Wu, Lu-Lu; Zhou, Hai-Jun; Alava, Mikko; Aurell, Erik; Orponen, Pekka

Witness of unsatisfiability for a random 3-satisfiability formula

Published in: Physical Review E

DOI: 10.1103/PhysRevE.87.052807

Published: 01/01/2013

Please cite the original version:
Witness of unsatisfiability for a random 3-satisfiability formula

Lu-Lu Wu and Hai-Jun Zhou
State Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Mikko Alava
Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland

Erik Aurell
ACCESS Linnaeus Center, KTH, Sweden; Department of Computational Biology, AlbaNova University Center, 10691 Stockholm, Sweden; Aalto University School of Science, FI-00076 Aalto, Finland

Pekka Orponen
Department of Information and Computer Science, Aalto University, FI-00076 Aalto, Finland

(Dated: March 12, 2013)

The random 3-satisfiability (3-SAT) problem is in the unsatisfiable (UNSAT) phase when the clause density \(\alpha \) exceeds a critical value \(\alpha_c \approx 4.267 \). However, rigorously proving the unsatisfiability of a given large 3-SAT instance is extremely difficult. In this paper we apply the mean-field theory of statistical physics to the unsatisfiability problem, and show that a specific type of UNSAT witnesses (Feige-Kim-Ofek witnesses) can in principle be constructed when the clause density \(\alpha > 19 \). We then construct Feige-Kim-Ofek witnesses for single 3-SAT instances through a simple random sampling algorithm and a focused local search algorithm. The random sampling algorithm works only when \(\alpha \) scales at least linearly with the variable number \(N \), but the focused local search algorithm works for clause density \(\alpha > cN^b \) with \(b \approx 0.59 \) and prefactor \(c \approx 8 \). The exponent \(b \) can be further decreased by enlarging the single parameter \(S \) of the focused local search algorithm.

PACS numbers: 89.70.Eg, 89.20.Ff, 02.10.Ox, 75.10.Nr

I. INTRODUCTION

The satisfiability (SAT) problem is a constraint satisfaction problem of great practical and theoretical importance. On the practical side, many constraint satisfaction problems and combinatorial optimization problems in industry and engineering can be converted into a SAT problem, therefore many heuristic solution-searching algorithms have been developed over the years for single problem instances (see review [1]). On the theoretical side, the SAT problem is the first constraint satisfaction problem shown to be NP-complete [2,3], all other NP-complete problems can be transformed into the SAT problem through a polynomial number of steps. Understanding the computational complexity of the SAT problem has attracted a lot of research efforts.

The ensemble of random K-SAT problem has been the focus of intensive theoretical studies by computer scientists and statistical physicists in the last twenty years [4–11]. In a given instance (formula) of the random K-SAT problem, the states of \(N \) binary variables are constrained by \(M \) clauses, with each clause involving a fixed number \(K \) of variables, randomly and independently chosen from the whole set of \(N \) variables. The clause density is defined as

\[
\alpha = \frac{M}{N}
\]

which is just the ratio between the clause number \(M \) and the variable number \(N \).

The random K-SAT problem has a critical clause density \(\alpha_s(K) \) at which a satisfiability transition occurs. At the thermodynamic limit of \(N \to \infty \), all the \(M \) clauses of an instance of the random K-SAT problem can be simultaneously satisfied if the clause density \(\alpha < \alpha_s(K) \), but this becomes impossible if \(\alpha > \alpha_s(K) \). The value of \(\alpha_s(K) \) for \(K \geq 3 \) can be estimated by the mean-field theory of statistical physics [8,9,12]. For example \(\alpha_s(3) = 4.267 \) for the random 3-SAT problem.

Most previous investigations on the random K-SAT problem considered the SAT phase, \(\alpha < \alpha_s(K) \). To prove a K-SAT formula is satisfiable, it is sufficient to show that there exists a single spin configuration of the \(N \) variables which makes all the \(M \) clauses to be simultaneously satisfied. However, to certify a K-SAT formula to be unsatisfiable is much harder. In principle one has to show that none of the \(2^N \) spin configurations satisfies the \(M \) clauses simultaneously.

