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ARTICLE

Two-thirds of global cropland area impacted by
climate oscillations
Matias Heino 1, Michael J. Puma2,3, Philip J. Ward 4, Dieter Gerten5,6, Vera Heck1,5, Stefan Siebert 7,8

& Matti Kummu 1

The El Niño Southern Oscillation (ENSO) peaked strongly during the boreal winter

2015–2016, leading to food insecurity in many parts of Africa, Asia and Latin America.

Besides ENSO, the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) are

known to impact crop yields worldwide. Here we assess for the first time in a unified

framework the relationships between ENSO, IOD and NAO and simulated crop productivity

at the sub-country scale. Our findings reveal that during 1961–2010, crop productivity is

significantly influenced by at least one large-scale climate oscillation in two-thirds of global

cropland area. Besides observing new possible links, especially for NAO in Africa and the

Middle East, our analyses confirm several known relationships between crop productivity and

these oscillations. Our results improve the understanding of climatological crop productivity

drivers, which is essential for enhancing food security in many of the most vulnerable places

on the planet.
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The strong El Niño phase of the El Niño Southern Oscilla-
tion (ENSO, Supplementary Note 1) in early 20161 led to
substantial crop losses in many parts of Africa, Asia and

Latin America2. Besides ENSO, two other climate oscillations—
the Indian Ocean Dipole3 (IOD) and the North Atlantic Oscil-
lation4 (NAO)—are known to strongly affect hydroclimatological
processes that influence crop yields worldwide5,6. While climate
oscillations represent a substantial driver of global crop produc-
tion, recent scientific advances have improved the skill in pre-
dicting their occurrence with lead-times ranging from several
months up to a year7–9. To improve the value of these forecasts,
detailed information about the impacts of climate oscillations on
crop yields would be an invaluable contribution towards ensuring
food security, especially given the close relationship between
supply and demand in the global food system10.

Many connections between these climate oscillations and crop
yields have been previously identified. A global study shows that
ENSO has a significant influence on maize, soybean, rice and
wheat yields in large parts of South Asia, Latin America and
Southern Africa11. Local case studies have identified ENSO’s
impacts on crop production in China12, the United States13,
Zimbabwe14, Argentina15 and Indonesia16. Furthermore, links
between major historical ENSO events and agricultural disrup-
tions have been documented17, all of which had indelible impacts
on past societies. Although they have not been studied as
extensively, IOD and NAO are also known to influence crop
yields in many areas. NAO has been found to affect crop yields in
North and East Europe6, as well as in northeast China18 and
eastern parts of the United States6, while IOD has shown espe-
cially strong influence on Australian wheat yields5.

Although knowledge of regional connections between these
oscillations and food crop production already exists, global stu-
dies are few, and they have focussed solely on ENSO. Here we
reveal the impacts of ENSO, NAO and IOD on the productivity
of 12 major crop types globally for the past five decades using a
consistent framework. This greatly extends past studies among
which scale, data, methodology and time span have varied. Fur-
ther, unlike the global studies conducted before, we use crop
productivity data—simulated by the LPJmL biosphere and
agrosphere model19—for our analyses. This approach allows us to
carry out the assessment at a sub-country scale for a vast col-
lection of crop types. This is especially beneficial for large
countries such as China and the United States, where the effects
might have substantial spatial variability within each country’s
territory13,18. Furthermore, the model simulations enable us to
isolate the impact of climate on crop productivity, which would

be very difficult if only observed data were used, because in reality
many other factors also affect crop yields20, such as land man-
agement21, plant diseases22 and conflicts23.

The results reveal that 67% of global cropland is located in
areas where one or more climate oscillations show statistically
significant changes in crop productivity during their strong
phases. Approximately two-thirds of global food crop production
comes from these areas, which are inhabited by 68% of the global
population. Further, we show that in several areas across the
globe, it is possible to increase the understanding of crop pro-
ductivity fluctuations by using indices of several oscillations
simultaneously. Our study reveals to what extent and magnitude
the different climate oscillations affect crop productivity. Thereby,
it provides information that can be used for increasing resilience
towards natural hazards related to these oscillations in many
regions across the globe.

Results
Crop productivity during strong oscillation phases. The inter-
annual variability of simulated crop productivity shows con-
siderable spatial variations (Fig. 1b). The mean coefficient of
variation (CV) of annual crop productivity globally is 0.12.
Larger-than-average variation is found for Australia, southern
South America and some parts of Africa as well as Russia, Canada
and Central Asia. To assess how well interannual variability in
crop productivity is explained by the chosen climate oscillations,
we first compared the simulated crop productivity during years
with strong deviations in these climate oscillations with all years.
Second, we identified the sensitivity of crop productivity to var-
iations in the oscillation indices, and finally we examined whether
and where crop productivity is influenced by multiple oscillations
simultaneously (see Methods section).

