
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Yousefnezhad, Narges; Filippov, Roman; Javed, Asad; Buda, Andrea; Madhikermi, Manik;
Främling, Kary
Authentication and Access Control for Open Messaging Interface Standard

Published in:
14th EAI International Conference on Mobile and Ubiquitous Systems

DOI:
10.1145/3144457.3144461

Published: 07/11/2017

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Yousefnezhad, N., Filippov, R., Javed, A., Buda, A., Madhikermi, M., & Främling, K. (2017). Authentication and
Access Control for Open Messaging Interface Standard. In 14th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, MobiQuitous 2017 (pp. 20-27). ACM.
https://doi.org/10.1145/3144457.3144461

https://doi.org/10.1145/3144457.3144461
https://doi.org/10.1145/3144457.3144461

Authentication and Access Control for Open Messaging
Interface Standard

Narges Yousefnezhad, Roman Filippov, Asad Javed, Andrea Buda, Manik Madhikermi, Kary
Främling

Department of Computer Science
Aalto University
Espoo, Finland

firstname.lastname@aalto.fi

ABSTRACT
The number of Internet of Things (IoT) vendors is rapidly grow-
ing, providing solutions for all levels of the IoT stack. Despite the
universal agreement on the need for a standardized technology
stack, following the model of the world-wide-web, a large number
of industry-driven domain specific standards hinder the develop-
ment of a single IoT ecosystem. An attempt to solve this challenge
is the introduction of O-MI (Open Messaging Interface) and O-DF
(Open Data Format), two domain independent standards published
by Open Group. Despite their good compatibility, they define no
specific security model. This paper takes the first step of defining
a security model for these standards by proposing suitable access
control and authentication mechanisms that can regulate the rights
of different principles and operations defined in these standards.
First, a brief introduction is provided of the O-MI and O-DF stan-
dards, including a comparison with existing standards. Second, the
envisioned security model is presented, together with the imple-
mentation details of the plug-in module developed for the O-MI
and O-DF reference implementation.

CCS CONCEPTS
• Security and privacy→ Security services; Systems security;

KEYWORDS
Internet of Things, Open Messaging Interface (O-MI), Open Data
Format (O-DF), Messaging Standards, User Authentication, Access
Control, Security, Certificate

ACM Reference format:
Narges Yousefnezhad, Roman Filippov, Asad Javed, Andrea Buda, Manik
Madhikermi, Kary Främling. 2017. Authentication and Access Control for
Open Messaging Interface Standard. In Proceedings of MobiQuitous 2017,
Melbourne, VIC, Australia, November 7–10, 2017, 8 pages.
https://doi.org/10.1145/3144457.3144461

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5368-7/17/11. . . $15.00
https://doi.org/10.1145/3144457.3144461

1 INTRODUCTION
Internet of Things (IoT) is a vision of future Internet where the
barrier between the physical world and digital information will be
removed [17]. This concept includes heterogeneous objects such
as light bulbs, microwave ovens, smart phones or any intelligent
products which are used in our daily life in diverse situations and
different applications. Giving the fact that the IoT will potentially
connect billions of devices, there is a reasonable concern regarding
network capacity and suitable communication patterns and pro-
tocols. Requiring a new web browser for each web site would be
complicated; in a similar vein, it would be hard to imagine the cur-
rent approach to IoT connectivity. A similar concern is expressed
in [22], who states that "The future is not going to be just people
talking to people or people accessing information. It’s going to
be about using machines to talk to other machines on behalf of
people with totally new communication pattern arising between
people to machines and machines to machines". Without a clear
standardization between different organizations and countries, the
expansion of a truly worldwide IoT can be practically impossible to
achieve. Obviously the IoT community must follow the example of
the World Wide Web, in which TCP/IP and HTTP/HTML boosted
the Internet to spread across the world.

There are many protocols designed and used for machine-to-
machine (M2M) communication specially in IoT platforms. Message
Queue Telemetry Transport (MQTT) designed by IBMwas proposed
for unreliable networks with high latency and low bandwidth [18].
Constrained Application Protocol (CoAP) was proposed with the
purpose of efficient M2M communication in restricted environ-
ments with a limited amount of available memory [21]. Advanced
Message Queuing Protocol (AMQP) provides services for the mid-
dleware to administer the queuing, routing, orientation, reliability
and security of the messages [19].

