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In relativistic quantum field theories, compact objects of interacting bosons can become stable owing to
conservation of an additive quantum number Q. Discovering such Q balls propagating in the universe would
confirm supersymmetric extensions of the standard model and may shed light on the mysteries of dark matter,
but no unambiguous experimental evidence exists. We have created long-lived Q-ball solitons in superfluid 3He,
where the role of the Q ball is played by a Bose-Einstein condensate of magnon quasiparticles. The principal
qualitative attribute of a Q ball is observed experimentally: its propagation in space together with the self-created
potential trap. Additionally, we show that this system allows for a quantitatively accurate representation of the
Q-ball Hamiltonian. Our Q ball belongs to the class of the Friedberg-Lee-Sirlin Q balls with an additional neutral
field ζ , which is provided by the orbital part of the Nambu-Goldstone mode. Multiple Q balls can be created in the
experiment, and we have observed collisions between them. This set of features makes the magnon condensates
in superfluid 3He a versatile platform for studies of Q-ball dynamics and interactions in three spatial dimensions.

DOI: 10.1103/PhysRevB.97.014518

I. INTRODUCTION

All self-bound macroscopic objects encountered in every-
day life or observed experimentally are made from fermionic
matter, while bosons mediate interactions between fermionic
particles. Compact objects made purely from interacting
bosons may, however, be stabilized in relativistic quantum
field theory by conservation of an additive quantum number
Q [1–3]. Observing such Q balls traveling in the universe
would have striking consequences: Their discovery would
support supersymmetric extensions of the standard model
[4,5]; Q balls could have participated in baryogenesis [6] and
formation of boson stars [7], and the dark matter [5,8–10]
and supermassive compact objects in galaxy centers [11] may
consist of Q balls. Nevertheless, unambiguous experimental
evidence of Q balls has so far not been found in cosmology
or in high-energy physics. In condensed-matter systems some
analogs of Q balls have been theoretically suggested [12,13],
while experimentally, properties of bright solitons in one-
dimensional atomic Bose-Einstein condensates (BECs) [14]
as well as those of Pekar polarons in ionic crystals [15] bear
similarities to Q balls.

Here we present a laboratory realization, where the Q-
ball Hamiltonian is accurately reproduced, unlike previously
discussed qualitative analogs. Q balls are represented by Bose-
Einstein condensates of magnon quasiparticles in superfluid
3He, with the number of magnonsNM in the condensate playing
the role of the charge Q and the frequency of precession of
magnetization corresponding to the frequency of oscillation
of the relativistic field within the Q ball. We experimentally
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demonstrate all essential features of a Q ball, including self-
collection of bosons into a spontaneously formed trap, long
lifetime, and propagation as a compact object in space.

Bose-Einstein condensation of quasiparticles, such as
magnons [16,17], exciton-polaritons [18], and even photons
[19], keeps extending the limits of known macroscopic coher-
ent phenomena [20]. Quasiparticle condensates form a per-
spective platform for experimental studies of elusive systems
and exotic theoretical models based on the tradition of quantum
simulations in atomic BECs [21,22]. One of the most versatile
environments is provided by the superfluid phases of 3He,
where a number of concepts from high-energy physics and
cosmology have already been successfully tested [23–27].
Magnons in 3He-B are quanta of transverse spin waves, accom-
panied by precessing magnetization of 3He nuclei. Magnon
condensation is manifested in the spontaneous phase coher-
ence of the precession [16,28–31]. The lifetime of magnon
condensates rapidly increases as temperature decreases below
≈3 × 10−4 K and reaches minutes [32,33].

Magnons, carrying spin −h̄, can be trapped within the sam-
ple volume using an appropriate profile of external magnetic
field. An additional contribution to the trapping potential of
magnon BEC originates from the spin-orbit interaction owing
to the spatial distribution of the orbital anisotropy axis l̂(r)
of the superfluid 3He-B order parameter. Unlike the common
case of trapped atomic condensates, the magnon BEC is able
to modify the underlying l̂(r) profile and hence the confining
potential [34,35]. It was proposed in Ref. [34] that this self-
modification of the trap is an important prerequisite for the
formation of a true, propagating Q ball. In earlier experiments,
however, only condensates locked to preexisting traps with
various degrees of self-modification were identified. Distinct
from those, in our experiments the Q ball is formed when
magnons, initially pumped by a radio-frequency pulse across
the whole sample, collect on the periphery of the sample

