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Molecular dynamics (MD) simulations play an important role in studying heat transport in complex materials.
The lattice thermal conductivity can be computed either using the Green-Kubo formula in equilibrium MD (EMD)
simulations or using Fourier’s law in nonequilibrium MD (NEMD) simulations. These two methods have not been
systematically compared for materials with different dimensions and inconsistencies between them have been
occasionally reported in the literature. Here we give an in-depth comparison of them in terms of heat transport
in three allotropes of Si: three-dimensional bulk silicon, two-dimensional silicene, and quasi-one-dimensional
silicon nanowire. By multiplying the correlation time in the Green-Kubo formula with an appropriate effective
group velocity, we can express the running thermal conductivity in the EMD method as a function of an effective
length and directly compare it to the length-dependent thermal conductivity in the NEMD method. We find that the
two methods quantitatively agree with each other for all the systems studied, firmly establishing their equivalence
in computing thermal conductivity.

DOI: 10.1103/PhysRevB.97.094305

I. INTRODUCTION

The molecular dynamics (MD) simulation method is one of
the most valuable numerical tools in investigating heat trans-
port properties, especially for complex structures where meth-
ods based on lattice dynamics are computationally formidable.
The equilibrium MD (EMD) method based on the Green-Kubo
formula [1,2] and the nonequilibrium MD (NEMD) method
[3–6] based on Fourier’s law are the two mainstream methods
for computing lattice thermal conductivity in MD simulations,
although the approach-to-equilibrium method [7–10] has also
become popular recently.

A crucial difference between the EMD and the NEMD
methods concerns the finite-size effects introduced by a finite
simulation cell [11]. In the EMD method, when periodic
boundary conditions are applied, one usually can obtain a
size-independent thermal conductivity using a relatively small
simulation cell and the cell size does not correspond to a
real sample size as in an experimental measurement setup.
In the NEMD method, the simulation cell length (in the
transport direction) is supposed to be the sample length as in
real experiments. Therefore, when the cell length is smaller
than the overall phonon mean free path, the heat transport
is partially ballistic (transporting without scattering) and the
thermal conductivity should be smaller than that in an infinitely
long system. Usually, due to the relatively large phonon mean
free path, it is hard to directly simulate up to the length at
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which the thermal conductivity becomes fully converged, and
one usually resorts to extrapolation to estimate the length-
convergent thermal conductivity.

A natural question is whether or not the converged thermal
conductivity as obtained in the NEMD method is consistent
with (within statistical errors) that calculated using the EMD
method. There have been a few works focusing on the com-
parison between the two methods [12–15]. These works have
mainly studied three-dimensional (3D) bulk silicon, described
either by the Stillinger-Weber (SW) [16] or the Tersoff [17]
empirical many-body potential. In the case of the SW potential,
excellent agreement between the two methods have been found
by Howell [15]. However, in the case of the Tersoff potential,
Howell [15] did not attempt to make a comparison, while
He et al. [14] found that there are noticeable discrepancies
between the two methods for certain simulation parameters.
Significant discrepancies between the two methods have also
been reported for other good heat conductors such as GaN
modeled by a Stillinger-Weber potential [18]. Comparisons
between the two methods have been less attempted for low-
dimensional systems and discrepancies have been occasionally
reported. For single-layer graphene, the thermal conductivity
predicted by some EMD simulations [19] is significantly
smaller than that predicted by other NEMD simulations [20],
using the same interatomic potential. For single-layer silicene
[21,22], the two-dimensional (2D) allotrope of Si, it has
been reported [23] that the two methods are inequivalent. For
quasi-one-dimensional (Q1D) silicon nanowire (SiNW) [24],
divergent thermal conductivity (with respect to system length)
has been reported [25] based on NEMD simulations, which
was not supported by recent EMD simulations [26]. Therefore,
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it is important to unravel the possible reasons behind the
discrepancies reported between EMD and NEMD simulations.

