
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Schumacher, André; Haanpää, Harri; Schaeffer, Satu Elisa; Orponen, Pekka
Load balancing by distributed optimisation in ad hoc networks

Published in:
Mobile Ad-hoc and Sensor Networks Second International Conference, MSN 2006 Hong Kong, China,
December 13-15, 2006

DOI:
10.1007/11943952_73

Published: 01/01/2006

Document Version
Early version, also known as pre-print

Please cite the original version:
Schumacher, A., Haanpää, H., Schaeffer, S. E., & Orponen, P. (2006). Load balancing by distributed
optimisation in ad hoc networks. In I. S. Jiannong Cao (Ed.), Mobile Ad-hoc and Sensor Networks Second
International Conference, MSN 2006 Hong Kong, China, December 13-15, 2006 (pp. 873-884). Springer.
https://doi.org/10.1007/11943952_73

https://doi.org/10.1007/11943952_73
https://doi.org/10.1007/11943952_73

Load Balancing by Distributed

Optimisation in Ad Hoc Networks

André Schumacher, Harri Haanpää, Satu Elisa Schaeffer, and Pekka Orponen

Laboratory for Theoretical Computer Science, Helsinki University of Technology,
P.O. Box 5400, FI-02015 TKK, Finland

Andre.Schumacher@tkk.fi, Harri.Haanpaa@tkk.fi,

Elisa.Schaeffer@tkk.fi, Pekka.Orponen@tkk.fi

Abstract. We approach the problem of load balancing for wireless multi-
hop networks by distributed optimisation. As an example of a distributed
optimisation algorithm for ad hoc networks, we use an approximation al-
gorithm for minimising the maximum network congestion and implement
it as a modification of the DSR routing protocol. The algorithm is based
on shortest-path computations that are integrated into the DSR route
discovery and maintenance process. Therefore, it does not rely on the
dissemination of global information within the entire network. The sim-
ulation results obtained by the ns2 simulator show a gain of 14% to 69%
in the throughput, depending on the setup, compared to DSR for a high
network load.

1 Introduction

Ad hoc networks are communication networks formed by a number of nodes,
which are small radio devices with limited computational capacity [1]. As the
size and cost of such devices is no longer prohibitive, the advantages of ad hoc
networks have attracted much interest. Perhaps the most significant advantage
of ad hoc networks – and simultaneously an important design goal – is their
easy deployment. Ideally, it should be possible to deploy the nodes in the area
of operation and have them self-organise to route traffic as necessary. Such easy
setup would be most advantageous in a variety of applications ranging from
military operations and disaster relief to commercial applications.

Ad hoc networks also present challenges. For easy deployment, the nodes
should not depend on an external energy supply, so they are usually battery-
powered, and battery life is often a limiting factor. The radio transmission chan-
nel is limited in bandwidth and must typically be shared between nearby nodes.
Determining and maintaining the network topology in a distributed fashion is a
most challenging problem, particularly if the network topology can change dur-
ing operation, for example due to adding or removing nodes or node mobility.

Two properties of algorithms are particularly desirable in an ad hoc context.
First, an algorithm should be mathematically justified. Analysing an algorithm
mathematically gives insight into when an algorithm can be expected to work
and when not. Linear and integer programming formulations can typically be

applied in this approach to gain optimal solutions for small problem instances
or good approximate solutions for larger instances (provided that there exists
such a formulation). Such methods have been applied to optimising sensor node
coverage [2] and maximising the lifetime of energy-constrained networks [3], but
these approaches typically require that information about the state of the net-
work be collected to a central location, where the optimisation is then carried
out, which adds undesired hierarchy and a point of failure to the network.

Second, an algorithm should be distributed and non-hierarchical. Nodes should
cooperate in computing the optimum so that each node follows a simple set of
rules, and neither the size of the messages nor their number should grow too
quickly as the size of the network increases. Such approaches have been used
for bandwidth optimisation [4] and determining the location of the nodes based
on the estimated location of their neighbours [5]. Certain energy-aware modifi-
cations of routing protocols such as AODV [6, 7] or DSR [8] also fall into this
category. However, such heuristic optimisation methods are difficult to analyse
mathematically, and often the only analysis is based on simulation.