Of the oscillations studied, ENSO and NAO show the strongest
relationships with crop productivity globally. Over 28% (38%) of
global cropland is located in Food Producing Units (FPUs; see
Methods section) with significant anomalies related to ENSO
(NAO), populated by 1.5 (2.2) billion people (Table 1). IOD also
has considerable impact in many parts of the world, as it affects
crop productivity in >10% of global cropland area, inhabited by
>500 million people. The negative (positive) phases of the
oscillations were determined by assessing whether the yearly
value of the oscillation index is smaller (larger) than the 25th
(75th) percentile of the yearly index values over the whole study
period. The statistical significance of the crop productivity
changes during these phases was evaluated by bootstrapping
(n = 10,000) at a 90% significance level (see Methods section).

Mean crop production (1012 kcal) 1961–2010

5 – 10No data 0.5 – 1
<0.5

50 – 100
>10010 – 501 – 5

a

0.04 – 0.08

Coefficient of variation of crop productivity 1961–2010 

No data
<0.04

0.12 – 0.16
>0.160.08 – 0.12

b

Fig. 1 Crop production variability. a Total crop production and b coefficient of variation (CV) of crop productivity during years 1961–2010. Note that the
calculation of crop production is based on the physical cropland extent57 and crop shares58 for each grid cell, i.e., not the harvested areas and multiple-
cropping, thus leading to smaller total production compared to FAOSTAT data. The areas where Pearson’s correlation between reported and simulated
crop productivity is not significant (p> 0.1) are striped
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At the globally aggregated level, only the positive phase of IOD
shows a significant (p< 0.1) relationship with crop productivity
(+1.5%). However, on a regional level (world divided into 12
regions, see division in Supplementary Fig. 1), significant
anomalies were detected in two or more regions for all the
studied oscillations (Fig. 2). The regions in which crop
productivity is most influenced by the oscillations are North
and Southern Africa as well as the Middle East, all showing
significant anomalies during three different oscillation phases.
Regions with weakest relationships are Central America, Eastern
Europe and Central Asia, where none of the studied oscillation
indices are related to significant changes in crop productivity.
However, for some regions (e.g., Eastern Europe and Central
Asia) anomalies of different signs can be found during the same

oscillation phases when assessed at the sub-national scale (Fig. 3),
which likely cancel each other out at the country and regional
scale. Furthermore, Fig. 2 shows major positive (negative)
changes produced by the negative (positive) phase of IOD in
Australia and Oceania.

At the FPU level, opposite phases of the oscillations often
produce opposite changes in crop productivity (Fig. 3). The
strongest changes related to ENSO occur in the northern and
southern parts of Africa, India, Southeast Asia and northern
portions of South America (Fig. 3a, b). IOD shows an especially
strong influence on crop productivity in eastern Australia, but
anomalies related to IOD can also be found in some parts of
central and Southern Africa (Fig. 3c, d). In addition to ENSO and
IOD, NAO also shows a strong effect on crop productivity in
many parts of Africa, which is consistent with the findings shown
in Fig. 2. Furthermore, NAO affects crop productivity in Europe
as well as in parts of eastern China and South America (Fig. 3e, f).
In FPUs where the correlation between reported and simulated
crop productivity is insignificant (see Methods section), the
results should be treated with caution (these areas are striped in
Figs 1, 3–5).

Sensitivity of crop productivity to oscillation indices. We also
assessed the sensitivity of crop productivity to interannual var-
iations in the oscillation indices. This is important, because the
above examination of the anomalies only reveals the response of
crop productivity to strong phases in the climate oscillations
(Fig. 3), while in sensitivity analysis we examine the relationship
of crop productivity also with smaller changes in the oscillation

Australia and
Oceania

Central America

East Asia

Eastern Europe
and Central Asia

Middle East

North Africa

North America

South America

South Asia

Southeast Asia

Southern Africa

Western Europe

−6 −4 −2 0 0642 −6 −4 −2 6420−6 −4 −2 642
ENSO IOD NAO

Negative phase

Positive phase

Change in crop
productivity (%)

Fig. 2 Crop productivity changes during strong oscillation phases at the regional scale. The years with negative (positive) oscillation phases were
determined by inspecting whether the yearly value of the oscillation index is smaller (larger) than the 25th (75th) percentile of the yearly index values over
the whole study period. The analysis was conducted by first aggregating crop productivity data to the regional scale and then assessing the changes (see
Methods section). Only significant changes are indicated, as computed by bootstrapping (n= 10,000, α= 0.1). See tabulated results in Supplementary
Table 1