Theoretical computer scientists have approached the K-SAT problem from the UNSAT phase through spectral algorithms [13,15]. These refutation algorithms are able to certify the unsatisfiability of random 3-SAT formulas when \(\alpha > cN^{\frac{2}{3}} \) (where the constant \(c \) should be sufficiently large). The refutation lower-bound for random 3-SAT was further pushed to \(\alpha > cN^{\frac{5}{6}} \) by Feige, Kim and Ofek [16] from another theoretical approach, namely treating a given 3-SAT instance also as a 3-exclusive-or (3-XORSAT) instance. Feige and co-authors [19] observed that, if a 3-SAT formula is satisfiable, the...
ground-state energy of the same formula treated as a 3-XORSAT can not exceed certain value. Then proving the unsatisfiability of a 3-SAT instance is converted to constructing a high-enough lower-bound for the corresponding 3-XORSAT ground-state energy. The method of Ref. \[16\] therefore gives an indirect witness that there is no configuration which can simultaneously satisfy all the \(M\) clauses of the 3-SAT instance. In this paper we refer to such witnesses as Feige-Kim-Ofek (FKO) witnesses.

We study the unsatisfiability of the random 3-SAT problem both theoretically and algorithmically in this paper. The theoretical question we ask is: Do Feige-Kim-Ofek witnesses exist in random 3-SAT formulas with large but constant clause density \(\alpha\)? We give a positive answer to this question by using (non-rigorous) mean-field method of statistical physics. We show that FKO witnesses are presented in large random 3-SAT formulas provided their clause density \(\alpha > 19\). But constructing FKO witnesses for such sparse formulas is expected to be very difficult. A very simple random sampling algorithm is tested in this paper. Without any optimization, the performance of this naive algorithm is not good, it only works for \(\alpha\) scaling at least linearly with \(N\). We then test the performance of a simple focused local search algorithm. We find this algorithm performs much better, it can construct UNSAT witnesses for 3-SAT instances with clause density \(\alpha > 8N^{0.59}\). Further improvements are observed when some modifications are made on this focused local search algorithm.

The paper is structured as follows: in Sec. II we review the main ideas behind FKO witnesses; Sec. III demonstrates the existence of FKO witnesses for the sparse random 3-SAT problem and Sec. IV shows the performances of the naive random sampling algorithm and the focused local search algorithm. In Sect. V we conclude and discuss further directions of this work.

II. THE FEIGE-KIM-OFEK WITNESS

Consider a system with \(N\) variables \(i \in \{1, 2, \ldots, N\}\). Each variable \(i\) has a (binary) spin state \(\sigma_i \in \{-1, +1\}\). A configuration of the system is denoted as \(\sigma \equiv (\sigma_1, \sigma_2, \ldots, \sigma_N)\), there are a total number \(2^N\) of such configurations. The system has also \(M\) clauses \(a \in \{1, 2, \ldots, M\}\). Each clause \(a\) is a constraint over \(K = 3\) different variables (say \(i, j, k\)), it has three binary coupling constants (say \(J_a^i, J_a^j, J_a^k\)), each of which is either \(+1\) or \(-1\). We consider two types of energies for clause \(a\), namely the SAT energy

\[
E^{sat}_a(\sigma_i, \sigma_j, \sigma_k) = \frac{(1 - J_a^i \sigma_i)(1 - J_a^j \sigma_j)(1 - J_a^k \sigma_k)}{8},
\]

and the XORSAT energy

\[
E^{xor}_a(\sigma_i, \sigma_j, \sigma_k) = \frac{1 - J_a^i J_a^j J_a^k \sigma_i \sigma_j \sigma_k}{2}.
\]

If the total energy of the system is defined as the sum of all the SAT energies, then the problem is a 3-SAT formula with energy function

\[
E^{sat}(\sigma) = \sum_{a=1}^{M} E^{sat}_a.
\]

A configuration \(\sigma\) is referred to as a satisfying assignment (or a solution) for the 3-SAT formula if its energy \(E^{sat}(\sigma) = 0\). The 3-SAT formula is referred to as satisfiable (SAT) if there exists at least one satisfying assignment for this formula, otherwise it is referred to as unsatisfiable (UNSAT).