2469-9950/2018/97(1)/014518(9) 014518-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.014518&domain=pdf&date_stamp=2018-01-22
https://doi.org/10.1103/PhysRevB.97.014518


AUTTI, HEIKKINEN, VOLOVIK, ZAVJALOV, AND ELTSOV PHYSICAL REVIEW B 97, 014518 (2018)

container in a self-created trap. This process spontaneously
breaks the axial symmetry of the container-imposed l̂(r) profile
and of the applied magnetic field. Afterwards, the Q ball drifts
towards the axis of the sample, as favored by the externally
imposed fields, and the trap conforms to this movement.
This propagation unambiguously demonstrates the nontrivial
soliton nature of a true, long-lived Q ball. Moreover, we
have created a second stationary Q ball at the sample axis
and have observed how the propagating Q ball collides with
the stationary one at the end of its track. We thereby show
that the magnon BEC in 3He-B allows for the most accurate
condensed-matter representation of the nontopological Q-ball
solitons in three dimensions.

II. MAGNON BEC AS Q BALL

The essential component of a Q ball is the relativistic
complex field � of self-localized charge [1]. In the class of
soliton solutions [3], which our experiment realizes, the �

field interacts with the neutral scalar field ζ , which provides
a confining potential. The Q balls in theories with only one
scalar field � and the Q balls in theories with additional neutral
field ζ are usually referred to as Q balls of the Coleman and
Friedberg-Lee-Sirlin types, respectively. For a magnon Q ball
in superfluid 3He the field � is the transverse component of the
coherently precessing spin, � ∝ Sx + iSy . A quasiconserved
number of magnons, NM = ∫

dV (S − Sz)/h̄, becomes the Q

charge. The � field in a Q ball obeys a relativistic Klein-
Gordon equation [1,3]. In Appendix A we derive this equation
for our magnon representation of � starting from the Leggett
equations of spin dynamics in 3He-B [Eq. (A8)]. We show
that in the long-wavelength limit realized in the experiments it

transforms to a Schrödinger equation

−ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + U (r)ψ, (1)

where m is the magnon mass and |ψ |2 ∝ |�|2. The trapping po-
tential U (r) is formed by the magnetic field |H(r)| = 2π

|γ |νL(r)
and the neutral field ζ of the Friedberg-Lee-Sirlin type:

U (r) = UH + Utext ≡ hνL(r) + 1

2πνL

ζ 2(r). (2)

Here νL is the Larmor frequency, and γ is the gyromagnetic
ratio of 3He. The neutral field ζ (r) is provided by the Nambu-
Goldstone mode of the orbital degrees of freedom, the texture
of the l̂ vector, and is expressed in terms of βL, the deflection
angle of l̂ measured from H ‖ ẑ [see Eq. (A25)]:

ζ 2(r) ∝ sin2[βL(r)/2]. (3)

The condensate wave function ψ is normalized to the number
of magnons NM and can be expressed in terms of the tipping
angle βM of the precessing magnetization [see Eq. (A23)]:

ψ ∝ sin[βM(r)/2]eiωt . (4)

The frequency of the coherent precession ω = 2πν plays the
role of the chemical potential of the magnon BEC. In relativis-
tic theories it corresponds to the frequency of oscillation of the
� field within the Q ball. For a detailed derivation of the above
quantities, see Appendix A.

In the absence of magnons the spatial distribution of l̂ in
our cylindrical container results from competing effects of
the magnetic field and the container walls (see Fig 1): The
orientation changes smoothly from parallel to the field at the
container axis to perpendicular to the wall at the periphery.

FIG. 1. Experimental setup: top part of the sample container, magnon condensate with precessing magnetization M (red blob) in a potential
trap (thick solid lines), and corresponding wave functions for a small number of magnons (red dash-dotted lines). In the radial direction the
potential minimum is formed by a combination of magnetic and textural energies, UH and Utext . In the axial direction the minimum is formed
by the magnetic energy alone. Green arrows illustrate the spatial distribution of vector l̂, which is uniform in the ẑ direction in the absence of
magnons. The pinch coil position defines z = 0, which corresponds also to the common axis of the NMR pickup coils. The potentials and wave
functions are calculated for T = 0.15Tc, p = 0.5 bar, and pinch coil current of 3 A.
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Together with the magnetic potential, the profile of l̂ leads to a
nearly harmonic three-dimensional potential [35]. We put the
origin of our coordinate system at the bottom of this trap and
choose U (r = 0,z = 0) = 0. Therefore the condensate energy
is conveniently measured as the shift �ν of the precession
frequency of the magnetization from the Larmor frequency
at the origin: ν = νL(r = 0,z = 0) + �ν. All magnon states
in this harmonic trap, including the ground state, have the
frequency shift�ν > 0. Relevant parts of the sample container,
an example of the trapping potential, and the corresponding
condensate wave function are shown in Fig. 1.