However, sufficiently generic and standardized application-level
interfaces are still lacking for exchanging information required by
IoT infrastructures. These interfaces must be as complete and flexi-
ble as possible to support variety of organizational needs and struc-
tures. Open Messaging Interface (O-MI) and Open Data Format (O-
DF) messaging standards were proposed as a standard application-
level interface for fulfilling such requirements [13]. Nevertheless,
these two standards define no specific security model while they
clearly state how suitable security mechanism can be applied "on-
top" of these standards. This paper examines the development of a
security model for these IoT standards considering authentication
and access control requirements.

https://doi.org/10.1145/3144457.3144461
https://doi.org/10.1145/3144457.3144461

MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia N. Yousefnezhad et al.

Figure 1: Security requirements for provider and consumer in IoT platform

The rest of this paper is structured as follows. First, a literature
review is presented over the existing security modules for IoT pro-
tocols. Section 3, 4, and 5 explore the structure of O-MI and O-DF
standards, an application for their implementation and their essen-
tial security, and privacy requirements respectively. Considering
these requirements, a list of design principles and the database
structure is demonstrated in Section 6. Section 7 displays the pro-
posed authentication and access control interactions between two
devices. After explaining implementation features in Section 8, we
conclude with outlines of future work in Section 9.

2 RELATEDWORK
Security in IoT implementations is critical during the device design
and manufacturing phase, the initialization phase and product up-
date. Correctly implemented, secure IoT deployments should ensure
the proper configuration of the basic security requirements needed
for data confidentiality, data integrity, and data accessibility as part
of the solution. For this purpose, security requirements could be cat-
egorized into two groups: provider-specific and consumer-specific.
Some of them are necessary for sensors as data providers and others
should be fulfilled for users as data consumers (see Figure 1). Users
do not need to be worried if their devices are compromised. Service
providers are also assured that unauthorized credential sharing is
prevented [15].

As a primary requirement for security, an efficient Identity Man-
agement (IdM) system is required which could dynamically assign
and manage an unique identity for the large number of objects
and users [12]. Comparison of five available IdM technologies, that
is, OpenId, Liberty Alliance, Card-Space, Shibboleth and Higgins
shows that none of them conform the IoT requirements. therefore,
new IdM systems should be proposed [15]. On the other hand, to
prevent attackers from inserting a malicious sensor node to the

network, the identity of the sensor nodes should be authenticated
by other nodes. For this purpose, Zhao et al. [25] propose a mutual
authentication for IoT nodes. In addition, sensors must convince
service provider (or cloud) that they are authenticated to store
information there [10].

Furthermore, the provider enables privacy-preserving data shar-
ing, with groups of entities which satisfy specific identity attributes
values. It is also responsible for key exchange and providing in-
teroperability between peers. It should also prepare a trusted and
reliable IoT environment where users can interact securely with
IoT services [9]. In order to provide end-to-end data protection,
both in transit and in storage, Wrona [24] proposes an approach
based on cryptographic access control and Object Level Protection
standard. Mahalle et al. [16] also present an integrated approach
to authentication and access control for IoT devices called Iden-
tity Authentication and Capability based Access Control (IACAC)
model.

Finally, since context-awareness contribution critically to de-
ciding what data needs to be processed for each service [20], for
presenting a context-aware security service on IoT scenarios, the
detected contexts should be defined and maintained before each se-
curitymanagement decision. Before consuming the data (or service),
the user needs to run identification, authentication, and authoriza-
tion. Different kinds of identification technologies such as passive
RFID chips and 2D-barcodes are used for IoT environment [5, 11].
To enable user (data owner) to estimate the privacy risk of sharing
his sensor data to third party, a privacy management scheme is pro-
posed by Ukil et al. [23]. Overall, there are few integrated solutions
available for authentication and access control in IoT environment.
Liu et al. [14] propose a new scheme on authentication and access
control for IoT users. Mahalle et al. [16] present an authenticated

Authentication and Access Control for O-MI Standard MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia

and access control approach for IoT devices. Hence, this paper
analyzes these two requirements.