Table 1 Globally aggregated impacts of ENSO, IOD and NAO

Oscillation Population
(109)

Cropland (106

km2)
Crop production
(1015 kcal year−1)

ENSO 1.5 (28%) 4.1 (28%) 2.2 (28%)
IOD 0.6 (11%) 2.0 (14%) 0.7 (9%)
NAO 2.2 (41%) 5.6 (38%) 3.3 (41%)
Any 3.7 (68%) 9.8 (67%) 5.2 (65%)

Population, cropland, and average total crop production (and percentage) in the areas where
one or more oscillations produce significant changes in crop productivity during their negative
and positive phases, when assessed at the sub-national (i.e., FPU) scale. Only the areas where
Pearson’s correlation between reported and simulated crop productivity is significant (p< 0.1)
are included. Unmasked results are provided in Supplementary Table 4
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indices (Fig. 4). This analysis was conducted by linear regression,
in which the slope represents the rate of change in crop pro-
ductivity per unit change in the oscillation indices.

We find that at the regional level crop productivity is
influenced by at least one of the oscillations (ENSO, NAO or
IOD) in 8 out of the 12 regions (see Supplementary Table 2).
Crop productivity is insensitive (no significant correlation, see
Methods section) to the studied climate oscillations only in
Eastern Europe and Central Asia, North America, Western
Europe and Central America. Especially sensitive regions to the
climate oscillations in terms of crop productivity are North
(ENSO and NAO) and Southern (ENSO) Africa, Southeast Asia
(ENSO) as well as Australia and Oceania (IOD).

On a sub-national scale (Fig. 4), the crop productivity in
Southeast Asia and many parts of Africa is especially sensitive to
variations in the ENSO index (Fig. 4a, c). Some of the results in
Africa should be treated with caution, as simulated crop
productivity does not correlate (p> 0.1) with reported crop
statistics. Furthermore, the ENSO index also correlates with crop
productivity in the northern parts of North and South America
(Fig. 3a). Again, the IOD index correlates best with crop
productivity variations in Australia (Fig. 4b). Furthermore, IOD’s
influence on crop productivity is found for India and Southern
Africa. NAO appears to have strong effects on crop productivity
in many parts of Europe, Middle East and China as well as some
parts of Africa and Northern India (Fig. 4c). The opposite
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Fig. 3 Crop productivity changes during strong oscillation phases at the FPU scale. Changes in crop productivity, at sub-national (i.e., FPU) scale, during
strong oscillation phases of a, b, ENSO; c, d, IOD; and e, f, NAO. The significance of the changes was assessed with bootstrapping (n= 10,000, α= 0.1).
The pie charts show global proportions of crop production in areas with significantly increased (blue) and decreased (red) crop productivity during the
different phases of the oscillations, while the pie slice in white is the proportion of global crop production that does not show a significant change. The
areas where Pearson’s correlation between reported and simulated crop productivity is not significant (p> 0.1) are striped and not included in calculating
the global proportions shown in the pie charts
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sensitivities to NAO in Europe (negative in west, positive in
northeast) might explain the fact that no significant sensitivity is
found at the regional scale (cf. Supplementary Table 2).

We present three plots showing the relationships between the
sensitivity of crop productivity to the oscillations and the CV of
crop productivity in Supplementary Fig. 16. No significant
positive correlation exists between sensitivity and CV for any of
the oscillations, which suggests that globally other climatological
factors also influence variability in crop productivity. However,
Supplementary Fig. 16 still illustrates a discernible global effect of
the oscillations on crop productivity: 27% of global crop
production is sensitive to variations in ENSO, 5% to variations
in IOD, and 20% to variations in NAO. To obtain a preliminary
understanding of the dynamics in the relationship between crop
productivity and the oscillations over time, we also conducted a
moving window (Spearman’s) correlation analysis and assessed
whether a trend exists in its strength (see Supplementary Methods 1).
The correlations are found to be consistently significant for ENSO
in Africa, Southeast Asia and northern South America (Supple-
mentary Fig. 17). In Australia, IOD seem to have a strong impact
through the whole study period, while NAO correlates con-
sistently with crop productivity, e.g., in the Middle East.

Combined influence of the oscillations on crop productivity. It
is known that the oscillations may amplify or weaken each other
and produce combined climatological effects24,25. Therefore, we
also studied the relationship between combinations of oscillations
and crop productivity, using a multivariate regression model (see
Methods). At the global scale, the explanatory power of the
oscillations on crop productivity is low (adjusted R2 = 0.024), with

the NAO index being the only variable showing any significance
(p-value< 0.1). On a regional scale (Supplementary Table 3), the
multivariate model can explain crop productivity best in North
Africa (adjusted R2 = 0.39; significant oscillations: ENSO and
NAO), Southern Africa (0.31; ENSO), Southeast Asia (0.25;
ENSO) and Australia and Oceania (0.22; IOD). However, the
model does not show any significant correlation (p> 0.1) with
crop productivity in North America or Eastern Europe and
Central Asia.