The Q-ball Hamiltonian in general contains a repulsive
interaction between the charged and neutral fields. Here it
arises from the spin-orbit interaction, which increases free
energy by Fso = |�(r)|2ζ 2(r). As the number of magnons
increases, l̂ within the condensate reorients along ẑ, reducing
Utext(r) and the energy eigenstate in the trap. Experimentally,
this is observed as a decrease in the condensate precession
frequency ν with increasing signal amplitude. At large NM

the effect becomes so strong that Utext(r) forms a box [35]
with a flat bottom and steep walls. This box is a bosonic
analog of a hadron in the MIT bag model [36], as elaborated
in Appendix B, and an essential prerequisite for formation of
a Q ball.

III. OBSERVING Q BALLS IN EXPERIMENTS

In our experiments the superfluid 3He sample, contained
in a long, cylindrical quartz tube (diameter of 5.8 mm, length
of 150 mm), is cooled down using a nuclear demagnetization
refrigerator to (0.13–0.20)Tc. The experiments were carried
out at p = 0.5 bar (if not specified otherwise). The superfluid
transition temperature Tc at p = 0.5 bar is 1 mK. Temperature
is measured using a quartz tuning fork sensitive to the thermal
quasiparticle density in the sample [37,38]. The fork is located
near the bottom of the container above the sintered connection
to the nuclear demagnetization cooling stage. The applied
magnetic field is 25.4 mT, and the corresponding nuclear
magnetic resonance (NMR) frequency νL = ωL/2π = 826
kHz. In addition to the homogeneous axial field used for NMR,
we use a pinch coil to create a field minimum along the sample
container axis centered at z = 0. The pinch coil produces also a
small field maximum in the radial direction. The experimental
setup and the magnetic field profile calibration are described
in more detail in Refs. [33,39].

To monitor the formation and propagation of Q balls we
use NMR techniques. They have proved powerful in probing
various phenomena in 3He close to zero temperature [33,40].
Magnons are pumped to the system with a radio-frequency
pulse at a frequency above the ground-state frequency. The
pumped magnons then quickly condense to the ground state,
forming the BEC [16]. The coherently precessing magneti-
zation of the condensate induces signal in the NMR pickup
coils with amplitude A ∝ ∫

sin βM dV . The frequency and
amplitude of the recorded signal are extracted as a function of
time by tracing the peak in a windowed Fourier transformation
of the signal. For a fixed geometry of the condensate A ∝ N

1/2
M ,

but the proportionality coefficient depends strongly on the

FIG. 2. Frequency and amplitude of a magnon Q ball during its
decay: The Q ball is created by an rf pulse at t = 0 (T = 0.15 Tc,
Tc ≈ 1 mK). (a) The signal recorded from the NMR pickup coils.
(b) Windowed Fourier transform of the signal showing the magnon
BEC as a sharp peak whose frequency shift �ν and amplitude A

change in time. (c) and (d) Measured (blue lines) and calculated
(red dashed lines) dependencies, A(t) and A(�ν). Thin black lines in
(c) are exponential fits to the measured decay. The initial decay time
in the simulation is τ = 1.7 s. The red square and green circle mark
the peripheral and central Q balls illustrated in Fig. 4.

spatial distribution of the BEC wave function. This allows us
to track the location of the Q ball in the measurements.

IV. PROPAGATING Q BALL

After the exciting pulse is turned off at time t = 0, NM(t) de-
cays slowly due to nonhydrodynamic spin diffusion and radia-
tion damping [33], the former being the dominant contribution.
If at t = 0 the number of magnons NM(0) is relatively small,
the signal amplitude decays exponentially, A(t) ∝ exp(−t/τ ),
and the change in the frequency shift �ν(t) during the decay
is small [33,35]. With high NM(0) > N c

M ∼ 1012, we observe
reproducible decay signals with nonmonotonous A(t) and
�ν(0) < 0; that is, ν is below the minimum of the original
trapping potential (Fig. 2). The relaxation process is well
defined: The relaxation follows a sequence of states which is
independent of the relaxation rate, controlled by temperature,
as demonstrated in Fig. 3(a). Decays started from different
NM(t) are identical after the common signal amplitude is
reached [see Fig. 3(b)].