3 O-MI/O-DF STANDARDS
O-MI and O-DF were created with the same purpose as HTTP and
HTML was for the web. For product lifecycle applications, O-MI
provides a way for communication framework between products
and distributed information systems that consume and publish in-
formation on a real-time basis. O-DF is defined as a simple ontology,
specified as an extensible XML Schema, for representing the pay-
load in IoT applications. It is intentionally defined in a similar way
as data structures in object-oriented programming [7]. It is struc-
tured as a hierarchy with an "Objects" element as its top element.
The "Objects" element could contain any number of "Object" sub-
elements. "Object" elements could have two sub-elements including
properties called "InfoItem" and other "Object". Figure 2 shows the
possible O-DF hierarchy for these elements and sub-elements.

Figure 2: O-DF hierarchy

O-MI can be seen as a transportation mechanism for any payload,
exchanging information between different O-MI Nodes across the
network. The information can be encoded using most of the widely
used formats such as XML, JSON and CSV. Since O-MI Nodes do
not have predefined roles, the interaction is performed on "peer-
to-peer" basis where every node can act both as a "server" and as
a "client" with the other O-MI nodes or with other systems [8].
Furthermore, in order to use an open messaging interface like O-
MI in real-time environments, security in terms of authentication
and access control are fundamental. In other words, O-MI node
administratorsmust be able to verify the identity of O-MI node users
and specify the roles and permissions for every O-MI operations
and O-DF Object (s) and InfoItem (s).

4 O-MI REFERENCE IMPLEMENTATION
To understand and learn the standards specifications, it is impera-
tive to associate standards with an implementation and a sandbox
environment. The reference implementation (or sandbox) acts as
some sort of executable documentation, with request and response
examples covering essentially every aspect of the standards. In this
way, developers can jump straight into action in understanding
what standards supposed to do in reality.

The current reference implementation1, developed at Aalto Uni-
versity, School of Science, Department of Computer Science consists
of three modules:

• O-MI Node Server: The server implements all O-MI basic
operations and maintains a database where the information
about O-DF data model, consisting of Object (s) and InfoItem
(s), is stored.

• Webclient: This module [1] provides a graphical interface to
guide users and developers working as a numbered step-by-
step tutorial.

• Agents: The agent subsystem provides a mechanism to inter-
act programmatically with the core of an O-MI node. Agents
are employed as an intermediary between the hardware (e.g.
sensors) and O-MI node to fetch data from data sources.

5 MODULE REQUIREMENTS
One of the main requirements for the security module is to impact
as little as possible the current core implementation while provid-
ing the desired functionalities. Therefore, a separate self-contained
module is created which can be integrated into the existing im-
plementation. The security module needs to fulfil the following
requirements:

• Preventing unauthorized access to the resources
• Setting group based rules assigning each user to a special
group

• Differentiating permissions according to the O-MI verbs
including read and read/write

• Minimizing the server-side account maintenance by using
OAuth2 authentication model (e.g. Facebook login)

• Applying recursive permissions mechanism similar to file
systems

• Setting an authentication mechanism treating humans and
devices in a universal way

• Implementing rules management interface for controlling
access policies by system administrator

These requirements are quite common in every security mech-
anism. Therefore, it is decided to mimic as much as possible the
well-known security models such as the one implemented by Unix
File System [3]. In comparison with Unix security module, O-DF
structure is very similar to a DIRECTORY structure, where objects
are folders and infoitems are files.

6 DESIGN PRINCIPLES
Based on the above listed set of requirements, it is possible to select
certain technologies, design an overall architecture, and define the
features which are needed to be implemented. The main design
decisions are summarized in the following list:

• Two main submodules. The security module consists of two
main parts: Registration (Authentication) submodule and the
Access Control submodule. The first one is responsible for
handling the registration of new users and their information.
It will also manage the authentication process and session
handling. The latter module consists of two essential parts:
administrator console and access control middleware. The

1https://otaniemi3d.cs.hut.fi/omi/node/html/webclient/index.html

MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia N. Yousefnezhad et al.

press login

user authentication and access approval

set session (cookie)

Service Provider
Registration

Module

get user data (access token)

update user information in database

redirect & ask for permission (scope)

redirect & authorize (access token, scope)

Figure 3: Authentication interaction

first module is a tool for system administrators to manage
user groups and policies. The second module processes and
authorizes requests made by the users.