The results at FPU scale reveal that the multivariate regression
model has the highest explanatory power for crop productivity in
many parts of Southeast Asia, Australia and northern parts of
South America as well as Southern Africa (R2> 0.3, Fig. 5). Of the
oscillations studied, only ENSO shows a significant relationship
with crop productivity in northern South America as well as parts
of western Africa and South Asia (Fig. 5b). Together with IOD,
ENSO contributes to crop productivity variations in some parts of
Southern and Eastern Africa as well as the coasts of Peru and
Colombia. NAO is the most important driver of crop productivity
in northern China. NAO together with ENSO drive crop
productivity variability, for example, in Southeast Asia and
northeastern Africa. In northeast India and northeast Australia,
the variability in crop productivity can be explained best with a
combination of all three oscillations.

Discussion
The results provided in this study show that currently almost four
billion people live in areas where at least one of the three major
climate oscillations (i.e., ENSO, IOD and NAO) exerts a sig-
nificant influence on crop productivity. Moreover, these regions
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−0.5 to −0.25
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c

Fig. 4 Crop productivity sensitivity to oscillation indices. Sensitivity of crop productivity to changes in a ENSO, b IOD, and c NAO indices at the FPU level.
The linear relationship was concluded to be significant based on the p-value (<0.1, parameterized, see Methods section) of Pearson’s correlation
coefficient. Note that the areas where Pearson’s correlation between reported and simulated crop productivity is not significant (p> 0.1) are striped
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produce approximately two-thirds of the global food crop calories
(Table 1). Our study extends previous knowledge by analysing the
crop productivity impacts of these climate oscillations, both
separately and combined, on a global scale and at the sub-
national level. The analysis was conducted by using simulated
crop productivity data, which allowed us to isolate the climate
influence from other drivers of agricultural productivity during
the period 1961–2010.

Notably, for globally averaged crop productivity, only the
positive phase of IOD shows a significant change. However, its
areal impact is relatively small compared to that of ENSO and
NAO (cf. Fig. 3), and our other analyses do not show that var-
iations in globally averaged crop productivity can be explained by
the oscillations individually or combined (Supplementary
Fig. 18). This suggests that regional crop production deficits due
to these oscillations could be compensated by interregional food
imports into the affected regions. For areas unable to compensate
the losses through trade, these low productivity years might still
be devastating26. This was the case, for example, in southern parts
of Africa during and after the 2015–2016 El Niño event, which
resulted in an estimated 12% drop in aggregate cereal production2

and led to over 32 million people suffering from food insecurity27.
It is important to note though that a part of the decline might
have been due to increased water scarcity28, anthropogenic
depletion of water resources29 or droughts occurring due to other
factors.

We also found that the effects of climate oscillations on crop
productivity are not always stationary but change over time

(Supplementary Fig. 17). According to our analyses, opposite
phases of the oscillations do not necessarily produce crop pro-
ductivity changes of opposite directions. This is, for example, the
case in Western Europe, where a negative phase in NAO does not
seem to be related to changes in crop productivity, whereas a
positive phase does (cf. Fig. 2). The lack of such a relationship is
likely to be the reason why the NAO index does not show a
significant correlation with crop productivity at regional scale
(Supplementary Table 2). Details about change and sensitivity
analyses at regional and global level are presented in Supple-
mentary Figs 18–21.

While many regional and local studies on the effects of climate
oscillations on crop yields and production have been conducted,
only few global studies exist. Within those studies, the methods
and the time span are not fully consistent, which already in itself
causes differences in the results. Furthermore, most previous
studies examined only crop-specific relationships5,11,16, whereas
this study aggregated the yields (kg ha−1) of all major crop types
included in the LPJmL model to crop productivity (kcal ha−1

year−1).
Two global studies, which analyse the effects of ENSO on the

yields of maize, rice, soybean and wheat11 as well as an agri-
cultural stress index30, show similar patterns compared to this
study. For example, a strong relationship between ENSO and crop
productivity was identified in the northern parts of Africa,
Southeast Asia, India and parts of South America in both studies,
which is in line with our findings (cf. Figs 3 and 4). However, the
results are not fully comparable as both studies have a different
time span, and they analyse the effects of ENSO for different
metrics. In India, the effects of ENSO on crop productivity (cf.
Figs 3 and 4) are supported by a regional study which shows that
during a La Niña (El Niño) event crop production tends to
increase (decrease)31. Furthermore, our findings regarding the
strong impacts of ENSO on crop productivity in Indonesia are
underpinned by regional studies that show crop production to
shift markedly due to climatological anomalies driven by ENSO16.