We explain these observations via formation of a peripheral
magnon Q ball in a trap of spontaneously broken symmetry:
Our self-consistent numerical simulation (details below) shows
that with a sufficiently large Q ≡ NM the textural potential
Utext is suppressed due to the above-mentioned box effect. The
radial maximum in the magnetic potential UH allows the Q

ball to self-localize in the periphery. Remarkably, the axial
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FIG. 3. (a) Q-ball decays and (b) corresponding frequency-
amplitude dependencies at different temperatures and with different
initial amplitudes at p = 0 bar. The measured decay signals are scaled
in time according to τcen to the units of the green (0.16 Tc) line,
revealing that the decay paths are identical in both A(t) and A(�ν).
The signals begin with a nondecaying part of constant amplitude,
where the condensate is supported by rf pumping (t < 0 in Fig. 2). In
this plot t = 0 corresponds to turning off pumping for the magenta
(0.17Tc) line, and other lines have been shifted in time in order to allow
a comparison of the decay processes. τcen stands for the time constant
of exponential decay of the central Q ball (tail of the signal), and
τper stands for that of the peripheral one (beginning part of the signal).
Thin black lines are exponential fits to the green (0.16 Tc) line.

symmetry of the confinement is spontaneously broken as
well, and the Q ball becomes also azimuthally localized.
This phenomenon is unlike conventional spontaneous sym-
metry breaking, where the potential remains axisymmetric
(Appendix C). At the periphery of the sample, the Q ball’s
energy is below the original trap minimum, and thus �ν < 0.
In the simulations the Q ball moves further from the axis (that
is, closer to the sample container wall) than in the experiments,
and hence its frequency is lower. This is probably due to
insufficient rigidity in the model’s orbital texture, which keeps
the Q ball from eventually colliding with the container wall.
The simulation is compared with the experiment in Fig. 2 and
interpreted in Fig. 4.

The soliton nature of the propagating Q ball is manifested
during the decay: The Q ball decays while staying at the
periphery until it reaches the critical charge Qc = N c

M, after
which it quickly propagates to the center and simultaneously
changes shape. This is an experimental realization of the
threshold Qc discussed in Ref. [3]. Thereafter the exponential
decay continues roughly at a three times slower rate. The
nonmonotonic evolution of the signal amplitude is a signature
of the propagation: The peripheral Q ball is strongly localized,
that is, compressed in both azimuthal and axial directions due

FIG. 4. Propagating magnon Q ball: (a) The peripheral Q ball, as
marked in Fig. 2 by a square, is plotted in terms of βM at z = 0 along
the direction of Q-ball movement, labeled x ′. The thick dash-dotted
line is used where the condensate frequency (level indicated by the
dotted blue line) is above the total potential U (thick solid blue line),
and the thin dashed line is used where it is below. The magnetic
potential UH is drawn with a thick dashed black line. (b) While
propagating from the periphery to the axis, the Q-ball frequency
crosses �ν = 0. (c) The Q-ball state at the axis, marked in Fig. 2 by a
circle. (d) and (f) The parts of the peripheral and central Q-ball wave
functions (compact red and green blobs) that correspond to Q-ball
frequency being above the total potential (lighter blue surface) are
plotted in the z = 0 plane to illustrate the broken azimuthal symmetry
of the peripheral state. The magnetic part of the potential is shown
by a darker gray surface. (e) The top view of the sample container,
the NMR coils, and the two Q-ball states [as plotted in (d) and (f)]
reveals the time evolution of the Q-ball size. The peripheral Q ball is
plotted traveling to one of the four degenerate directions with respect
to the NMR coils.

to the pressure of the surrounding texture. The central Q ball
spreads wider [see Fig. 4(e)] and therefore produces a larger
signal for a given number of magnons. On top of the relatively
slow decay of NM(t), the fast propagation is therefore seen as
a sudden increase in the signal amplitude. The change in the
wave function also explains the different relaxation rates of the
peripheral and central Q balls: The relaxation is mainly due to
spin transfer over the thermal quasiparticles in 3He-B, which
increases with gradients of the wave function [33]. Those are
larger for the compressed peripheral state.