For the same set of \(M\) clauses, we can also consider all the XOR energies and define a 3-XORSAT formula with energy function

\[
E^{xor}(\sigma) = \sum_{a=1}^{M} E^{xor}_a.
\]

The ground-state (minimum) energy of the XORSAT energy is denoted as \(E^{xor}_0\), namely

\[
E^{xor}_0 = \min_\sigma E^{xor}(\sigma).
\]

Checking whether a 3-XORSAT formula is satisfiable (namely \(E^{xor}_0 = 0\)) is an easy computational task (it can be solved by Gaussian elimination). However if \(E^{xor}_0 > 0\), to determine the precise value of \(E^{xor}_0\) is a NP-hard computational problem. The constrained system can be conveniently represented as a bipartite graph with \(N\) circular nodes for the variables and \(M\) square nodes for the constraint clauses and \(3M\) edges between the variable nodes and the clause nodes, see Fig. 1. Such a bipartite graph is referred to as a 3-SAT factor graph in this paper. In the factor graph, each clause \(a\) is connected by 3 edges to the 3 constrained variables, and the edge \((i, a)\) between a variable \(i\) and a clause \(a\) is shown as a solid line (if \(J_a^i = 1\)) or a dashed line (if \(J_a^i = -1\)). In the factor graph of the system, the number of attached edges of different variables might be different. For a variable \(i\) the number of attached positive and negative edges is denoted as \(k^+_i\), respectively.

To prove the unsatisfiability of a 3-SAT formula is very challenging. In principle one has to show that for each of the \(2^N\) configurations, the SAT energy \(E^{sat}(\sigma) > 0\), but such an enumeration becomes impossible for systems with \(N > 1000\). Feige, Kim, and Ofek (FKO) \[16\] approached this problem with the proposal of constructing UNSAT witnesses through the 3-XORSAT energy \(E^{xor}\). Here we review their main ideas \[16\].

Consider a given 3-SAT formula with energy function \(E^{xor}\). Suppose this formula is satisfiable, then there is at least one satisfying configuration \(\sigma\) such that \(E^{xor}(\sigma) = 0\). An edge \((i, a)\) is referred to as being satisfied by \(\sigma\) if (and only if) the spin of variable \(i\) is \(\sigma_i = J_a^i\) in this configuration. With respect to \(\sigma\), the total number of
Equation (5) is a consequence of the assumption that $E^{sat}(\sigma) = 0$, while Eq. (6) is due to the fact that each variable i in its spin state σ_i can satisfy at most $\max(k^+_i, k^-_i)$ edges. The above two expressions lead to

$$M_2 \leq 2M_{12} - \frac{3}{2}M + \frac{1}{2} \sum_{i=1}^{N} |k^+_i - k^-_i|,$$

where $M_{12} \equiv M_1 + M_2$.

On the other hand, it is very easy to check that the 3-XORSAT energy (4) of the configuration σ is just $E^{3or}(\sigma) = M_2$. Therefore, if $E^{sat}(\sigma) = 0$, then the 3-XORSAT ground-state energy E^{3or}_0 must not exceed M_2. If E^{3or}_0 exceeds M_2 then the 3-SAT energy function (5) must be positive for all the 2^N configurations. A high-enough 3-XORSAT ground-state energy then serves as a FKO witness that the corresponding 3-SAT formula is UNSAT.

Consider any spin configuration σ (not necessarily a configuration with $E^{sat}(\sigma) = 0$), the value of M_{12} in Eq. (7) is calculated as

$$M_{12} = \sum_{a=1}^{M} \frac{(3 + \sum_{i \in \partial a} \sigma_i J_a^i) (3 - \sum_{j \in \partial a} \sigma_j J_a^j)}{8}$$

$$= \sum_{a=1}^{M} 9 - \sum_{i,j} \sigma_i \sigma_j J_a^i J_a^j$$

$$= \frac{1}{4} \left(3M + \sum_{i,j} \sigma_i M_{ij} \sigma_j \right),$$

where the matrix element M_{ij} is defined as

$$M_{ij} = \begin{cases} -\frac{1}{2} \sum_{a \in \partial i \cap \partial j} J_a^i J_a^j & \text{for } i \neq j, \\ 0 & \text{for } i = j. \end{cases}$$

In the above expressions, ∂a denotes the set of variables that are connected to clause a by an edge, and ∂i denotes the set of clauses that are connected to variable i by an edge, and $\partial i \cap \partial j$ denotes the intersection of ∂i and ∂j.

The maximal eigenvalue of the symmetric matrix formed by the elements M_{ij} is denoted as λ. This eigenvalue satisfies

$$\lambda \geq \frac{\sum_{i,j} y_i M_{ij} y_j}{\sum_i y_i^2},$$

for any non-zero real vector $y = (y_1, y_2, \ldots, y_N)$. Take $y_i = \sigma_i$ for each variable i, and it is then easy to show that $\lambda \geq (4M_{12} - 3M)/N$. Combining this with (7), an upper-bound M_{2}^{upp} for M_2 is obtained as

$$M_2 \leq M_{2}^{upp} = \frac{1}{2}N\lambda + \frac{1}{2} \sum_{i=1}^{N} |k^+_i - k^-_i|.$$

If $E^{3or}_0 > M_2^{upp}$ for the given 3-SAT instance, then the instance must be unsatisfiable.