In addition to ENSO, NAO has also been shown to influence
crop yields in the north-eastern parts of China18, which is in line
with this study (cf. Fig. 4). Further, similar patterns to our study
have been found in many parts of Europe, where NAO shows a
positive correlation with vegetation production during spring18

but negative correlation during summer32. Moreover, there is
evidence of NAO’s influence on vegetation health or yields in
northern Africa, Central Asia, the Middle East18 and the south-
east United States33. Connections between NAO and hydrological
variability have been noted for several areas in the Middle East34

as well as parts of East Asia35. For IOD, a study on Australia’s
wheat production shows very similar patterns to our study (cf.
Figs 3 and 4), as wheat production is found to decrease during the
positive phase in IOD5. Furthermore, in Australia the positive
phase of IOD has been linked to severe drought events36, which
likely affect agriculture as well. See Supplementary Note 2 for
additional details regarding the climatological impacts related to
the oscillations.

Our results newly indicate that NAO has a statistically
detectable influence on crop productivity in areas where NAO’s
effects have this far been less studied, for example, in Africa and
the Middle East. It would therefore be important to confirm and
gain a better understanding of these results by conducting similar
studies on a regional scale using more detailed local data. Fur-
thermore, as human actions can mitigate, but also increase, the
negative impacts related to climate oscillations, in future studies
these results could be embedded with reported data, enabling
assessment of the effectiveness of different adaptation mechan-
isms (e.g. fertilizer use). Using reported crop statistics could also
enable analysis of the relationship between climate oscillations

No significant indices

Significant oscillation indices in the regression model

No data

ENSO and IOD
ENSO

ENSO, IOD and NAO

IOD and NAO
NAOIOD

ENSO and NAO
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No data

0.4 – 0.5
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<0.1
0.3 – 0.4

No significant indices

>0.5
0.2 – 0.3

b

Fig. 5 Combined effects of the oscillation indices on crop productivity. a
shows which oscillation indices are found to be significant explanatory
parameters in the multivariate regression model with crop productivity as
the dependant variable, and b shows the adjusted R2 of the model for each
FPU. The areas where Pearson’s correlation between reported and
simulated crop productivity is not significant (p> 0.1) are striped
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and harvested areas, which is also affected by weather-related
disasters37, reinforcing the impacts on total crop production.

Furthermore, it would be of great benefit to conduct an ana-
logous analysis for each crop separately to identify the crops that
thrive under certain phases of the oscillations. Another aspect to
consider in future studies is possible delays in the effects of the
oscillations on crop productivity, i.e., time-lagged correlations, as
identified, e.g., in a previous study by Wang & You18.

Results of this study rely on one model only, yet earlier studies
found that the magnitudes and spatio-temporal variation of
LPJmL-simulated crop yields are comparable to simulations from
other global crop models and to reported statistics38–40. As a part
of the Agricultural Model Intercomparison and Improvement
Project, Müller et al.38 evaluated yields of wheat, maize, rice and
soybean simulated by 14 global gridded crop models (GGCM).
Müller et al.38 showed that LPJmL performs as well as other
GGCMs in reproducing reported yields, being the model that
performs best for wheat. While none of the GGCMs studied by
Müller et al.38 perform well in rice yield simulations (in LPJmL
likely because of limited account of multiple cropping19), Frieler
et al.39 showed that LPJmL follows the GGCM ensemble mean for
rice yield. Another study demonstrates that LPJmL can clearly
separate effects of heat and drought stress on temporal variation
in crop yields (soybean, maize, wheat)40.

While all GGCMs are subject to uncertainty related to factors
independent of model skill, including harvested areas41, soil
data42 and climatological input43, it is important to note that crop
statistics used for evaluation are also inherently uncertain in some
regions. For example, the two reference data sets of reported crop
statistics44,45 exploited by Müller et al.38 did not correlate well
everywhere. In addition, such reports usually refer to the pro-
duction on the area harvested46, ignoring thereby effects of
complete crop failure and potentially underestimating the varia-
bility in crop yields caused by climate extremes. The crop sta-
tistics are especially unreliable in many African countries47,
which is also where the comparisons of this study show lowest
match between observed and simulated crop productivity (Sup-
plementary Figs 6–15, see Methods section). In general, the
agreement between different reported data sets is better in high
input agricultural regions, where reported crop yields have noted
to be susceptible to climate variability20,37.