In the simulations we treat the decay of the Q ball as
a sequence of quasiequilibrium states. This assumption is
justified by the fact that in the experiments the observed
sequence of states along the Q-ball decay is relaxation rate
independent (Fig. 3). The limitations of this approach are
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revealed in the modest overshoot in simulated signal amplitude
when the Q ball moves to the center [Figs. 2(b) and 2(c)]. We
solve for the charged field [Eq. (1)] and the neutral l̂ field for
each NM, varying NM in steps. Self-consistency between ψ

and l̂ is reached with a fixed-point iteration. Close to Qc the
fixed-point iteration becomes sensitive to the initial condition.
We start the simulation from NM � Qc and use the solution
at the previous step as the initial condition for the next step.
The l̂ profile is calculated in three dimensions by minimization
of appropriate free energy [41,42] including interaction with
the magnon condensate in Eq. (A26). Solving Eq. (1) when
NM = 0 is described in Ref. [33]. The time evolution of the
Q ball in simulations is calculated by solving Eq. (7) in
Ref. [33] for the relaxation rate of the Zeeman energy. The
signal amplitude in simulations is scaled to fit the very tail of
the decay of the experimental signal, where the decay is well
understood [33].

The expected NMR signal from the precessing magnetiza-
tion in the simulation is calculated using the known geometry
of the coil system. The direction that the peripheral Q ball
is moving to, that is, the angle ϒ between axes x and x ′
in Fig. 4, is fitted, yielding ϒ = 67◦. This fitted value of
ϒ corresponds to four possible directions of the Q ball’s
movement due to the symmetry of the coil system. Closer to the
coils their sensitivity is higher, and hence the peripheral Q ball
would produce a roughly two times larger signal than observed
should it travel towards one of the two coils (ϒ = 0◦) and
an about 50% smaller signal if it traveled along the direction
perpendicular to the common axis of the NMR coils (ϒ = 90◦).
The signal produced by the central condensate does not depend
on ϒ . To control this symmetry breaking in the simulation,
we introduce a small symmetry-violating perturbation in the
simulated potential to lift the degeneracy without influencing
the structure of the Q ball.

V. COEXISTENCE OF TWO Q BALLS

The spatial distribution and rigidity of the neutral field ζ (r)
can be controlled by adding an array of quantized vortices
by rotating the sample [40]. Rotating at 1 rad/s, we are able
to create two coexisting spatially separated Q balls using a
rf pulse with a wide enough spectrum (see Fig. 5). That is, in
addition to the Q ball on the periphery of the sample container,
there is another Q ball localized to the container axis. They are
stable owing to increased rigidity of the neutral field separating
them. Due to the magnetic field profile, the central Q ball has
higher energy than the one on the periphery.

During relaxation the peripheral Q ball moves towards the
sample container axis, and when the energies of the two Q balls
are sufficiently close, they merge, forming a single magnon Q

ball in the central trap. This process is not very regular and
depends on, e.g., the phases and the initial amplitudes of the
magnon BECs. The coexistence of two magnon Q balls will
allow detailed studies of interactions between them, especially
the Josephson effect between two Q balls in flexible traps [43].
In the future this setup can also be used, e.g., for a quantum
simulation of the Penrose-type “gravitationally” induced wave
function collapse [44].

FIG. 5. Coexistence of central and peripheral Q balls: a true Q

ball on the periphery of the sample container in the broken-symmetry
trap and a central Q ball on the sample container axis (1 rad/s rotation,
T = 0.13 Tc). During the decay both eigenenergies (frequencies)
increase, and when they become close enough, the condensates
merge. This process of merging of two Q balls into a single one is
demonstrated in two different experiments conducted under similar
conditions. The panel on the left shows a straightforward merger,
whereas on the right the peripheral Q ball goes through a metastable
state: Just before the merger its energy is higher than that of the central
Q ball. The metastability of the Q balls obtained by interaction of
charged and neutral fields is discussed in Ref. [3]. Close to t = 0
some exited levels in the central trap are visible at higher frequencies.