• Separate Database. To satisfy the requirements of the existing
core implementation, it is decided to manage users (groups)
and the related policies in a separate database. Although,
this choice has negative effect in terms of memory and over-
all performance, it ensures code modularity and drastically
simplifies code management.

• Servlet based. The modules are written in Java by utilizing
Servlet technology.

• OAuth2 service provider. This feature is applied for registra-
tion (authentication) module which supports login to the
service using user credentials (e.g. Facebook).

• Certificates Extension. Since the "Things" does not have dedi-
cated user profile, these devices use client side certificates
containing the necessary credentials verifiable by the server.

6.1 Database Schema
At the core of the security module, there is a database, which is used
to store andmanage users, groups, and the associated access policies
(see [4] for more details). The database contains 3 main tables: user,
group, and rule. When registering new users, the module obtains
username and email only. Users belong to a "default group" after
their registration. The default behaviour and access policy for the
"default group" can be customized by the O-MI node administrator.
The group table contains the list of groups. Users and groups have

many-to-many relationship that is implemented using a helper table
named USER_GROUP_RELATION. Access rules stored in the rule
table, are arguably the most suitable approach for implementation
of the security module, as they maintain the association between
groups, data objects, and the operations they are allowed to perform
(Read/ReadWrite).

7 INTERACTION PRINCIPLES
Given the decision of developing the security module as a sepa-
rate plug-in for the O-MI reference implementation, the interaction
between these two softwares has to be planned. Two main interac-
tion types are identified: 1) User Registration or Authentication 2)
Access Control.

7.1 User Registration or Authentication
When a user opens the O-MI webclient interface for the first time
(or in case his session has expired), the system redirects the user to
perform an authentication process. Since OAuth2 is used for the
reasons noticed above (deducting the server burden), the credentials
are obtained from a third party website without the need for the
user to type them manually. The interaction scheme is shown in
Figure 3.

In this scenario, the user interacts with the Registration Module
through the web-browser. On the login web-page, the user selects
to register using an OAuth provider (in this case Facebook). Regis-
tration Module redirects the user to the service provider’s web-page
where he is asked for a permission of using his personal data. While

Authentication and Access Control for O-MI Standard MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia

O-MI Node machine Access Control machine

request + session cookie

[session == false]

redirect to login

[else]

IsAuthorized (session,
request type, object list)

Parse request

forward request
get rules

Match rules

forward response
True/False

Content/Error

Access Control
Module

Authenticaion
API Interface

O-MI Node
Server

Figure 4: Access control interaction

launching the login dialogue, scope parameter defines what kind
of data we would like to access in our application. Once the user
approved, the service provider redirects him back with the access
token plus scope parameters, which are forwarded to the Regulation
Module. Afterwards, the module is able to get personal data of
the user by making HTTP queries to the service provider calling
vendor-specific Application Programming Interface (API). After
getting the data, Regulation Module checks if the user is already
registered; if not, user information will be stored in the database.
In case no error occurs, the module sets the session cookies in the
user’s browser. Finally the user is authenticated and able to perform
queries to the O-MI Node Server using the webclient.

7.2 Access Control
Once a user is registered to the system, it is possible to associate his
account to particular groups restricting (or granting) the access to
particular data objects. For this purpose, a dedicated user interface,
called access management tool, is developed (additional informa-
tion regarding this user interface can be found in [4]). This user
interface interacts with the Access Control Module in the backend,
which essentially manages and stores access rules on the database
described above.

Access management tool. The user interface of this tool par-
tially resembles the O-MI Node, extending its functionality. This

tool is supposed to be used by the administrative staff in charge of
the O-MI node. In the user interface, administrators can manage
groups and users and set special rules for them. They can create,
modify or delete groups and add or remove particular users to
given group(s). Mimicking the same user interface used in the ref-
erence implementation webclient, it is possible to retrieve all the
objects available in the O-MI Node (ReadAll operation) and set
access policies for every node of the O-DF tree.