We emphasize that in this study we only assessed the effect of
climatic variability on crop productivity. However, many non-
simulated factors (e.g., management decisions, pests and con-
flicts) also affect reported crop statistics, and their impact can be
even more severe than that of climate variability20,22,23,
depending on year and region in question. Given that only a third
of global crop yield variability can be attributed to climate
variability20 and that our analysis is focussed on the isolated
climate effect, it is not to be expected that it reproduces all
observed crop yield dynamics.

In view of anticipated climate change and population growth,
increasing the resilience of agricultural production is impera-
tive48. Our spatially explicit findings reveal the extent and mag-
nitude to which variations in crop productivity are influenced by
climate oscillations. This information might inform policymakers
for increasing resilience towards natural hazards—especially in
regions like Australia, China, Southeast Asia and some parts of
Africa, where this analysis verifies former evidence that these
regions are particularly prone to the impacts of these oscillations.
Furthermore, our results suggest that it is principally possible to
increase the contribution and value of forecasting climate oscil-
lations towards ensuring food security by using information from
multiple oscillations simultaneously. The FAO provided a global
action plan to tackle agricultural vulnerability to the 2015–2016
El Niño event49, and, for example, in Somalia, the preparedness

towards the El Niño of 2016 prevented crop losses worth millions
of dollars by actions (e.g., polypropylene bag and tarpaulin sheet
distribution) allowing farmers to prepare for expected flooding50.
Our results are therefore an important step towards under-
standing the role of climate oscillations on crop productivity
around the world, which is potentially useful for improving local
disaster control in the most vulnerable places on the planet.

Methods
Model set-up. The crop productivity data for this research were derived from the
LPJmL model19,51,52, which has a proven record of quantifying, e.g., effects of
climate variability on crop yields38–40. LPJmL is a process-based global dynamic
vegetation and hydrology model able to capture the production of the most
common natural (9) and agricultural (12) vegetation types in coupling with
associated biogeochemical processes, carbon and water fluxes. In the model,
temperature controls crop growth through sowing dates, phenological development
and potential evapotranspiration, which together with precipitation and/or irri-
gation controls soil moisture (i.e., water availability for crop growth). The crop-
specific annual yields (kg ha−1 year−1) of the here considered 12 major crop types
were converted to caloric crop productivities (kcal ha−1 year−1), after which the
total crop productivity was calculated as the growing area weighted mean.

The LPJmL model was run at a resolution of 0.5°; results were then aggregated
to the scale of FPUs. FPUs divide the globe into 309 areas based on trade and water
management53,54. This enables analysis on a sub-national scale specifically
designed for food production and climate-related studies. This is especially
beneficial for analysis of large countries such as the USA and China, where
the effects of the climate oscillations may vary between different parts of a
country18,55.

To isolate the effect of climate variability on crop productivity, only climate
inputs were allowed to vary in the simulations. All other parameters and inputs—
such as land use, agronomic practices and CO2 concentration—were kept constant
at year ~2000 values56. An important note regarding the total crop production data
(e.g., Table 1, Fig. 3) is that the cultivated areas57 and crop shares58 for each 0.5°
raster cell are physical—not harvested—areas, which prevents accounting for
multiple-cropping, thus leading to smaller total production compared to
FAOSTAT data. The climatological daily forcing data were obtained from the
Global Meteorological Forcing Dataset for land surface modelling provided by
Princeton University, spanning 1948–201059. The use of daily forcing data ensured
that the model is able to capture the influence of timing and duration of, e.g., heat
and drought on crop productivity.

Calibration and evaluation of the model. The calibration of agronomic practices
in the LPJmL model was conducted by adjusting, for each crop type and country,
the maximum leaf area index (values between 1 and 7), the harvest index (the
maximal fraction of above-ground biomass allocated to storage organs at harvest in
the absence of water stress) and the radiation use efficiency (scaling factor for the
conversion of intercepted photosynthetically active radiation into biomass) so that
the simulated yields best match reported country-level crop yield statistics52. Not
all management interventions are currently being modelled (incluing fertilizer
application), making these adjustments necessary in order to ensure adequate
simulation of crop yields. For countries where no country-level yield data existed,
but the land-use data had areas allocated to the crop type, the yields were calculated
assuming a moderate maximum leaf area index of 5. Comparisons between
reported and simulated yields for years 2001–2010 and 1981–1990 are shown in
Supplementary Figs 2–5. Generally, the calibrated crop yields represent reported
crop statistics well: The Willmott coefficient calculated between reported and
simulated yields is above 0.9 for most crops and varies between 0.66 (sugarcane)
and 0.99 (wheat).

To compare the simulated crop productivities to observations, two data sets of
reported crop statistics were employed: annual data of reported crop yields and
harvested areas of maize, rice, soybean and wheat at a 0.5° spatial resolution20, and
reported annual data of all crops included in LPJmL at the country scale from
FAOSTAT46. Further, to compare LPJmL simulation results with reported crop
statistics and to roughly assess whether adding other than climatological signals to
the simulated data affect the results, a second simulation was conducted. In this
simulation, agronomic practices were calibrated decennially and land use as well as
CO2 concentration were also allowed to vary historically, similarly to Porkka
et al.60.