III. EXISTENCE OF FEIGE-KIM-OFEK WITNESS FOR SPARSE RANDOM 3-SAT

Feige and co-authors [16] have studied the existence of FKO witness for random 3-SAT factor graphs. A random 3-SAT factor graph with N variables and M clauses is a random bipartite graph, with each clause being connected to three randomly chosen different variables and the edge coupling constant being assigned the value $+1$ or -1 with equal probability. In the large N limit, it was proved mathematically in [16] that, if the clause density α grows with N such that

$$\alpha > cN^{0.4}$$

with a sufficiently large constant c, then FKO witness exists with probability approaching 1 for a random 3-SAT factor graph of N variables and αN clauses.

However, it is not yet known whether FKO witness exists also for random 3-SAT factor graphs with a large but constant clause density α. Here we demonstrate using the mean-field statistical physics method that, FKO witness should exist for a random 3-SAT factor graph with $\alpha > 19$ in the thermodynamic limit of $N \to \infty$. This estimated constant lower-bound of clause density is much improved as compared to Eq. (14).

According to Eq. (6), the quantity M_{12} can be expressed as

$$M_{12} = M - \sum_{a=1}^{M} \delta \left(\sum_{j \in \partial a} J_a^j \sigma_j - 3 \right),$$

where $\delta(x)$ is the Kronecker symbol, with $\delta(x) = 0$ if $x \neq 0$ and $\delta(x) = 1$ if $x = 0$. Combining Eq. (15) with
can be evaluated by the energy density of the ground-state energy density than the upper-bound of Eq. (4) using clause density. For $\alpha > 19$ the predicted upper-bound is lower than the global minimum, indicating that the assumption that Eq. (3) is satisfiable must be wrong.

Eq. (7), we obtain another upper-bound for M_2 as

$$M_2^{\text{max}} = \frac{1}{2} \left(M + \sum_{i=1}^{N} |k_i^+ - k_i^-| \right) - 2 \min \{ \sum_{a=1}^{M} \delta \left(\sum_{j \in \partial a} J_{aj} \sigma_j \right) - 3 \}.$$ \tag{16}

The first term on the right of Eq. (16) is easy to calculate, while the minimum of the second term over all the configurations σ can be evaluated by the zero-temperature first-step replica-symmetry-breaking (1RSB) cavity method [9, 13, 20]. The upper-bound M_2^{max} is tighter (smaller) than the upper-bound M_2^{upp} of Eq. (13).

The global minimum E_0^{xor} of the 3-XORSAT energy [4] can also be evaluated similarly using the zero-temperature 1RSB cavity method. Figure 2 is the comparison between the value M_2^{max}/N and the ground-state energy density E_0^{xor}/N of (4) using clause density α as the control parameter. When $\alpha > 19$, the requirement that ground-state energy density E_0^{xor}/N being lower than the upper-bound M_2^{max}/N is violated, which gives an indication that the 3-SAT energy function (3) has no zero-energy configurations. However, when $\alpha < 19$, $E_0^{\text{xor}}/N < M_2^{\text{max}}/N$ is consistent with the assumption that the 3-SAT formula is satisfiable, indicating that no FKO witness exists for the most difficult region of $\alpha < 19$.

The random 3-SAT problem is the hardest when the clause density α is close to the satisfiability threshold $\alpha_s(3) = 4.267$ [8, 9, 12]. Figure 2 suggests that in the hardest UNSAT region of $\alpha_s(3) \leq \alpha < 19$ it is impossible to prove 3-SAT satisfiability through the FKO witness approach (even if one can precisely determine the 3-XORSAT ground-state energy E_0^{xor}). When the clause density α of a random 3-SAT formula is only slightly beyond $\alpha_s(3)$, exhaustive enumeration may be the only way to prove its unsatisfiability.

IV. WITNESS CONSTRUCTION

In practice, to find a FKO witness we have to show that the ground-state energy E_0^{xor} of the 3-XORSAT formula [4] is higher than either M_2^{max} or M_2^{upp}. While the value of M_2^{upp} is easy to calculate, the exact determination of E_0^{xor} is a NP-hard computational problem. Feige and coauthors tried to circumvent this computational difficulty by constructing a lower-bound for E_0^{xor} [16]. If the value of this lower bound is higher than M_2^{upp}, it is guaranteed that $E_0^{\text{xor}} > M_2^{\text{upp}}$.

