weisfeiler–Lehman network. In: Advances in neural infor-
mation processing systems, vol 30

	2.	 Coley CW, Green WH, Jensen KF (2018) Machine learning in computer-
aided synthesis planning. Acc Chem Res 51(5):1281–1289

	3.	 Acharyya RK, Rej RK, Nanda S (2018) Exploration of ring rearrangement 
metathesis reaction: a general and flexible approach for the rapid con-
struction [5, n]-fused bicyclic systems en route to linear triquinanes. J Org 
Chem 83(4):2087–2103

	4.	 David L, Thakkar A, Mercado R, Engkvist O (2020) Molecular representa-
tions in ai-driven drug discovery: a review and practical guide. J Cheminf 
12(1):56

	5.	 Raymond JW, Willett P (2002) Maximum common subgraph isomorphism 
algorithms for the matching of chemical structures. J Comput Aided Mol 
Des 16:521–533

	6.	 Hattori M, Okuno Y, Goto S, Kanehisa M (2003) Heuristics for chemical 
compound matching. Genome Inform 14:144–153

	7.	 Heinonen M, Lappalainen S, Mielikäinen T, Rousu J (2011) Computing 
atom mappings for biochemical reactions without subgraph isomor-
phism. J Comput Biol 18(1):43–58

	8.	 Jochum C, Gasteiger J, Ugi I (1980) The principle of minimum chemical 
distance (pmcd). Angew Chem Int Ed Engl 19(7):495–505

	9.	 Mann M, Nahar F, Schnorr N, Backofen R, Stadler PF, Flamm C (2014) Atom 
mapping with constraint programming. Algorithms Mol Biol 9:1–12

	10.	 Fooshee D, Andronico A, Baldi P (2013) Reactionmap: an efficient 
atom-mapping algorithm for chemical reactions. J Chem Inf Model 
53(11):2812–2819

	11.	 Jaworski W, Szymkuć S, Mikulak-Klucznik B, Piecuch K, Klucznik T, 
Kaźmierowski M, Rydzewski J, Gambin A, Grzybowski BA (2019) Auto-
matic mapping of atoms across both simple and complex chemical 
reactions. Nat Commun 10(1):1434

	12.	 Schwaller P, Hoover B, Reymond J-L, Strobelt H, Laino T (2021) Extraction 
of organic chemistry grammar from unsupervised learning of chemical 
reactions. Sci Adv 7(15):eabe4166

	13.	 Nugmanov R, Dyubankova N, Gedich A, Wegner JK (2022) Bidirectional 
graphormer for reactivity understanding: neural network trained to reac-
tion atom-to-atom mapping task. J Chem Inf Model 62(14):3307–3315

	14.	 Astero M, Rousu J (2024) Learning symmetry-aware atom mapping in 
chemical reactions through deep graph matching. J Cheminf 16(1):46

	15.	 Chen S, An S, Babazade R, Jung Y (2024) Precise atom-to-atom mapping 
for organic reactions via human-in-the-loop machine learning. Nat Com-
mun 15(1):2250

	16.	 Caruana R (1997) Multitask learning. Mach Learn 28:41–75
	17.	 Weisfeiler B, Leman A (1968) The reduction of a graph to canonical form 

and the algebra which appears therein.nti. Series 2(9):12–16
	18.	 Bozinovski S (1976) Reminder of the first paper on transfer learning in 

neural networks. Informatica 44(3):2020
	19.	 Lowe DM (2012) Extraction of chemical structures and reactions from the 

literature. Ph.D. thesis, University of Cambridge
	20.	 Lin A, Dyubankova N, Madzhidov TI, Nugmanov RI, Verhoeven J, Gimadiev 

TR, Afonina VA, Ibragimova Z, Rakhimbekova A, Sidorov P et al (2022) 
Atom-to-atom mapping: a benchmarking study of popular mapping 
algorithms and consensus strategies. Mol Inf 41(4):2100138

	21.	 Cho M, Alahari K, Ponce J (2013) Learning graphs to match. In: Proceed-
ings of the IEEE international conference on computer vision, pp 25–32