In a first step of this evaluation, Pearson’s correlation was calculated between
simulated (decennially calibrated) and reported crop productivity. Second,
Pearson’s correlation was calculated between simulated (calibrated for year 2000)
and reported (de-trended by fitting and subtracting a best-fit polynomial curve)
crop productivity. Third, a comparison of the standard deviation and the CV
between simulated (calibrated for year 2000) and reported (de-trended) crop
productivity was conducted by calculating the non-parametric Spearman’s
correlation (alternatively to Pearson’s correlation to account for the large variation
in the tested variables) between these data. Additionally, the country-level
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comparisons in steps one and two were also conducted separately for each of the 12
crop types simulated by LPJmL.

The correlations are found to be high (Pearson’s r > 0.5) in most parts of the
world for decennially calibrated simulated crop productivity (Supplementary Figs 7
and 8). However, in some areas correlations are insignificant (p-value> 0.1)—
usually in regions with low crop production, such as central Africa. Further,
reported (de-trended) crop productivity also correlates (p-value < 0.1) positively
with simulated (calibrated for year ~ 2000) crop productivity in many countries
(Supplementary Fig. 9a) and FPUs (Supplementary Fig. 9b) around the world. This
is noticeable, especially considering that non-climatic factors extensively influence
reported crop productivity variability20,22,23. In the crop-type-specific analyses,
LPJmL-simulated wheat productivity follows the patterns of reported wheat yields
in most parts of the world, while sugarcane shows less agreement with reported
data (Supplementary Figs 10 and 11). Also, the standard deviation and CV of crop
productivity show similar patterns between simulated (calibrated for year 2000)
and reported (de-trended) crop productivity (correlation p-value for both <10−5;
Supplementary Figs 12 and 13). On average, the CV is slightly higher for the
reported crop productivity; this is the case, for example, in parts of Southern Africa
(Supplementary Figs 14 and 15), potentially because of strong influence of non-
climatological factors on crop productivity fluctuations.

Furthermore, to compare the sensitivity of the results to the chosen model set-
up, two additional model runs and analyses were performed. Prior to a sensitivity
analysis on the decennially calibrated simulated crop productivity time series (see
details above), it was de-trended by fitting and subtracting a best-fit polynomial
curve from the original data. This analysis was conducted in order to evaluate
whether adding other than the climatological signals to the simulated crop
productivity data would affect the results. A second sensitivity analysis was
conducted based on crop productivity simulated with limited irrigation water
supply (i.e., restricting water use by renewable water availability). This simulation
was performed in order to understand the possible effect of the irrigation set-up in
the LPJmL model on the results of this study, as in the main simulations crop
productivity is not limited by water availability in irrigated areas. Supplementary
Figs 22 and 23 show the results of the sensitivity analysis of these simulations; the
patterns remain similar for both compared to the original sensitivity analysis
(cf. Fig. 4).

Oscillation indices. To represent the variability of ENSO, IOD and NAO, three
indices were chosen: the Japan Meteorological Agency SST Index1, the SST Dipole
Mode Index3,61 and Hurrell’s North Atlantic Oscillation Index (PC-based)4,62,
respectively. All calculations were conducted for each index separately except for
the multivariate regression, which included all indices simultaneously. We chose
these specific indices as they are all well established and have already been used in
numerous studies related to crop production as well as hydrology5,6,63. They were
transformed to yearly values by calculating the index means for months when the
oscillations tend to have the strongest signal (i.e., NDJ for ENSO, NDJF for NAO
and SON for IOD)3,64,65. A more detailed description of the indices can be found
in Supplementary Table 5.

In order to analyse whether the results are robust to the chosen oscillation
indices, the sensitivity analysis (see below) was also conducted for four other
indices: the Oceanic Niño Index (ENSO)66, the Southern Oscillation Index (ENSO)
67, the SLP Dipole Mode Index (IOD)68, and the Hurrell North Atlantic Oscillation
Index (station-based)69. Although some differences occur (cf. Fig. 4,
Supplementary Fig. 24), these analyses largely confirmed the patterns found for the
indices selected in this study.