There are distributed algorithms that are mathematically justifiable. Typ-
ically the nodes compute some graph-based properties, such as shortest paths
or spanning trees, in a distributed and iterative manner. This enables a the-
oretic discussion about the expected quality of the solution and an estimate
on the convergence of the algorithm towards the optimum. Such methods have
been applied to adjusting transmission power levels based on lowest-cost energy
paths [9] and routing around congested nodes based on node potentials and the
steepest gradient method [10].

In this paper, we present a distributed approximation algorithm for load bal-
ancing in an ad hoc network. Load balancing can be advantageous for increasing
reliability and network throughput. Recent proposals also apply load balanc-
ing to network life-time maximisation [11]. Our approach relies on modifications
of the Dynamic Source Routing (DSR) [12] protocol. We extend DSR to use
multiple source-destination paths, typically referred to as multipath routing, to
balance data traffic. Our simulations show that it is possible to achieve a gain
of 14% to 69% in the throughput, depending on the setup, compared to DSR

by balancing the traffic over the nodes.
The rest of the paper is organised as follows. In the next section, we give an

overview of the basic operation of DSR and describe how our approach relates to
optimisation algorithms relying on multipath routing that have been proposed
recently. In Section 3, the approximation algorithm is discussed and its imple-
mentation as a modification of DSR is presented. Section 4 includes the results
obtained by network simulations using the ns2 [13] network simulator. Finally,
Section 5 presents our conclusions and outlines future research directions.

2 Overview of DSR and Multipath Extensions

DSR [12] is an on-demand source routing protocol, so the source includes the
whole route in every packet sent. This property eliminates the need for actively

maintaining routing information at intermediate nodes and enables an easy in-
tegration of multipath routing. Nodes keep routing information in their route

cache, which can also contain routing information that was overheard by pack-
ets forwarded through neighbouring nodes. Source routing comes along with
benefits, such as loop freedom or the possibility for route shortening, as source
nodes have knowledge about the entire route.

2.1 DSR Operations

The basic DSR protocol consists of two operations: route discovery and route

maintenance. If a source node wishes to send a packet to a destination to which it
does not have a route in its route cache, it initiates the route discovery process by
broadcasting a route-request (RREQ) message to its neighbours. Upon receiving
the RREQ, nodes consult their route cache and can decide to send a route-reply

(RREP) message back to the source. If they do not know a route to the destination,
they append their own address to the list of nodes in the RREQ and forward
the request further, until it eventually reaches the destination. The destination
obtains a route from the source to itself by consulting the list of nodes that
forwarded the RREQ. In the presence of bidirectional links, it can simply reverse
this route and use it for sending a RREP message along this route to the source.

A sequence number mechanism ensures limited forwarding of RREQ’s by in-
termediate nodes. For each route discovery, any node only forwards each RREQ

at most once. Since shorter routes require fewer hops, the first RREQ to reach the
destination is likely to have taken a route that is minimal or close to minimal in
terms of the hop count. Therefore, DSR chooses routes not significantly longer
than the shortest route between source and destination. Although in principle
multiple routes to the same destination might be contained in the route cache,
e.g. by overhearing other routes, the nodes select always the shortest route from
the cache.

The basic route maintenance includes reliable packet transmissions from one
hop to the next, e.g. utilising link-layer acknowledgements. Additionally, there
are other operations that are initiated only on-demand. If a source route breaks,
the source is notified by an intermediate node detecting the break. The source
can then choose to select an alternative route to the destination by consulting its
route cache, or initiate a new route discovery. In the case that the intermediate
node has a different route to the destination in its own cache, it can initiate
packet salvaging and forward the packet using this alternative route. DSR also
contains an optional flow-state extension, which reduces the route overhead by
omitting source route information for packet flows that are considered to be
static, assuming intermediate nodes keep track of the route in use.

2.2 Multipath-based Network Optimisation

Multipath extensions to DSR for load balancing have been previously studied:
Nasipuri, Castañeda, and Das [14] introduce alternate routes to the route discov-
ery, whereas Wu and Harms [15] propose a heuristic redirection of RREP messages

to gain alternative routes. The focus has been primarily on the computation of
node or link-disjoint paths, as they provide a higher fault tolerance in the pres-
ence of failures. Multipath routing helps in increasing reliability and throughput
as well as load balancing and energy conservation in ad hoc networks, although
the choice of the path metric is crucial [16].