A. A lower-bound on E_0^{xor}

Given a 3-SAT formula F with N variables and M clauses, a subformula f is obtained by choosing m clauses from the M clauses. For such a subformula f its 3-SAT energy and 3-XORSAT energy can be defined similar to Eqs. (3) and (4). It is computationally easy to determine whether a subformula f is 3-XORSAT satisfiable.

It was noticed in Ref. [16] that, for a 3-SAT formula F, if t subformulas can be constructed such that each of them is unsatisfiable as 3-XORSAT, and each clause of F appears in at most d of the t subformulas, such that

$$\frac{t}{d} > M_2^{\text{upp}},$$ \tag{17}

then the formula F is unsatisfiable as 3-SAT.

To prove this statement, we simply notice that, if F is satisfiable as 3-SAT, the minimum number of simultaneously unsatisfied clauses as 3-XORSAT can not exceed M_2^{upp}. On the other hand, there are t unsatisfiable 3-XORSAT subformulas, meaning that at least t clauses (some of them might be identical) are simultaneously unsatisfied (as 3-XORSAT) by any spin configuration. Since each clause can be present in at most d different subformulas, the total number of simultaneously unsatisfied different clauses is at least t/d [16].

Let us point out a simple improvement over the criterion Eq. (17). Suppose we have a set of t unsatisfiable 3-XORSAT subformulas constructed from the 3-SAT formula F. Let us denote by d_a the number of times clause a appear in these subformulas. Let us rank the M values of d_a in descending order and denote the ordered values as $\{d^{(1)}, d^{(2)}, \ldots, d^{(M)}\}$, with $d^{(1)} \geq d^{(2)} \geq \ldots \geq d^{(M)}$. A better refutation inequality can be written as

$$C > M_2^{\text{upp}},$$ \tag{18}
where C is the minimal integer satisfying

$$
\sum_{a=1}^{C} d^{(a)} \geq t. \tag{19}
$$

To prove that (18) ensures the unsatisfiability of the 3-SAT formula F, we only need to show that the ground-state energy $E_{3\text{xor}}^0$ of the 3-XORSAT energy (4) can not be lower than C. We reason as follows. To make F satisfiable as 3-XORSAT, some clauses have to be removed from F in such a way that for each of the t constructed unsatisfiable subformulas, at least one of the involved clauses should be removed. Therefore, the sum of numbers d_a of the removed clauses should be at least t. This then proves the refutation inequality (18). The quantity C as obtained by Eq. (19) is a lower-bound of $E_{3\text{xor}}^0$. This lower-bound actually is not tight, it is much lower than the true ground-state energy.

B. Random sampling

A simple way of constructing unsatisfiable 3-XORSAT witnesses for a given 3-SAT formula F are the following:

0. Calculate $\sum_i |k_i^+ - k_i^-|$ and the maximal eigenvalue λ of matrix M for formula F. Set subformula number as $t=0$ and set the counting number $d_a = 0$ for each clause a of F.

1. Randomly select N^{γ} variables from the set of N variables, where $\gamma \in [0, 1]$ is a fixed parameter.

2. Check if the subformula f of F induced by these N^{γ} variables is 3-XORSAT satisfiable, and, if yes, go back to step 1. Otherwise a unsatisfiable 3-XORSAT formula is obtained.

3. Construct a subformula \tilde{f} by adding clauses of f one after the other in a random order, until \tilde{f} becomes unsatisfiable (and has ground-state energy 1) as 3-XORSAT. Then prune the subformula \tilde{f} by recursively removing those variables that are connected to only one clause and the associated single clauses. After this leaf-removal process is finished, we obtain an unsatisfiable core subformula. The counting number d_a of each clause of this core subformula is increased by one ($d_a \leftarrow d_a + 1$), and the subformula number is also increased by one ($t \leftarrow t + 1$).

4. Calculate C according to (19) and then check if (18) is satisfied. If yes, output 'UNSAT witness found'; otherwise repeat steps 1-4.