In this work, we make detailed comparisons between the
EMD and the NEMD methods in the calculation of the
thermal conductivity κ of three Si-based materials, including
3D bulk silicon, 2D silience, and Q1D SiNW, using the newly
developed Graphics Processing Units Molecular Dynamics
(GPUMD) package [27,28]. In the EMD method, κ is calculated
as a function of the correlation time t while in the NEMD
method, κ is calculated as a function of the system length
Lx . We find that κ(t → ∞) from the EMD simulations and
κ(Lx → ∞) from the NEMD simulations are in fact consistent
with each other, as expected from linear response theory.
Furthermore, we show that by multiplying the correlation time
with a reasonable effective phonon group velocity, the EMD
and NEMD data overlap each other very well. Our results thus
firmly establish the equivalence between the two methods in
different spatial dimensions, when the proper limits of long
times and large system sizes are carefully considered.

II. MODELS AND METHODS

In this work, we use both the EMD and the NEMD methods
for thermal conductivity calculations as implemented in the
GPUMD package [27,28].

A. Models

We study three Si-based materials: 3D bulk silicon crystal,
2D silicene, and Q1D SiNW, which are schematically shown
in Fig. 1. For simplicity, we only consider isotopically pure
systems although this is not a restriction of the methods used.
We use classical MD simulations with empirical many-body
potentials. For 3D bulk silicon, we chose to use the Tersoff
potential [17] with the original parametrization because a
comprehensive comparison between the EMD and the NEMD
methods has already been done by Howell [15] using the SW
potential [16]. For 2D silicene, we used the SW potential
[16] reparameterized by Zhang et al. [23]. To be consistent
with Zhang et al. [23], the thickness of single-layer silicene

was chosen as 4.20 Å when calculating the sample volume in
the EMD method and the cross-sectional area in the NEMD
method. Last, for Q1D SiNW, we use the SW [16] potential
with the original parametrization, following Yang et al. [25].
In all the MD simulations, we first equilibrated the system to
room temperature and zero pressure conditions. The effects of
temperature and external pressure were not considered here.

Different boundary conditions were adopted for different
model systems. In the EMD simulations, we use periodic
boundary conditions in all the three directions for bulk sil-
icon, the in-plane directions (xy plane) of silicene, and the
longitudinal direction (x direction) of SiNW. Free boundary
conditions were used for the out-of-plane direction in silicene
and ripples formed automatically during the MD simulations
[Fig. 1(b)]. For SiNW, we adopt fixed boundary conditions
in the transverse directions (y and z) to be consistent with
the simulations by Yang et al. [25], although free boundary
conditions can also be used. The fixed atoms are excluded
in determining the volume and cross-sectional area. In the
NEMD simulations, the two ends of the system in the transport
direction were fixed.

The simulation cells were chosen as follows. For bulk
silicon and SiNW, the coordinate axes were aligned along
the [100] lattice directions. A simulation cell consisting of
Nx × Ny × Nz = 6 × 6 × 6 conventional cubic cells with a
total of N = 1728 atoms was used for bulk silicon in the EMD
simulations. In the NEMD simulations, we kept Ny and Nz

unchanged and chose several values of Nx such that the length
Lx varies from about 82 nm to 1 μm. For SiNW, we chose
Ny = Nz = 3 and fixed the surface layer of atoms (same as
in Ref. [25]) in both the EMD and the NEMD simulations.
The length Lx was chosen to be about 50 nm in the EMD
simulations and was varied from 0.5 to 3 μm in the NEMD
simulations. For silicene, the x and y axes pointed to the
zigzag and armchair directions, respectively, and a roughly
square-shaped simulation cell with N = 8640 atoms was used
in the EMD simulations. In the NEMD simulations, the width
was kept to be about Ly = 10 nm and the length Lx was varied
from about 40 to 320 nm. We checked that the cell sizes used in

FIG. 1. Schematic illustration of the model systems studied in this work: (a) 3D bulk silicon; (b) 2D silicene; (c) Q1D SiNW. The cell size
shown here for bulk silicon is the same as that used in the EMD simulations, but for clarity, the cell sizes for silicene and SiNW shown here are
smaller than those used in the EMD simulations. In the NEMD simulations, the cell sizes in the transport direction (x direction) can be much
larger. See text and Table I for details.
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the EMD simulations were large enough to eliminate finite-size
effects.

B. EMD method

The EMD method for thermal conductivity calculations
is based on the Green-Kubo formula [1,2], which expresses
the (running) thermal conductivity tensor κμν(t) as an inte-
gral of the heat current autocorrelation function (HCACF)
〈Jμ(0)Jν(t)〉 with respect to the correlation time t

κμν(t) = 1

kBT 2V

∫ t

0
〈Jμ(0)Jν(t ′)〉dt ′. (1)

Here, kB is the Boltzmann constant, T is the absolute tem-
perature of the system, V is the volume, and Jμ is the heat
current in the μ direction. Generally, one can obtain the whole
conductivity tensor, but we are only interested in the diagonal
elements here.