Access policies are simple flags (no-access/read/read-write), which
are associated with every node in the O-DF tree. These rules are
forwarded to Access Control Module on the backend which is in
charge of storing them in the database. When a certain group is
selected from the list, the system automatically loads the rules for
that group from the database and shows them in the tree. More
details regarding the access control module user interface can be
found in [4].

Backend. The access control backend, besides storing the con-
figuration set in access management tool in the database, has the
fundamental function of interacting with the O-MI node core. The
interaction is extremely simple. Essentially the O-MI node asks:
"Is the access to the resource X for the user Y and request type Z
allowed?", and the module replies "Yes or No" based on rules which
are set by the administrators. The module interaction scheme is
shown on Figure 4.

MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia N. Yousefnezhad et al.

This scenario usually starts after the authentication process is
completed and the user has a valid session cookie. Once the user is
authenticated, he can start to interact with the O-MI Node Server
through the webclient. When the user sends a request (e.g. read
request for a particular object or set of objects) to the O-MI node, a
session cookie is also forwarded. The Server receives and parses the
request in case the session is valid, otherwise sends back the user
to re-login. It then invokes one of the Authentication API methods,
which is part of the O-MI core implementation passing the list of
objects as parameters. The invoked method forwards the request
to the Access Control Module, by sending an HTTP POST to the
service running in localhost.

The Access Control Module selects the appropriate rules from its
database, matching them with the request permissions. If the user
has appropriate access right on every items of the hierarchy_id list,
the service replies True back to Authentication API. In case one or
more item violate access rules stored in the database, the service
replies False scrapping the entire request. Once the Authentication
API has received the True/False answer from the Access Control
service, the O-MI Node finally replies to the user with either the
requested data or an access denied error.

AuthService DBHelper

ConfigHelper AuthServlet

 Permission
Service

 Access Control
UI

Figure 5: Module class diagram

8 IMPLEMENTATION
In the previous section, the overall design of the security module
was presented, while this section focuses on the technologies and
implementation details of the developed module. Despite the fact
that the O-MI Node Server is written in Scala it is decided to im-
plement security module in Java. This decision is made mostly due
to the familiarly with the language and the available server-side
framework. In addition it is worth to notice that it is possible to
execute Java code from Scala applications as they are both compiled
as byte code for the same Java virtual machine. Therefore there
was no real concern if a tighter integration between the modules is
required.

Since the module is designed to be standalone, an embedded
Jetty Servlet container was used to implement the communica-
tion (HTTP) with the O-MI Node. Figure 5 depicts the overall
code organization. There are three ovals representing the servlets:

AuthServlet, PermissionService, and Access Control User Interface
(ACUI). AuthServlet is an authentication servlet that handles user
authentication and sets up a session. PermissionService, the core
servlet of the module, is responsible for majority of functions im-
plemented by the Access Control Module including the backend
service for ACUI tool and enforcing access control on behalf of the
O-MI Node.

DBHelper is a wrapper class for managing table structure and
entities for the SQLite database. The ConfigHelper class contains
basic configuration parameters, such as the database name and
server URL. The AuthService is an intermediary class responsible
for writing object permissions from the O-DF tree structure (using
the ACUI tool) into the database.

Finally, the last component interacting with the Access Control
Module is the Authentication API which is also known as Facebook
login. Essentially it is an external class, which is included in the
O-MI Node implementation, providing an abstracted and uniform
way to perform authentication and authorization, hiding the im-
plementation details regarding how these functions are performed.
This allows future updates to the Access Control Module which
will be completely transparent to the O-MI Node.

8.1 SSL Certificates Extension
To test the model, Smart home installation is used as a real-world
use case in which the O-MI Node and Access Control Module are
applied. Essentially it consists of various sensors connected together
to central gateway. The gateway connects the house to the Internet
and the Internet Service Provider (ISP) assigns a dynamic IP which
might change over time. The usage of dynamic IPs is very common
and that was one of the reason why the previous authorization
method based on IP whitelist was abandoned. In this scenario,
OAuth won’t work because the user agent is not a browser and
it does not make sense to authorize a physical device (the home
gateway) using a Facebook account. To address this issue, it is
decided to use client SSL certificates.