Ganjali and Keshavarzian [17] state that multipath routing alone can not
improve load balancing, as with an increasing density of nodes, the choice of
shortest paths connecting any pair of nodes leads to congestion in the centre of
the network. They conclude that an additional incentive has to be given to push
traffic away from centre nodes to avoid congestion.

Multipath-based network optimisation has been studied extensively for wired
networks. Vutukury and Garcia-Luna-Aceves [18] for example propose an algo-
rithm to minimise delay based on the heuristic redirection of flow over multiple
paths. Basu, Lin and Ramanathan [10] present a potential-based routing method-
ology that forwards packets using steepest gradient search. They also propose a
traffic-aware routing algorithm that uses queue lengths to determine congestion.
Both approaches rely on a link-state routing algorithm for the dissemination of
link information throughout the entire network. Su and de Veciana [19] study
dynamic multi-path routing to minimise network congestion.

However, most proposals are not directly applicable to ad hoc networks be-
cause of the limitations described above. In the work presented here, we obtain
multiple source-destination routes by a linear programming approximation algo-
rithm that minimises flow congestion [20]. The algorithm relies on the compu-
tation of shortest paths determined by an adaptive cost metric using weights on
the links. The weight updates are distributed to avoid dissemination of global
information. Each shortest path computed becomes a source route for the DSR

routing protocol. The actual data flow is uniformly distributed over these pre-
computed routes.

3 Distributed Load Balancing

In this section we describe a modification to DSR for load balancing by multi-
path routing. We model choosing a set of source routes as a min-max congestion
multicommodity flow problem and describe how an approximation algorithm can
be used for solving the problem in the context of an ad hoc network.

As explained in Section 2, DSR normally uses one route from the source
node to the destination node. However, extending DSR to use more routes is
relatively easy and has potential benefits in increased reliability, throughput and
load balancing.

3.1 Approximation Algorithm

We model the ad hoc network as a directed graph G = (V, E) with vertices
representing the radio nodes of the network and edges representing links between

the radio nodes. For two vertices i, j ∈ V , we have a directed edge (i, j) ∈ E if
there exists a link from i to j.

For every commodity c in a multicommodity flow problem, there is an associ-
ated supply or demand tc(i) at each node i ∈ V ; these must satisfy

∑

i∈V tc(i) =
0 for all c. The task is to find a set of flows xc

ij ≥ 0 over the edges (i, j) ∈ E
such that each commodity is routed from the supply nodes (with tc(i) > 0) to
the demand nodes (with tc(i) < 0), that is,

tc(i) +
∑

(j,i)∈E

xc
ji −

∑

(i,j)∈E

xc
ij = 0. (1)

Typically the total flow on an edge (i, j) is limited by the capacity uij of the
edge: fij =

∑

c xc
ij ≤ uij .

In applying the multicommodity flow model to routing, each commodity
c represents one data stream of traffic volume vc from the source sc to the
destination dc. In this case, vc = tc(sc) = −tc(dc) and tc(i) = 0 for all other nodes
i. Within these constraints we choose xc

ij to minimise the maximum congestion:

min max
(i,j)∈E

fij

uij

. (2)

Many algorithms exist for solving linear optimisation problems such as ours
in the case when the whole state of the network is known. In contrast, here
we desire an optimisation algorithm where the individual nodes cooperate to
determine the optimum while only passing a reasonable number of messages of
reasonable size. The approximation algorithm [20] in Fig. 1 has these properties.
In this formulation it is assumed that each edge has the same capacity u. To
obtain flows for which the maximum congestion is at most (1 + ε) times the
optimal value, it suffices to run the algorithm for

I ≥
⌈

4m logm/ε2
⌉

(3)

iterations, where m is the number of edges.

3.2 Integration in DSR

Our shortest-path methodology enables a simple integration into the DSR rout-
ing protocol; the computation of shortest paths is similar to that of the original
protocol. Our approach differs from standard DSR in that DSR initiates route
discovery when necessary, while our approach uses an initial setup phase to pro-
ceed through the iterations of the balancing algorithm. Each source obtains one
balanced route to the destination for each iteration of the balancing algorithm.
Some routes may occur more than once. After the setup phase, for every packet
to be sent the source will choose one of the routes in its cache at random. Unlike
in DSR, the routes are not removed from the cache even in the presence of link
failures, as in this setup these can be only caused by temporarily congested links.