For many-body potentials such as the Tersoff and the SW
potentials used in this work, the heat current J can be expressed
as [29]

J =
∑

i

∑
j �=i

r ij

∂Uj

∂ rji

· vi , (2)

where r ij ≡ rj − r i and r i , vi , and Ui are, respectively, the
position, velocity, and potential energy of atom i. Following
Ref. [30], we consider the in-out decomposition of the heat
current for 2D systems, J = J in + Jout, where J in only
includes the terms with vx and vy and Jout only includes
the terms with vz. With this heat current decomposition, the
running thermal conductivity along the x direction can be
naturally decomposed into three terms:

κx(t) = κ in
x (t) + κout

x (t) + κcross
x (t), (3)

where

κ in
x (t) = 1

kBT 2V

∫ t

0
dt ′

〈
J in

x (t ′)J in
x (0)

〉
; (4)

κout
x (t) = 1

kBT 2V

∫ t

0
dt ′

〈
J out

x (t ′)J out
x (0)

〉
; (5)

κcross
x (t) = 2

kBT 2V

∫ t

0
dt ′

〈
J in

x (t ′)J out
x (0)

〉
. (6)

In the EMD simulations, we first equilibrated the system
in the NPT ensemble with a temperature of T = 300 K and a
pressure of p = 0 GPa for 2 ns. After equilibration, we evolved
the system for another 20 ns in the NVE ensemble and recorded
the heat current data for later postprocessing. We performed 50
independent simulations for each material to ensure sufficient
statistics.

C. NEMD method

The NEMD method can be used to calculate the thermal
conductivity κ(Lx) of a system of finite length Lx according
to Fourier’s law

κ(Lx) = Q

|∇T | , (7)
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FIG. 2. (a) Steady-state temperature profile in the longest (1 μm)
bulk silicon system. A linear fit to the block temperatures excluding
a few blocks around the heat source and sink regions gives the
absolute value of the temperature gradient |∇T |. (b) The energy of
the thermostat (averaged over the source and the sink) as a function
of the time in steady state. The heat transfer rate dE/dt is calculated
as the slope of the linear fit (dashed lines).

in the linear response regime where the temperature gradient
|∇T | across the system is sufficiently small. We generate the
nonequilibrium steady-state heat flux Q by coupling a source
region of the system to a thermostat (realized by using the
Nosé-Hoover chain method [31–33]) with a higher temperature
of 330 K and a sink region to a thermostat with a lower
temperature of 270 K. When steady state is achieved, the heat
flux Q can be calculated from the energy transfer rate dE/dt

between the source/sink and the thermostats

Q = dE/dt

S
, (8)

where S is the cross-sectional area perpendicular to the trans-
port direction. Both the temperature gradient and the energy
transfer rate were determined by linear fitting, as illustrated
in Fig. 2 for one independent simulation in the case of bulk
silicon with a system length of 1 μm. Note that we reported
the system length in the NEMD simulations as the source-sink
distance, not excluding the regions with nonlinear temperature
dependence around the source and sink, which was suggested
to be a reasonable definition according to Howell [34].

In the NEMD simulations, we first equilibrated the system
in the NPT ensemble (T = 300 K and p = 0 GPa) for 2 ns
and then generated the nonequilibrium heat current for 10 ns.
Steady state can be well achieved within 5 ns, and we thus
use the data during the later 5 ns to determine the temperature
gradient and the nonequilibrium heat current. We performed
five independent simulations for each system with a given
length. In all the EMD and NEMD simulations, we use the
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velocity-Verlet integration scheme [35] with a time step of
1 fs, which has been tested to be small enough.