Normally, when using HTTPS protocol, the server buys a cer-
tificate from an authorized Certificate Authority (CA). When the
client connects to the server through HTTPS, it receives the server
certificate and checks within the CA if the certificate is valid [2].
For the O-MI Node, mutual authentication is needed, meaning both
gateway and O-MI server need to be sure that they are talking
to the correct server or right client (see Figure 6). In practise, the
O-MI Node creates a certificate and signs it using the server private
key. Network distribution of such certificate is also possible, if a
trusted software is already running on the target machine, other-
wise the certificate has to be physically installed in the device. At
this point, when the home gateway establishes a normal HTTPS
connection with the O-MI Node, it sends its certificate to the O-MI
Node. The O-MI Node using its public key, is able to verify that the
received certificate is signed by the server itself, and it can finally
authenticate the device.

Obviously, the identity of the device and its access rights must
be also configured beforehand using the ACUI tool. In this case, an
e-mail address is used as "user-id", which is stored upon registration
in Access Control Module database. This e-mail address is one meta-
data of the client certificate, which is extracted by the O-MI Node

Authentication and Access Control for O-MI Standard MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia

O-MI Node Server User/Machine

Client CertificateServer Certificate

O-MI
CA

1. Exchange Certificates

2. Check client s
certificate validity

Central
CA

2. Check server s
certificate validity

Figure 6: Certificates exchange diagram

and forwarded as "user-id" to the Access Control Module that can
finally check if the requests performed by the device, comply with
policies stored in the access control database.

It is worth to mention that a real manufacturer could use the
product serial number, instead of an email, as "device/user-id", or
even better a globally unique identifier, such as the ID@URI concept
proposed by Främling et al. [6]. The Uniform Resource Identifier
(URI) is the Internet domain of the manufacturer (e.g. samsung.com)
whose uniqueness is guaranteed by the DNS, while the Identifier
(ID) can be an unique identifier such as a product serial number or
a Global Trade Identification Number (GTIN).

9 CONCLUSIONS AND FUTUREWORK
The main focus of this research is to develop a suitable security
model for the Open Messaging Interface (O-MI) and Open Data
Format (O-DF) standards. We described the design and implemen-
tation principles of access control module. The integration with
the existing O-MI reference implementation is presented using a
smart-home scenario as a testbed. The proposed security module de-
veloped can be only partially reused as such for the integration with
other systems than the O-MI reference implementation. However,
the requirements, the core design decisions, and the code structure
are conceived to be generally applicable to other systems, providing
a solid foundation for a further abstraction and generality of the
used approach.

Although this paper focuses on a particular security problem for
messaging interface, authentication and access control, we believe
that our notion of using reference implementation to infer security
solutions is a powerful tool. In future, it would help the sensor
owners to assure about the identity of their devices using device
fingerprinting. Furthermore, in our current implementation, client
certificate is signed by the self signed CA. In future, we will extend

our securitymodule to support automatic creation andmanagement
of client side certificate. The new model will be able to handle the
regeneration of certificates after expiration or when the certificates
have been added to the certificate revocation list.

10 ACKNOWLEDGEMENTS
The research leading to this publication is supported by the Euro-
pean Union’s Horizon 2020 research and innovation programme
(grant 688203) and Academy of Finland (Open Messaging Interface;
grant 296096).

REFERENCES
[1] AaltoUniversity. 2017. O-MI Node Reference Implementation.

https://otaniemi3d.cs.hut.fi/omi/node/html/webclient/index.html.
[2] Hartley Brody. 2013. How https secures connections: What every web dev should

know. https://blog.hartleybrody.com/https-certificates/.
[3] David A Curry. 1992. Unix system security: a guide for users and system adminis-

trators. Addison-Wesley Longman Publishing Co., Inc.
[4] Roman Filippov et al. 2016. Security model for the open messaging interface (o-mi)

protocol. Aalto University.
[5] Kary Främling, Mark Harrison, James Brusey, and Jouni Petrow. 2007. Require-

ments on unique identifiers for managing product lifecycle information: com-
parison of alternative approaches. International Journal of Computer Integrated
Manufacturing 20, 7 (2007), 715–726.