VI. CONCLUSIONS

The concept of Q balls originates from high-energy physics
and cosmology, where it has been used for so-far speculative
explanations of many important phenomena in the universe,
such as dark matter. We presented an experimental confirma-
tion of the Q ball concept in a three-dimensional quantum
simulation using a Bose-Einstein condensate of magnon quasi-
particles in superfluid 3He-B. This realization relies on the long
lifetime of the magnons and their interaction with the orbital
degrees of freedom of the underlying superfluid system. Both
of these phenomena are also important from the point of view
of BEC formation and spin superfluidity in general. The Q

ball provides a new manifestation of the spin superfluidity of
magnon BEC in 3He-B, which complements the Josephson
effect, quantized vorticity, superfluid spin currents, and the
propagating Goldstone mode observed earlier in such conden-
sates [16,45].

In our experiment the Q ball propagates over a macroscopic
distance in the sample container, and the confining potential
conforms to that movement. Such movement manifests the
soliton nature of a true Q ball. We further demonstrate how this
realization provides the possibility of creating two coexisting
Q balls and observing how they interact and merge. A detailed
study of the dynamics and interaction between the Q balls,
such as the ac Josephson effect, remains an interesting task for
the future.
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APPENDIX A: DERIVATION OF Q-BALL
REPRESENTATION BY MAGNON BEC

1. Magnons as relativistic particles

In what follows we derive the components of a magnon
Q ball in detail. For further discussion of these topics, see
Refs. [34,46].

Let us start from the spectrum of transverse spin-wave
modes in 3He-B in magnetic field,

ω±(k) = ±ωL

2
+

√
ω2

L

4
+ k2c2, (A1)

where ωL = γH and c is the spin-wave velocity, which here
is assumed to be isotropic for simplicity. The spectrum (A1)
can be considered a spectrum of a relativistic particle with spin
Sz = ±h̄ in an effective magnetic field:

E(Sz,k) =
√

E2
0 + k2c2 − γ H̃Sz. (A2)

Here the rest energy E0 of a particle is defined through its mass
m as

E0 = mc2 = h̄ωL

2
, (A3)

and the effective magnetic field is

γ H̃ = ωL

2
. (A4)

At small k when ck 
 ω, the spectrum transforms to that of
the Galilean limit of a massive particle,

E(Sz = −h̄,k) = h̄ωL + h̄2k2

2m
, (A5)

E(Sz = +h̄,k) = h̄2k2

2m
. (A6)

The mode with Sz = −h̄ corresponds to optical magnons rele-
vant to this work. They are called simply magnons throughout
the text. Each magnon reduces the projection of spin on axis z

by h̄. The other branch (Sz = h̄) is known as acoustic magnons
[27].

The effective magnetic field can be removed by transforma-
tion to the spin reference frame rotating with angular velocity
ωL/2. In this frame the spectrum of spin waves becomes

Ẽ(k) =
√

E2
0 + k2c2. (A7)

The relativistic spectrum of the spin waves suggests that
magnons can be seen as quanta of a “relativistic” quantum
field. Below we show that the field is a scalar field and
magnons therefore play the role of the � field, which appears
in high-energy physics as the core component of the Q-ball

soliton. In what follows we set γ = h̄ = 1. Where relevant,
these quantities are, however, expressed explicitly.

2. Deriving the relativistic spectrum

Let us write the linearized Leggett equations for spin
dynamics in terms of the small spin-rotation angle θ , |θ | 
 1,
which is related to the deviation of spin density S from its
equilibrium value χH [47]:

S − χH = χ∂tθ . (A8)

Here χ is the spin susceptibility.
The Lagrangian for the θ field contains a linear term in

the time derivative because the magnetic field violates time-
reversal symmetry:

L = χ

2
[−(∂tθ )2 − (θ × ∂tθ) · H + c2∇iθ∇iθ] + Fso(θ ).

(A9)
The term Fso(θ ) is spin-orbit interaction. It originates from
dipole-dipole interaction between spins of the particles form-
ing a Cooper pair and violates spin-rotation symmetry. The
Lagrangian (A9) can be rewritten in the following way:

L = χ

2

[
−

(
∂tθ + 1

2
ωL × θ

)2

+ E2
0θ

2
⊥ + c2∇iθ∇iθ

]

+ Fso(θ). (A10)

If one ignores the spin-orbit coupling, this Lagrangian de-
scribes relativistic massive particles that interact with a SU(2)
gauge field, whose time component is a0 = 1

2ωL [48,49].
Let us consider transverse NMR, where only the compo-

nents θ⊥ ⊥ H are relevant (the static magnetic field is along
the z axis). The gauge field is curvature free and can be
eliminated, like above, by time-dependent rotation in spin
space, which corresponds to the transformation to the spin
reference frame rotating with angular velocity ωL/2. In this
frame, both optical and acoustic modes are precessing with
frequency ωL/2 in opposite directions and thus have the same
energy Ẽ in Eq. (A7).