Figure 3 shows the simulation results on two single 3-SAT instances. The upper panel A is a 3-SAT formula with 100 variables and clause density $\alpha = 100$, and the lower panel B is another 3-SAT formula with 100 variables and clause density $\alpha = 400$. If the curve $C(t)$ is able to go beyond M_2^{upp} (marked by the horizontal dashed line) then a FKO witness is found. The random sampling algorithm succeeded in finding a FKO witness for the instance with $\alpha = 400$ but failed to do so for the one with $\alpha = 100$.

For $N \gg 1$, a random subformula as constructed by the above-mentioned procedure contains about $0.633N^\gamma$ clauses [21]. When there are a large number t of such subformulas, the total number of clauses is about $0.633tN^\gamma$, and each clause appears on average in $\bar{d} = 0.633tN^\gamma/M$ subformulas. From this we estimate that the solution C of (19) is roughly

$$
C \approx \frac{t}{\bar{d}} \approx \frac{M}{N^{\gamma}} = \alpha N^{1-\gamma}. \tag{20}
$$

On the other hand, M_2^{upp} scales as $\alpha^{1/2}N$ (see Fig. 2 and [16]). Therefore, we see that for the inequality (18)
to hold, it is required that
\[\alpha > N^{2\gamma}. \] (21)
The average number of clauses among a randomly chosen \(N^\gamma \) variables is about \(N^{3\gamma-3} M = \alpha N^{3\gamma-2} \). This value should be proportional to \(N^\gamma \) so that the subformula induced by these variables has a high probability to be unsatisfiable as 3-XORSAT. Therefore we require that \(\alpha N^{3\gamma-2} \approx N^\gamma \), from which we get
\[\alpha \approx N^{2-2\gamma}. \] (22)

From Eqs. (21) and (22) we obtain that the parameter \(\gamma \) should be chosen as
\[\gamma = \frac{1}{2}. \] (23)

The above analysis suggests that, for random 3-SAT instances with clause density \(\alpha > N \), it is relatively easy to construct UNSAT witnesses. However, for clause density sublinear in \(N \), it is very hard to construct UNSAT witnesses through the above random process.

The performance of this random construction process, with \(\gamma = 0.5 \), is demonstrated in Fig. 4 for random 3-SAT formulas with clause density \(\alpha = c N \). This figure shows that for clause density scales linearly with variable number \(N \), the prefactor \(c \) needs to be greater than \(c \approx 2.5 \) for the random sampling algorithm to find FKO witnesses.

The random sampling algorithm is therefore very inefficient in obtaining FKO witnesses. For clause density \(\alpha \) linear in \(N \) other local refutation algorithms are more efficient. For example, a simple 2-SAT refutation algorithm goes as follows. First, a seed set of size \(s \) is chosen, which contains the \(s \) variables of the highest degrees. Each of the \(2^s \) spin assignments of these \(s \) variables will induce a 2-SAT subformula, and we can check whether this 2-SAT subformula is satisfiable or not. If all these \(2^s \) induced 2-SAT subformulas are UNSAT, then the original 3-SAT formula can not be satisfied. The number of clauses in the induced 2-SAT subformula is about \(\frac{1}{2} \alpha \), and the number of variables is at most \(N \). Since a random 2-SAT formula is very likely to be unsatisfiable if the number of clauses exceeds the number of variables, then we see that the simple 2-SAT refutation algorithm has a high probability of success if \(\alpha > \frac{2}{2N} N \). The simulation results shown in Fig. 5 confirm this expectation.

C. Focused local search

The subformulas constructed by the random sampling algorithm are very sparse. Most of the loops in such a subformula are long-ranged, with lengths scaling logarithmically with the number of variables. We now consider another construction strategy, namely focused local search. The goal of this strategy is to construct 3-XORSAT unsatisfiable subformulæ with only short loops.

The details of the focused local search algorithm are as follows:

0. The used set \(U \) of clauses is initialized as empty.
1. Arbitrarily choose a clause \(a \) that does not belong to the set \(U \). This clause and all its attached three vertices form the “system”, \(I \). Any clause \(b \) that is connected to the “system” by at least one edge and is not in \(U \) belongs to the “boundary”, \(B \).
2. In the “boundary” \(B \) some of the clauses have more connections to the “system” than the other clauses.
3. Repeat the above steps for all clauses in \(B \).
4. The cycle is complete when there are no other clauses connected to the “system”.

The performance of this random construction process, with \(\gamma = 0.5 \), is demonstrated in Fig. 4 for random 3-SAT formulas with clause density \(\alpha = c N \). This figure shows that for clause density scales linearly with variable number \(N \), the prefactor \(c \) needs to be greater than \(c \approx 2.5 \) for the random sampling algorithm to find FKO witnesses.