[6] Kary Främling, Jan Holmström, Timo Ala-Risku, and Mikko Kärkkäinen. 2003.
Product agents for handling information about physical objects. Report of Labo-
ratory of information processing science series B, TKO-B 153, 03 (2003).

[7] The Open Group. 2014. Open Data Format (O-DF), an Open Group Internet of
Things (IoT) Standard. http://www.opengroup.org/iot/odf/.

[8] The Open Group. 2014. Open Messaging Interface (O-MI), an Open Group Internet
of Things (IoT) Standard. http://www.opengroup.org/iot/omi/.

[9] José L Hernández-Ramos, M Victoria Moreno, Jorge Bernal Bernabé, Dan García
Carrillo, and Antonio F Skarmeta. 2015. SAFIR: Secure access framework for
IoT-enabled services on smart buildings. J. Comput. System Sci. 81, 8 (2015),
1452–1463.

[10] Susmita Horrow and Anjali Sardana. 2012. Identity management framework for
cloud based internet of things. In Proceedings of the First International Conference
on Security of Internet of Things. ACM, 200–203.

[11] Mikko Kärkkäinen, TimoAla-Risku, and Kary Främling. 2003. The product centric
approach: a solution to supply network information management problems?

MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia N. Yousefnezhad et al.

Computers in Industry 52, 2 (2003), 147–159.
[12] Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer, and Shahid Khan. 2012.

Future internet: the internet of things architecture, possible applications and key
challenges. In Frontiers of Information Technology (FIT), 2012 10th International
Conference on. IEEE, 257–260.

[13] Sylvain Kubler, Manik Madhikermi, Andrea Buda, and Kary Främling. 2014. QLM
messaging standards: introduction and comparison with existing messaging
protocols. (2014), 237–256.

[14] Jing Liu, Yang Xiao, and CL Philip Chen. 2012. Authentication and access control
in the internet of things. In Distributed Computing Systems Workshops (ICDCSW),
2012 32nd International Conference on. IEEE, 588–592.

[15] Parikshit Mahalle, Sachin Babar, Neeli R Prasad, and Ramjee Prasad. 2010. Identity
management framework towards internet of things (IoT): Roadmap and key
challenges. In International Conference on Network Security and Applications.
Springer, 430–439.

[16] Parikshit N Mahalle, Bayu Anggorojati, Neeli R Prasad, and Ramjee Prasad. 2013.
Identity authentication and capability based access control (iacac) for the internet
of things. Journal of Cyber Security and Mobility 1, 4 (2013), 309–348.

[17] Gerben G Meyer, Kary Främling, and Jan Holmström. 2009. Intelligent products:
A survey. Computers in industry 60, 3 (2009), 137–148.

[18] MQTT.org. 2014. The MQTT protocol official website. http://mqtt.org/.
[19] John O’Hara. 2007. Toward a Commodity Enterprise Middleware. ACM Queue 5,

4 (2007), 48–55. https://doi.org/10.1145/1255421.1255424
[20] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos.

2014. Context aware computing for the internet of things: A survey. IEEE
Communications Surveys & Tutorials 16, 1 (2014), 414–454.

[21] Zach Shelby, Klaus Hartke, and Carsten Bormann. 2014. The constrained applica-
tion protocol (CoAP). https://tools.ietf.org/html/rfc7252.

[22] Lu Tan and NengWang. 2010. Future internet: The internet of things. InAdvanced
Computer Theory and Engineering (ICACTE), 2010 3rd International Conference on,
Vol. 5. IEEE, V5–376.

[23] Arijit Ukil, Soma Bandyopadhyay, and Arpan Pal. 2014. Iot-privacy: To be
private or not to be private. In Computer Communications Workshops (INFOCOM
WKSHPS), 2014 IEEE Conference on. IEEE, 123–124.

[24] Konrad Wrona. 2015. Securing the Internet of Things a military perspective. In
Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on. IEEE, 502–507.

[25] Guanglei Zhao, Xianping Si, Jingcheng Wang, Xiao Long, and Ting Hu. 2011.
A novel mutual authentication scheme for Internet of Things. In Modelling,
Identification and Control (ICMIC), Proceedings of 2011 International Conference
on. IEEE, 563–566.

https://doi.org/10.1145/1255421.1255424