The two-component real field (θx,θy) can be rewritten in
terms of the scalar complex field �,

� =
(χ

2

)1/2
(θx + iθy). (A11)

The Lagrangian (A10) becomes the Lagrangian for a scalar
field interacting with a U(1) gauge field, whose time compo-
nent is A0 = ωL/2:

L = − (∂t� + iA0�)(∂t�
∗ − iA0�

∗)

+ E2
0 |�|2 + c2|∇�|2 + Fso(�,�∗). (A12)

In a constant magnetic field, the U(1) gauge is removed by in-
troducing the time-dependent phase rotation, �̃(t) = �(t)eiMt ,
and one obtains the Klein-Gordon Lagrangian for the complex
relativistic scalar field used for the description of Q balls in
high-energy physics:

L = −|∂t �̃|2 + E2
0 |�̃|2 + c2|∇�̃|2 + Fso(�̃,�̃∗). (A13)

In transverse NMR, where transverse components of spins
precess with the Larmor frequency ωL, the field �̃ has the
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form

�̃(t) = �(t)eiE0t = �0e
−iωLt eiE0t = �0e

−iE0t . (A14)

The energy spectrum of excitations of scalar field � in the
absence of spin-orbit interaction is

ω±(k) = ±
√

E2
0 + k2c2 − A0, (A15)

which corresponds to the spin wave spectrum in Eq. (A2).
The branch with the minus sign gives the spectrum of optical
magnons: E(Sz = −1,k) = |ω−(k)|.

The Lagrangian (A12) for the complex field in the absence
of spin-orbit interaction has a conserved quantity, the U(1)
charge Q:

Q = i

∫
d3x(�̃∗∂t �̃ − �̃∂t �̃

∗). (A16)

In the precessing state (A14) one obtains

Q = 2E0

∫
dV |�0|2 = χωL

2

∫
dV θ2

⊥ ≈
∫

dV (S − Sz),

(A17)

where we used Sz =
√

S2 − S2
⊥ and S2

⊥ = S2θ2
⊥. Each magnon

reduces the total spin by h̄, and therefore the charge of the
complex field coincides with the magnon number NM:

Q = NM. (A18)

3. From the Klein-Gordon to Schrödinger equation

We have shown that the dynamics of magnetization obeys a
relativistic Klein-Gordon equation, where the “speed of light”
corresponds to the velocity of spin waves. The corresponding
global U(1) symmetry is the SOS(2) symmetry under rota-
tion of the spin system about the axis of applied constant
magnetic field (axis z). The global U(1) charge Q comes
from projection of spin along the direction of magnetic field,
Q = (S − Sz)/h̄ = NM. This is a quasiconserved quantity in
3He-B as magnons are long-lived quasiparticles.

The density of trapped magnons is relatively small, and the
direct interaction between them is negligible compared with
the interaction with the flexible orbital texture. Consider the
nonrelativistic limit kc 
 mc2 of the Klein-Gordon equation
realized in the experiment. The wave vector k is the inverse of
the characteristic length scale of the trapping potential U (r).
As in this limit one has

(ω − A0)2 − E2
0

2E0
≈ ω − ωL, (A19)

the Klein-Gordon equation for �̃ transforms to the Schrödinger
equation for ψ :

−ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + Uψ, U (r) = h̄ωL(r) + Utext(r).

(A20)
The Klein-Gordon wave function �̃ is connected to the
Schrödinger wave function ψ for magnons

�̃(t) = ψ√
2E0

eiE0t−iωt ,

∫
dV |ψ |2 = NM, (A21)

which satisfies |ψ |2 = ωL|�|2, and is normalized to the num-
ber of magnons:

Q = i

∫
dV (�̃∗∂t �̃ − �̃∂t �̃

∗) =
∫

dV |ψ |2 = NM.

(A22)
The Schrödinger wave function can be expressed in terms of the
observables, phase αM and tipping angle βM of the precessing
magnetization:

ψ =
√

2χH

γ h̄
sin(βM/2) exp(iωt + iαM). (A23)

The nonrelativistic limit in Eq. (A6) of spectrum in Eq. (A2)
is obtained solving Eq. (A20) for a free particle, assuming
the frequency of precession is close to the Larmor frequency,
|ω − ωL| 
 ωL.