1. Initialise wij = 1 for each edge (i, j) ∈ E. For each edge (i, j) and every commodity
c (with source node sc and destination node dc

∈ V), set the flow xc
ij = 0.

2. For each of the I iterations, do the following computation:
(a) For each source-destination pair of nodes sc and dc, compute the shortest path

p(sc, dc) with respect to the edge weights defined by w.
(b) Let yc be the flow vector resulting from routing vc units of flow on the shortest

path p(sc, dc). For each edge (i, j) ∈ E, assign xc
ij := xc

ij + yc
ij and

wij :=

(

1 + ε
∑

c

yc
ij

)

wij . (4)

3. Scale the total flow by letting x := x/I .

Fig. 1: Approximation algorithm for min-max congestion multi-commodity flow [20]
that computes a flow x over a set of paths, taking as input a graph G = (V, E) and a
list of flows of volume vc from source sc to destination dc, with parameters I and ε.

We implement this algorithm by modifying DSR’s route discovery and route
maintenance operations. For this purpose, the two basic DSR route control
messages, RREQ and RREP, are extended to include iteration-index, cost and flow-

value fields. These fields correspond to the variables needed for the algorithm in
Fig. 1. For clarification, we refer to these modified messages by BREQ and BREP.

Route Discovery Instead of computing shortest routes on the basis of hop-
counts, the nodes compute the minimum cost route for each iteration of the
balancing algorithm and each source and destination pair. The cost of a route
is the sum of the link costs w that lie on the route.

Each node keeps track of the weight of its incoming links and the flow on
them. Incoming links are those links, which a node may use to receive a BREQ

message from one of its neighbours. BREQ messages carry, in addition to the list of
addresses of nodes that re-broadcasted the message, the accumulated route cost
from the source to the current intermediate node. An intermediate node adds the
cost of the incoming link on which it received the BREQ to the accumulated route
cost of the BREQ upon re-broadcasting it. Later, however, an intermediate node
may receive another BREQ packet with the same iteration index. If the second
BREQ has a lower cost route from the source to the intermediate node than the
previous one, the intermediate node re-broadcasts it.

When the destination receives a BREQ packet, it must wait a short while for
possible other BREQ packets with lower cost. The destination only replies with a
BREP to the BREQ with lowest cost. The flows and weights are updated along the
route used when the destination sends the BREP packet back to the source.

As the link weights and therefore the least-cost routes are subject to change
at each iteration, the balanced routing algorithm can not rely on DSR’s caching
mechanism to narrow down the dissemination of BREQ messages in the network.
Therefore, BREQ’s have to spread by flooding through the network. Since the pa-

s2

d2

d1

s1

Fig. 2: The simulation setup: two source-destination pairs (s1, d1) and (s2, d2) are
placed “off-by-one” on the opposite sides of the grid. The source nodes s1 and s2

send data packets at constant bit rate to their respective destination nodes d1 and d2.
Instead of utilising only the direct shortest path, we occupy the longer paths to balance
the load. Each node may communicate with the nodes beside, above or below it.

rameter I can be used for a trade-off between route-control overhead and quality
of the solution, this effect can be adjusted to the network setup. Additionally,
the setup phase is only performed once for a longer data stream.

Route Maintenance As mentioned above, routes that are broken due to tem-
porarily congested links stay in the cache and do not get invalidated. For a larger
number of iterations the effect of a single link failure diminishes, as the source
randomly selects balanced routes from the cache.

4 Experiments

The considered scenario is a stationary grid network with source and destination
pairs. The chosen traffic pattern resembles an emergency relief scenario, where
a large amount of constant bit rate (CBR) data is to be transfered through an
already congested network. When a sudden demand arises to transmitting a large
amount of data between a dedicated pair of nodes, e.g. between the control centre
and rescue teams, one aims to deliver as much of the critical data as possible.
The means to achieve this include balancing the traffic among the nodes and
utilising the network capacity to maximise throughput over source-destination
pairs.

We compare our algorithm to DSR by using ns2 to simulate it on a 10 by
10 grid with two CBR flows, from s1 to d1 and from s2 to d2; see Fig. 2 for the
network setup. Both CBR sources are transmitting with a previously determined
rate and packet size. See Tab. 1 for the particular parameter values.