	22.	 Gold S, Rangarajan A (1996) A graduated assignment algorithm for graph 
matching. IEEE Trans Pattern Anal Mach Intell 18(4):377–388

	23.	 Caetano TS, McAuley JJ, Cheng L, Le QV, Smola AJ (2009) Learning graph 
matching. IEEE Trans Pattern Anal Mach Intell 31(6):1048–1058

	24.	 Fey M, Lenssen JE, Morris C, Masci J, Kriege NM (2020) Deep graph 
matching consensus. arXiv preprint arXiv:​2001.​09621

	25.	 Li Y, Gu C, Dullien T, Vinyals O, Kohli P (2019) Graph matching networks 
for learning the similarity of graph structured objects. In: International 
conference on machine learning. PMLR, pp 3835–3845

	26.	 Yan J, Yang S, Hancock ER (2020) Learning for graph matching and related 
combinatorial optimization problems. In: International joint conferences 
on artificial intelligence organization, pp 4988–4996

	27.	 Chen H, Luo Z, Zhang J, Zhou L, Bai X, Hu Z, Tai C-L, Quan L (2021) 
Learning to match features with seeded graph matching network. In: Pro-
ceedings of the IEEE/CVF international conference on computer vision, 
pp 6301–6310

	28.	 Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural 
networks? arXiv preprint arXiv:​1810.​00826

	29.	 Kipf TN, Welling M (2016) Semi-supervised classification with graph 
convolutional networks. arXiv preprint arXiv:​1609.​02907

	30.	 Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning 
on large graphs. In: Advances in neural information processing systems, 
vol 30

	31.	 Hochreiter S (1997) Long short-term memory. Neural computation. MIT-
Press, London

	32.	 Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) 
Graph attention networks. arXiv preprint arXiv:​1710.​10903

	33.	 Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, Leskovec J (2019) Strate-
gies for pre-training graph neural networks. arXiv preprint arXiv:​1905.​
12265

	34.	 Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural mes-
sage passing for quantum chemistry. In: International conference on 
machine learning. PMLR, pp 1263–1272

	35.	 Kipf TN, Welling M (2016) Variational graph auto-encoders. arXiv preprint 
arXiv:​1611.​07308

	36.	 Gasteiger J, Groß J, Günnemann S (2020) Directional message passing for 
molecular graphs. arXiv preprint arXiv:​2003.​03123

	37.	 Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, 
Leswing K, Pande V (2018) Moleculenet: a benchmark for molecular 
machine learning. Chem Sci 9(2):513–530

	38.	 Devlin J (2018) Bert: Pre-training of deep bidirectional transformers for 
language understanding. arXiv preprint arXiv:​1810.​04805

	39.	 Sun R, Dai H, Yu AW (2022) Does gnn pretraining help molecular repre-
sentation? Adv Neural Inf Process Syst 35:12096–12109

	40.	 Schneider N, Stiefl N, Landrum GA (2016) What’s what: the (nearly) 
definitive guide to reaction role assignment. J Chem Inf Model 
56(12):2336–2346

	41.	 Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi K, Jegelka S (2018) Repre-
sentation learning on graphs with jumping knowledge networks. In: 
International conference on machine learning. PMLR, pp 5453–5462

	42.	 Fey M, Lenssen JE (2019) Fast graph representation learning with pytorch 
geometric. arXiv preprint arXiv:​1903.​02428

	43.	 You Y, Chen T, Wang Z, Shen Y (2020) When does self-supervision help 
graph convolutional networks? In: International conference on machine 
learning. PMLR, pp 10871–10880

	44.	 Dey V, Ning X (2024) Enhancing molecular property prediction with 
auxiliary learning and task-specific adaptation. J Cheminf 16(1):85

	45.	 Liu S, Qu M, Zhang Z, Cai H, Tang J (2022) Structured multi-task learning 
for molecular property prediction. In: International conference on artifi-
cial intelligence and statistics. PMLR, pp 8906–8920

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/maryamastero/SAMMNet
http://arxiv.org/abs/2001.09621
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1905.12265
http://arxiv.org/abs/1905.12265
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/2003.03123
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1903.02428