The potential U (r) for magnons has two contributions: the
spatial dependence of the local Larmor frequency ωL(r) =
γH (r) and that of the spin-orbit interaction Fso(r) in Eq. (A12)
averaged over spin precession. The latter can be expressed in
terms of the field of unit vector l̂(r), defined as the direction
of the orbital angular momentum of Cooper pairs in 3He-B.
The field of the l̂(r) vector is time independent in the spin-
precessing state:

Fso = Utext|ψ |2, (A24)

where

Utext(r) = h̄
2�2

B

5ωL

[1 − lz(r)]

= h̄
4�2

B

5ωL

sin2[βL(r)/2] ≡ 1

ωL

ζ 2(r). (A25)

Here �B 
 ωL is the so-called Leggett frequency which
characterizes the magnitude of the spin-orbit interaction [47],
and βL is the polar angle of the l̂ vector. The texture of the
polar angle βL(r) plays the role of the neutral scalar field
ζ (r) interacting with the complex field �(r) [or ψ(r)]. The
texture ζ (r) is obtained by minimization of the textural energies
[41,42] with the addition of the contribution which comes from
the complex field of magnons [35]:

Fso = 1

ωL

|ψ(r)|2ζ 2(r) ≡ |�(r)|2ζ 2(r). (A26)

APPENDIX B: MAGNON Q BALL AND MIT HADRON BAG

The magnon Q ball in 3He-B is formed owing to the
interaction between the magnon condensate described by the
charged field � with conserved charge Q = NM and the orbital
field ζ (r), which is an analog of the neutral field [3,34]. The
field ζ (r) forms a potential well in which the charge Q = NM is
condensed. In the process of self-localization the charged field
�(r) locally modifies the neutral field ζ (r) via the spin-orbit
interaction [Eq. (A26)]. That interaction is repulsive, and if the
magnetic part of the trapping potential UH is neglected, in the
limit of large NM a cavity is formed, which is void of neutral
field ζ (r) and filled with the charge field �(r) (see Fig. 6).
That is, the flexible textural trap Utext transforms to a box with
walls impenetrable for magnons [35]. The pressure from the
field ζ is compensated by the zero-point pressure of the free
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FIG. 6. Q ball in 3He-B as a MIT hadron bag. (a) The BEC of
magnons (magenta circles) in the limit of large NM in a box cavity,
which is void of neutral field and filled with the charge field �(r).
(b) Simplified MIT bag model of hadrons, where the quarks forming
a hadron are confined within a blob of a false-vacuum void of the
actual vacuum of the QCD field.

magnons. This is an analog of the MIT bag model of hadrons,
where the quarks forming a hadron are confined only within
the QCD vacuum field and the quarks can freely move in the
false-vacuum void of the QCD field [36]. The confined quarks
form a blob of false vacuum, where the external pressure from
the QCD vacuum is compensated by the zero-point pressure
of the confined quarks.

APPENDIX C: SYMMETRY BREAKING

Let us compare the Q-ball formation with conventional
symmetry breaking, such as the symmetry breaking which
triggers the Higgs mechanism in the standard model [50].
In the conventional case the potential acquires the shape of
a Mexican hat but remains axisymmetric as in the left panel
of Fig. 7. In our case the potential Utext(r) does not have the

FIG. 7. Illustration of a conventional (left) and an unconventional
(right) spontaneous breaking of global continuous symmetry: In the
conventional situation, the potential acquires the form of a Mexican
hat but remains axisymmetric. The trapped particle(s) becomes
localized in one of the degenerate points in the valley of the potential,
thus breaking the U (1) symmetry. For the magnon Q ball the situation
is different: The Mexican hat potential itself is unstable towards
breaking of axial symmetry due to the self-trapping effect. The
ζ field conforms to the movements of the magnon Q-ball soliton
(� field).

Mexican-hat shape (Fig. 7, right panel). The potential shape
depends on the density of bosons localized in it. Therefore the
axisymmetric Mexican-hat potential itself is unstable towards
symmetry breaking in the azimuthal coordinate. Although
the generalized Hamiltonian for the combined � and l̂ fields
remains symmetric (degenerate), in the Q-ball picture the
potential Utext(r) is localized along the bosons. This is a
unique experimental example of spontaneous breaking of
the rotational SO(2) symmetry on top of formation of the
axisymmetric Mexican-hat potential.
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