Crop productivity during strong oscillation phases. The crop productivity
anomalies occurring during strongly oscillating years were defined as a change (in
percentage) between average crop productivity during those years and average crop
productivity of all years. Strongly negative (positive) phases of the oscillations were
assumed to prevail in years (listed in Supplementary Table 6) when the respective
oscillation index was smaller (larger) than the 25th (75th) percentile of all yearly
index values. The statistical significance of the changes was assessed by boot-
strapping (n = 10,000) at a 90% significance level. The bootstrapping procedure was
conducted so that the mean change was calculated for each bootstrap sample. If
over 95% (two-sided test) of the sample of means were either larger or smaller than
zero, the change was considered statistically significant. To analyse how sensitive
the results are to the chosen significance level, the analysis was also conducted at 5
and 20% significance levels. With a 5% (20%) significance level, the total extent of
cropland areas that would be affected by the studied climate oscillations decreased
(increased) by 15% (18%).

Crop productivity sensitivity to oscillation indices. The sensitivity of crop
productivity to variations in the oscillation indices was assessed by correlation
analysis and linear regression. Prior to these analyses, all data were standardized
(except the IOD and NAO indices, which are already standardized by definition),
to make the results comparable between different regions and indices. Then, a least
squares linear regression was fitted to the standardized data. The slope of the linear
fit represents the sensitivity of crop productivity to variations in the indices. The
statistical significance of a linear relationship was assessed by calculating the p-
value (p< 0.1) of Pearson’s correlation between the oscillation index and crop

productivity. The p-value was calculated by transforming the correlations using
Student’s t-distribution.

Combined influence of the oscillations on crop productivity. We also examined
whether there are regions where the variability in crop productivity can be best
explained by several indices simultaneously with a multivariate linear regression
model. The model includes all indices as explanatory variables and the regression
was conducted by the least squares method. The results of this analysis show: (a)
which oscillation indices are found to be significant explanatory parameters in the
multivariate regression model; and (b) the adjusted R2 of the model for each FPU.
The significance (p< 0.1) of each index as explanatory variables was assessed by
calculating the t-statistic for each index.

Before the actual regression calculations, a few modifications were made to the
data. First, the oscillation indices were scaled to have a range between 0.01 and
1.01. Second, the crop productivity data were standardized. Finally, a link function
was applied to the standardized oscillation indices. A list of the link functions that
were applied for each index and FPU can be found in Supplementary Table 9.
These modifications were conducted in order to address the weaknesses of the least
squares method in fitting non-linear data. To ensure that the regression works
correctly, the oscillations were inspected for multicollinearity, which was not
detected. The inspection was conducted so that Pearson’s correlation was
calculated between each index pair as well as calculating the variance inflation
factor (<4; Supplementary Table 7 and Supplementary Table 8).

Masking the results based on model performance. To account for uncertainty
in the simulated crop productivity data, we masked the results in areas where <15
years of reported country level data were available or where the correlation between
simulated (decennially calibrated) and reported country-scale crop productivity is
insignificant (p > 0.1) or negative. The masking was transformed from country
scale to FPU scale, so that each FPU was attributed the masking status of the
country with the largest areal within an FPU in question. For most FPUs, the
transformation was very straightforward, as they are constructed as a merge
between river basins and administrative regions. In map figures, the results of the
masked FPUs are striped (e.g., cf. Fig. 1) and all of the aggregated (i.e., global and
regional) results were calculated so that the masked FPUs were omitted from the
calculations. However, the masking does not have much influence on the aggre-
gated results, e.g., see the global results with (cf. Table 1) and without (Supple-
mentary Table 4) masking.

Changes in crop productivity response to the oscillations. The variability in
crop productivity responses to the oscillation indices was assessed by calculating
the Spearman’s correlation coefficient with a 21-year moving window. Owing to
the variability of the available oscillation index data, the length and the timing of
the analyses vary. The first correlation window for ENSO, NAO and IOD data is
1961–1971 and the last window is 1990–2010 for ENSO and NAO and 1989–2009
for the IOD. Prior to the trend assessment, the proportion of years when the
moving correlation windows have a significant Spearman’s correlation (p< 0.1)
was calculated. In the trend assessment, the changes in the relationship were
divided into six categories, which are: no significant correlation in any years, no
trend, weakening trend, strengthening trend, correlation shifts from negative to
positive, and correlation shifts from positive to negative. Trend existence and
whether a trend is positive or negative was assessed using absolute correlations
values. Further, the criteria for correlation to have shifted from negative (positive)
to positive (negative) was that a positive (negative) trend exist and that both
significant negative and positive correlations are found in the correlation time
series. The Mann–Kendall trend test (p< 0.05) was used to assess whether a trend
exists. See the motivation for this analysis in Supplementary Note 3 and the results
in Supplementary Fig. 17.

Data availability. The crop production data from the LPJmL simulations and the
harvested areas data used for data aggregation (at FPU and country scales) have
been deposited in the Dryad Digital Repository70 (https://doi.org/10.5061/
dryad.6h5p0).
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