Prior to initiating the CBR traffic, we run the balancing algorithm of Fig. 1 for
a chosen value of ε and a chosen number of rounds I to select routes that give an

Table 1: The parameters used in ns2 simulations.

Parameter Values used Parameter Values used

CBR packet size 256 B, 512 B,
1024 B, 2048 B

MAC bandwidth 1Mbit

CBR data rate 160 Kbit/s MAC protocol 802.11 (with RTS/CTS
handshake)

Antenna type OmniAntenna Propagation model TwoRayGround

Max. source route
length

22 Max. IFQ length 50

Network size 2400 m × 2400 m Node count 100

Simulation time 1500 s Balancing setup 500 s

approximately balanced flow in the sense of minimising the maximum congestion.
We run a series of long simulations to obtain estimates of the throughput of
the network, defined as the average rate of CBR data that was received by the
destinations. We use the same source-destination setup to transmit data using
the DSR implementation provided in the ns2 standard distribution.

In addition to throughput, we are interested in the extent the balancing
algorithm yields a more uniform selection of routes over the nodes. Therefore,
we study the number of forwarded CBR packets to measure the load distribution
over the nodes. We expect most packets to be forwarded by nodes located within
the centre of the network, as these routes are shortest and the algorithm initially
prefers shorter routes over longer ones. However, the central nodes should not
be burdened with forwarding a significantly larger number of packets than nodes
lying on slightly longer paths.

A more balanced selection of nodes should also have a positive effect on the
number and the occurrence of collisions and interface queue (IFQ) overflows in
the network. The IFQ contains packets that are scheduled to be transmitted
over the network interface. Hou and Tipper [21] claim that one of the main
reasons for the decline in throughput for congested networks running DSR is
the overflow of the IFQ of congested nodes. Besides queue overflows, collisions
of the media access control (MAC) layer control messages and CBR packets are
expected to degrade the network throughput. Although we do not expect the
number of collisions to be significantly lower compared to the standard DSR

route selection, we would expect a more even distribution over the nodes, pre-
venting the formation of bottlenecks. Figure 3 shows simulation results for two
CBR packet sizes. We use the following measures:

CBR packet load: The number of CBR packets sent by the MAC layer of the node.
Note that there are in total 20000 and 10000 packets per source for packet
sizes of 1024 and 2048 bytes respectively. This value does not correspond to
the actual number of successfully forwarded packets, as drops and collisions
have to be subtracted. Sources have been excluded from the figure for the
sake of clarity.

CBR packet collisions: The number of CBR MAC layer collisions caused by inter-
ference that occurred at each node, excluding the sources. These numbers do
not necessarily coincide with the number of dropped packets, as the MAC

layer uses a retransmission scheme.
IFQ overflows caused by CBR packets: The number of IFQ overflow events that

occurred at each node.

Standard DSR Balanced algorithm

1024 2048 1024 2048

CBR packet load

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	

�
�

�
�

�
�
�
�

10000

7500

5000

2500

0

CBR packet collisions

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

700

525

350

175

0

IFQ overflows caused by CBR packets

!
!

"
"
#
#

$
$
%
%

&
&
'
'

(
(
)
)

*
*
+
+

,
,
-
-

.

.
/
/

1000

750

500

250

0

Fig. 3: Performance measures of the standard DSR and the balancing routing algorithm
for I = 160 iterations and ε = 0.05 for CBR packet sizes 1024 B and 2048 B. The
colourings are averages over five ns2 runs, but variations from one run to another
were observed to be negligible. Sources and destination nodes are indicated by dashed
circles.

One might expect the route selection of DSR to favour shorter routes, yield-
ing an increased network load within the centre of the grid that results in inter-

ference and a low network throughput. The balancing algorithm should recognise
areas of larger congestion and after initially selecting shorter routes, select routes
that avoid the potentially congested areas.

In Fig. 3, we only observe minor differences for the balanced algorithm and
standard DSR. Depending on the averaging of packet load over the rather long
simulation run, the load for standard DSR appears to be well balanced. The
reason is that within the congested network, rediscovered routes will typically
be different from recently broken routes. There is a slightly higher utilisation of
boundary nodes by standard DSR, but the overall network load for the balanced
algorithm is higher than for standard DSR, which can be explained by the higher
throughput, discussed later in this section.