The random sampling algorithm is therefore very inefficient in obtaining FKO witnesses. For clause density \(\alpha \) linear in \(N \) other local refutation algorithms are more efficient. For example, a simple 2-SAT refutation algorithm goes as follows. First, a seed set of size \(s \) is chosen, which contains the \(s \) variables of the highest degrees. Each of the \(2^s \) spin assignments of these \(s \) variables will induce a 2-SAT subformula, and we can check whether this 2-SAT subformula is satisfiable or not. If all these \(2^s \) induced 2-SAT subformulas are UNSAT, then the original 3-SAT formula can not be satisfied. The number of clauses in the induced 2-SAT subformula is about \(\frac{1}{2} \alpha \), and the number of variables is at most \(N \). Since a random 2-SAT formula is very likely to be unsatisfiable if the number of clauses exceeds the number of variables, then we see that the simple 2-SAT refutation algorithm has a high probability of success if \(\alpha > \frac{2}{2N} N \). The simulation results shown in Fig. 5 confirm this expectation.

C. Focused local search

The subformulas constructed by the random sampling algorithm are very sparse. Most of the loops in such a subformula are long-ranged, with lengths scaling logarithmically with the number of variables. We now consider another construction strategy, namely focused local search. The goal of this strategy is to construct 3-XORSAT unsatisfiable subformulæ with only short loops.

The details of the focused local search algorithm are as follows:

0. The used set \(U \) of clauses is initialized as empty.
1. Arbitrarily choose a clause \(a \) that does not belong to the set \(U \). This clause and all its attached three vertices form the “system”, \(I \). Any clause \(b \) that is connected to the “system” by at least one edge and is not in \(U \) belongs to the “boundary”, \(B \).
2. In the “boundary” \(B \) some of the clauses have more connections to the “system” than the other clauses.
Randomly choose a clause \(c \) in the “boundary” that has the maximal number of connections with the “system” (i.e., the number of edges to the “system” is the maximal among all the clauses in the “boundary”). Include clause \(c \) and all its attached vertices to the “system”, and add clause \(c \) to the set \(U \). The “boundary” \(B \) is then updated. Clause \(c \) is removed from \(B \), all the clauses that are connected to the “system” and that are not belong to the set \(U \) are added to \(B \).

3. Check whether the “system” is 3-XORSAT satisfiable, if yes and the “boundary” \(B \) is not empty, go back to step 2. If the “system” is 3-XORSAT unsatisfiable, then go to step 4. If the “system” is still satisfiable but the boundary \(B \) becomes empty, then stop and output ‘construction failed’.

4. After an unsatisfiable 3-XORSAT subformula is obtained, the number of unsatisfied clauses in this subformula is 1. We then prune the subformula by removing unnecessary clauses so that an unsatisfiable core subformula is obtained. In the pruning process, basically we test (in a random order) whether each clause can be removed from the subformula without making it 3-XORSAT satisfiable. If a clause is removed from the subformula it is also removed from the used clause set \(U \).

5. Update the subformula number \(t \) to \(t + 1 \). If \(t \leq M^\text{upp} \), go back to step 1, otherwise stop and output ‘UNSAT witness found’.

In the above-mentioned focused local search algorithm, each clause can only appear in \(S = 1 \) subformula. Therefore all the constructed subformulas are disjoint in the sense that they do not share any clauses. Figure 6 shows the performance of this focused local search algorithm on a set of random 3-SAT instances with \(N = 1000 \) variables. As the clause density \(\alpha \) increases around certain threshold value \(\alpha_0 \), the probability of finding a FKO witness increases quickly from 0 to 1. The simulation data can be well fitted by a sigmoidal curve

\[
P(\alpha) = \frac{1}{1 + \exp\left(-\frac{\alpha - \alpha_0}{\Delta}\right)},
\]

where the parameter \(\Delta \) controls the slope of the sigmoidal curve. At \(\alpha = \alpha_0 \) the focused local search algorithm has \(1/2 \) probability of successfully constructing a FKO witness for a random 3-SAT instance of \(N \) variables. We therefore take \(\alpha_0 \) as a quantitative measure of the algorithmic performance. The scaling of \(\alpha_0 \) with variable number \(N \) is shown in Fig. 7. We find that

\[
\alpha_0 \approx c \times N^b,
\]

with exponent \(b \approx 0.589 \) and prefactor \(c \approx 8.0 \). The exponent \(b \) is much larger than the value of 0.4, which was predicted to be achievable at least by a weak exponential-complexity algorithm. It is also larger than the value of 0.5 achieved by the spectral methods. At the moment we do not have any analytical argument as regards the value of \(b \) of the focused local search algorithm.