III. RESULTS AND DISCUSSION

A. 3D bulk silicon

We start by discussing the results for bulk silicon. Fig-
ure 3(a) shows the running thermal conductivities from 50
independent simulations as thin lines, each with a different set
of initial velocities. The running thermal conductivity can vary
from simulation to simulation and the variation increases with
increasing correlation time, which means that the variation in
the HCACF does not decay with increasing correlation time.
This is a general property of time-correlation functions and
transport coefficients in MD simulations [36]. The average
κave(t) of the independent runs is shown as a thick solid line
in Fig. 3(a). To quantify the error bounds, we calculate the
standard error κerr(t) (standard deviation divided by the square
root of the number of simulations) and plot κave(t) ± κerr(t)
as dashed lines. It can be seen that κave(t) converges well
in the time interval [0.5 ns,1 ns]. By averaging κave(t) and
κerr(t) within this range, we finally get an average value of the

FIG. 3. (a) Running thermal conductivity for bulk silicon at 300 K
and zero pressure as a function of correlation time. The thin lines
represent the results from 50 independent simulations and the thick
solid and dashed lines their average and error bounds. (b) Thermal
conductivity as a function of system length from EMD and NEMD
simulations. An effective phonon group velocity of vg = 8.5 km/s
was used to obtain the effective system length from the correlation
time in the Green-Kubo formula.

thermal conductivity and its error estimate κave ± κerr = 250 ±
10 W m−1 K−1. These and other relevant data are summarized
in Table I.

Figure 3(b) shows the NEMD results as markers with
error bars, representing, respectively, the average and the
standard error from five independent simulations for each
system length. The same data are listed in Table I. It can be
seen that κ calculated from the NEMD simulations increases
with increasing length, which is a sign of ballistic-to-diffusive
transition. Similar information is incorporated in the running
thermal conductivity from the EMD simulations. Actually,
we can make closer comparisons between the EMD and the
NEMD results. One can define an effective system length Lx

in the EMD method by multiplying the upper limit of the
correlation time t in the Green-Kubo formula Eq. (1) by an
effective phonon group velocity vg

Lx ≈ vgt. (9)

The running thermal conductivity κ(t) in the EMD method can
also be regarded as a function of the system lengthκ(Lx), which
can be directly compared to the NEMD results. The concept of
effective phonon group velocity has been extensively used in
the study of heat transport in low-dimensional lattice models
[37] and has also been recently used for graphene [30]. By
treating vg as a free parameter, we can obtain a good match
between the EMD and the NEMD data, as shown in Fig. 3(b).
This effective group velocity is by no means to be taken
as a quantitatively accurate value for the average phonon
group velocity, because Eq. (9) is not an exact expression.
We consider a set of candidate solutions of the group velocity
with an interval of 0.1 km s−1 and choose the group velocity
value which gives the smallest difference between the NEMD
and EMD data at appropriate points. Nonetheless, the fitted
value vg = 8.5 km s−1 is comparable to the longitudinal
(8.69 km s−1) and transverse (5.28 km s−1) acoustic phonon
group velocities calculated using density functional theory
[38]. The important result here is that the length-convergence
trends of thermal conductivity from both EMD and NEMD
simulations are consistent with each other. To fully demon-
strate the consistency between the two methods, we need to
consider longer systems (up to several microns) in the NEMD
simulations, which is computationally prohibitive for bulk
silicon.

One way to explore the consistency between the two
methods based on a finite amount of NEMD data is to
extrapolate the conductivity values of finite systems to the
limit of infinite length using certain empirical expressions.
The simplest extrapolation formula is the one proposed by
Schelling et al. [12]

1

κ(Lx)
= 1

κ0

(
1 + λ

Lx

)
, (10)

where κ0 = κ(Lx → ∞) is the extrapolated thermal conduc-
tivity in the infinite-length limit and λ is an effective phonon
mean free path that is conceptually similar to the effective
phonon group velocity defined by Eq. (9). This is a first-order
expression which is only good when the system lengths are
comparable or larger than the effective phonon mean free
path [13]. With a wide range of system lengths, the thermal
conductivity data usually exhibit a nonlinear relation between
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TABLE I. Relevant data from the EMD and NEMD simulations: simulation cell length Lx (in units of nm), number of atoms N (including
the fixed atoms), the average thermal conductivity κave (in units of W m−1 K−1) from a number of independent simulations (50 in the EMD
simulations and 5 in the NEMD simulations), and the standard error κerr .