We find that, if we allow each clause to be present in \(S \geq 2 \) subformulas, the performance of the focused local search algorithm will be improved. The scaling behaviors of this modified algorithm with \(S = 2 \) and \(S = 4 \) are also shown in Fig. 7. The simulation data suggest that both the scaling exponent \(b \) and the prefactor \(c \) decrease.
V. CONCLUSION AND DISCUSSIONS

In this paper, we demonstrated through mean-field calculations that a type of unsatisfiability witness, the Feige-Kim-Ofek witnesses, exists in the random 3-SAT problem with constant clause density $\alpha > 19$. However for $\alpha < 19$ our theoretical result concludes that it is impossible to refute a random 3-SAT formula through the FKO approach. We investigated the empirical performances of two witness-searching algorithms by computer simulations. The naive random sampling algorithm is able to construct FKO witnesses only for random 3-SAT instances with clause density $\alpha > cN$ (where N is the variable number). The focused local search algorithm has much better performances, it works for $\alpha > cN^b$ with $b \approx 0.59$. The value of the exponent b can be further decreased by enlarging the control parameter S of the focused local search algorithm. It would be interesting to systematically investigate the relationship between b and S by computer simulations in a future work.

The essence of the FKO witness is to construct a rigorous lower-bound for the ground-state energy E_{0}^{xor} of the 3-XORSAT formula [1]. The tighter this lower-bound to E_{0}^{xor} is, the better the refutation power of this witness approach. A very big theoretical and algorithmic challenge is to obtain a good lower-bound for the ground-state energy of the 3-XORSAT problem. For the 3-SAT problem, H˚astad proved in Ref. [22] that no algorithm is guaranteed to construct spin assignments that can satisfy more than $(7/8)M_{\text{opt}}$ clauses in polynomial time (M_{opt} being the maximal number clauses that can be simultaneously satisfied), unless $P = NP$. This actually gives an upper bound on the ground-state energy of the 3-SAT problem. This upper-bound can be converted to an upper-bound for E_{0}^{xor} of the 3-XORSAT problem. But we do not know any energy lower-bound for the 3-XORSAT problem whose value is proportional to the clause density α. If such an energy lower-bound can be verified algorithmically, then the FKO witness approach will succeed for the 3-SAT problem with constant α.

The 3-XORSAT energy lower bound C as obtained from Eq. (19) does not scale linearly with the clause density α but only sublinearly. One possible way of improving the value of C goes as follows. For each constructed 3-XORSAT unsatisfiable subformula f, we assign a properly chosen real-valued weight w_f. Correspondingly the counting number d_a of each clause a is modified as

$$d_a = \sum_{\{f|a\in f\}} w_f,$$

where the summation is over all the subformulas f that contain clause a. Then Eq. (19) is changed into

$$\sum_{a=1}^{C} d^{(a)} \geq \sum_{f} w_f.$$

When all the weights $w_f = 1$, then Eq. (27) reduces to Eq. (19). By optimizing the choices of the subformula weights $\{w_f\}$ we expect that a considerly better energy lower bound C can be obtained from Eq. (27).

The counting number d_a of each clause a can also be considered as a real-valued parameter whose value can be freely adjusted. Then the weight of each constructed subformula f is defined as $w_f = \min_{a \in f} d_a$ (i.e., the lowest value of d_a over all the clauses of f). We believe another better energy lower bound C can also be obtained by optimizing the choices of $\{d_a\}$.

A systematic exploration of these two re-weighting schemes and other possible extensions will be carried out in a separate study.

Acknowledgments

This work was initialized during the KITPC program “Interdisciplinary Applications of Statistical Physics and Complex Networks” (Beijing, 2011). We thank Elitza Maneva and Osamu Watanabe for suggesting this interesting problem to us, and André Medieros for his initial involvement in this project. LLW thanks Chuang Wang and Ying Zeng for helping on programming. This work was supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KJCX2-EW-J02) and the National Science Foundation of China (grant No. 11121403 and 11225526). It was also supported by the Academy of Finland as part of its Finland Distinguished Professor program, Project No. 129024/Aurell and through the Centres of Excellence COIN (Aurell) and COMP (Alava).