Bulk silicon Bulk silicon Silicene (SW1) Silicene (SW2) SiNW

Method Lx N κave κerr Lx N κave κerr Lx N κave κerr Lx N κave κerr Lx N κave κerr

NEMD 82 44064 61 1 327 176256 139 1 38 6528 8.4 0.4 38 6528 11.9 0.4 500 66312 40 1
109 58752 75 1 490 264384 163 4 75 13056 8.8 0.2 75 13056 13.0 0.1 1000 132552 52 1
136 73440 86 2 571 308448 177 1 150 26112 9.0 0.2 150 26112 13.2 0.3 1500 198792 58 2
163 88128 95 1 653 352512 180 3 224 39168 9.0 0.2 225 39168 13.2 0.2 2000 265032 63 3
245 132192 121 4 1000 529920 206 2 298 52224 9.1 0.2 300 52224 13.4 0.2 3000 397512 64 1

EMD 1728 250 10 8640 9.3 0.1 8640 13.4 0.1 6624 65 2

1/κ(Lx) and 1/Lx . Figure 4(a) shows that a linear fit to the
NEMD data with Lx > 200 nm results in an extrapolated
thermal conductivity of κ0 = 260 ± 10 W m−1 K−1, which
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FIG. 4. Inverse thermal conductivity 1/κ as a function of the
inverse simulation cell length 1/Lx in the NEMD simulations. In
both (a) and (b), the markers are MD data, with the one at 1/Lx = 0
representing the value from EMD and others from NEMD. In (a),
the solid and dashed lines represent linear fits [using Eq. (10)] to the
NEMD data with Lx > 200 nm and Lx < 200 nm, respectively. In
(b), the solid and dashed lines represent quadratic fits [using Eq. (11)]
to all the NEMD data and the NEMD data Lx < 200 nm, respectively.
See text for details.

is consistent with the EMD value. In contrast, a linear fit to the
NEMD data withLx < 200 nm results in a value ofκ0 = 220 ±
10 W m−1 K−1, which is appreciably smaller than the EMD
value. The effective phonon mean free path is determined to be
λ ≈ 300 nm, which explains why an inaccurate κ0 is obtained
using the NEMD data with Lx < 200 nm. Figure 4(b) shows
that the nonlinear behavior can otherwise be well described by
a second-order expression [9,13]

1

κ(Lx)
= 1

κ0

(
1 + λ

Lx

+ β

L2
x

)
, (11)

where β is a parameter of the dimension of length squared.
Alternatively, the nonlinearity may also be captured by ex-
pressions with fractional powers of 1/Lx [39]. However, when
using the NEMD data with Lx < 200 nm, the quadratic fit
also fails to yield the correct extrapolated κ0 [cf. the dashed
line in Fig. 4(b)]. Therefore, no matter what expression is used
in the fit, using NEMD data with relatively short simulation
cell lengths may result in significant errors and is a possible
reason for some reported inconsistencies between the EMD
and NEMD methods. Recently, Liang et al. [18] found that the
extrapolated κ0 obtained by using the linear fit to their NEMD
data with Lx � 150 nm is 166 ± 11 W m−1 K−1 for bulk GaN
(described by a SW potential) at 300 K, which is several times
smaller than their EMD value, 1190 ± 85 W m−1 K−1. They
also attributed the inconsistency between the NEMD and EMD
predictions to the inadequacy of the linear extrapolation.

B. 2D silicene

We next consider 2D silicene. Figure 5 shows the running
thermal conductivity components, κ in, κout, and κcross, using
the two SW parameter sets given by Ref. [23]. We checked
that there is no noticeable difference between κx and κy , which
means that the system is isotropic in terms of heat transport. In
view of this, we report the average κ = (κx + κy)/2 in Fig. 5.
The dashed lines in Fig. 5 indicate standard errors calculated
from 50 independent simulations, similar to the case of bulk
silicon.

All the running thermal conductivity components well
converge within a fraction of a nanosecond, faster than the
case of bulk silicon. The converged total thermal conductivity
value is also significantly smaller than that in bulk silicon. The
parameter set SW1 gives noticeably smaller κ in, while both
parameter sets give comparable κout. For each parameter set,
κ in converges to a much higher value than κout does, which
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FIG. 5. Running thermal conductivity for silicene at 300 K and
zero pressure as a function of correlation time for the (a) in-plane
component, (b) the out-of-plane component, and (c) the cross-term.
The red and blue lines correspond to the results obtained by using the
SW1 and the SW2 parameter sets, respectively. The solid and dashed
lines respectively represent the averages and the standard errors from
50 independent runs.

is opposite to the case of graphene [30]. It is also interesting
to note that κcross does not converge to zero, which can be
understood by the fact that there is intrinsic corrugation in
silicene, similar to the case of polycrystalline graphene [40].
Based on visual inspection, we chose the time interval [0.3 ns,
0.5 ns] to evaluate the converged thermal conductivity, which
was determined to be 9.3 ± 0.1 W m−1 K−1 and 13.4 ± 0.1 W
m−1 K−1, respectively, for the SW1 and SW2 parameter sets.

The NEMD results for silicene are shown in Fig. 6. We
can obtain a good match between the EMD and the NEMD
data for both parameter sets, with the effective group velocities
being fitted to be 6.3 and 8.5 km s−1, respectively. The ratio
between the effective group velocities from the two parameter
sets is close to that between the thermal conductivities. The fact
that the SW1 parameter set gives a smaller effective phonon
group velocity can also be confirmed by examining the phonon
dispersions given in Ref. [23]. In Ref. [23], it was found that
the EMD method gives significantly smaller κ than the NEMD
method, which put the consistency between the two methods
into question. However, our results unequivocally show that
the two methods give consistent results for both parameter
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FIG. 6. (a) Direct comparison between NEMD (markers) and
EMD (lines) data. For the EMD data, the system length is calculated
from the correlation time according to Eq. (9). See text for details.

sets. The reason for the inconsistency in the previous work is
that the heat current formula as implemented in the LAMMPS

code [41,42] used in Ref. [23] is not applicable to many-body
potentials such as the SW potential, as pointed out in Ref. [29]
and further demonstrated in Ref. [43]. In contrast, the heat
current formula as implemented in the GPUMD code [27,28]
used in the current work has been fully validated [30,43].

C. Q1D silicon nanowire

Last, we consider Q1D SiNW. Figure 7(a) shows the thermal
conductivity values from EMD and NEMD simulations as a
function of system length, where an effective phonon group
velocity of vg = 7.5 km s−1 was used to convert the correlation
time to an effective system length in the EMD method.
Because the cross-sectional area used here is much smaller
than that used in the case of bulk silicon, we have reached
a longer system of length 3 μm in the NEMD simulations.
At this length, we obtain a thermal conductivity of 64 ± 1
W m−1 K−1, which agrees with the converged value from
the EMD simulations, 65 ± 2 W m−1 K−1. This suggests that
the two methods gives consistent results and ultrathin SiNW
with fixed boundaries in the transverse directions has much
smaller converged thermal conductivity than that of the bulk
silicon. Yang et al. [25] reported a power-law divergent thermal
conductivity with respect to the system length based on their
NEMD data. Our results do not support this viewpoint. In
Fig. 7(b), we plot the same data from Fig. 7(a) but with a log-log
scale. There might be a region where one can make a power-law
fit, but the thermal conductivity eventually converges to a finite
value.

IV. SUMMARY AND CONCLUSION

In summary, we have compared the EMD and NEMD
methods for computing thermal conductivity in three Si-based
systems with different spatial dimensions: 3D bulk silicon,
2D silicene, and Q1D SiNW. Particularly, by converting the
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FIG. 7. Thermal conductivity as a function of system length from
EMD and NEMD simulations with the axes in (a) normal and (b)
log-log scales. An effective phonon group velocity of vg = 7.5 km/s
was used to obtain the effective system length from the correlation
time in the Green-Kubo formula.

correlation time in the EMD method to an effective system
length according to Eq. (9) with an appropriate value of the
effective phonon group velocity, we can compare the EMD
results directly to the NEMD results. For all the systems, we
find excellent agreement between the two methods. While
it is computationally prohibitive to directly obtain length-
convergent thermal conductivity in the case of bulk silicon,
we achieved this for silicence and SiNW, where the length-
convergent thermal conductivities from the NEMD method
were found to be consistent with the time-converged thermal
conductivities from the EMD method. Our results thus firmly
establish the expected equivalence between the two methods
when long enough times and large enough systems are used in
the simulations. We also note that some of the discrepancies
reported in the literature are due to an incorrect implementation
of the heat current for many-body potentials in LAMMPS.
Inappropriate use of the linear extrapolation as expressed by
Eq. (10) is another possible cause of inconsistency between
the two methods.
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