Due to higher load, the balanced route selection method encounters more
collisions compared to standard DSR. A remarkable effect is the concentration in
the quarter of the network formed by the square with the sources on its diagonal.
The effect is apparent for both algorithms and packet sizes, but emphasised
for the balanced algorithm and 1024-byte packets. Nodes within this part of
the network may be relaying packets from both sources in roughly opposite
directions. Hence they have to transmit packets in more diverse directions than
nodes within the vicinity of the destinations.

As the MAC layer transmission of a CBR packet always includes a request to

send (RTS)/ clear to send (CTS) handshake, collisions are more likely to occur
when nodes are transmitting in different directions than when the packets travel
roughly in the same direction. Standard DSR always uses the shortest known
route to the destination. Therefore, subsequent packets for the same destination
are less likely to interfere with each other.

The distribution of IFQ overflows follows basically the same principle. We
however observe a major difference between standard DSR and the balancing
algorithm: the single-path routing of standard DSR leads to the formation of
bottleneck nodes due to congestion in the bottom left quarter of the network.
As DSR prefers shorter paths, such overloading of nodes is restricted to the
band of nodes between the sources. The effect is stronger for smaller packet
sizes, explained by the increased MAC layer overhead. The balancing algorithm
shows hardly any IFQ overflows at all, except within the vicinity of the sources.

Figure 4 shows the average throughput over both source-destination pairs
over time. Comparing throughput for standard DSR and the balancing algo-
rithm, one observes larger fluctuations for standard DSR. The stability of the
throughput for the balancing algorithm mainly results from the fact that broken
links do not cause route invalidation. Therefore, its performance is determined
during the initial setup phase of the algorithm. To compensate the fluctuations
of standard DSR, we consider the throughput over 1000 s from the time when
CBR transmissions have been initiated to compare both algorithm in the follow-
ing. For both packet-sizes the balancing algorithm clearly outperforms standard
DSR.

We also studied the effect of the I and ε parameters on the performance of
the algorithm. The results are summarised in Fig. 5 and are mostly as expected;

 0

 2

 4

 6

 8

 10

 12

 14

8006004002000

T
hr

ou
gh

pu
t

Simulation time

Packet size 1024

Balanced
Std. DSR

10008006004002001000/0
 0

 2

 4

 6

 8

 10

 12

 14

Simulation time

Packet size 2048

Fig. 4: Average throughput of both source-destination pairs in KB/s versus simulation
time for a single run of DSR and the balancing algorithm. Note that the setup stage
for the balancing algorithm is omitted from the plot. The parameter values for the
balancing algorithm were I = 160 and ε = 0.05. Average throughput over the entire
simulation run is shown for each plot.

already for a modest number of iterations we obtain throughput that is clearly
superior to DSR. There is a dependency of the throughput on ε and I: for a larger
value of ε, fewer iterations are necessary to obtain a fairly good throughput, but
running a large number of iterations with a small ε yields, in the end, a slightly
better throughput.

A curious phenomenon in the results is that for a given value of ε, the through-
put first increases rapidly as I increases but after reaching a maximum, the
throughput starts to decline gradually. We can only offer a heuristic explanation
of this phenomenon. As the optimisation algorithm progresses, the weights of
the most congested edges will come to completely dominate the search for the
least cost route from the source to the destination. With a large enough number
of iterations, the algorithm only seeks to balance the flow on those edges without
any regard for the traffic situation in the rest of the network. We also ran the
tests for other values of ε, but omitted some from the figure for clarity; for all
ε ≤ 0.05, the peak performance had not yet been reached for I = 160.

However, in our experiments we ran considerably fewer iterations than rec-
ommended by Eq. 3. For small values of ε, in the first iterations the weight of
each edge remains at approximately 1, and thus the paths found by the algo-
rithm will be essentially fewest hop paths. It seems plausible that instead of only
optimising the hop count, or only balancing the flow along the most congested
edges, good results could be obtained by taking both factors into consideration
– and we hypothesise that this is what happens when the number of iterations
I is less than recommended by Eq. 3.

The results shown in Fig. 3 indicate that there is a qualitative difference
in the performance of standard DSR and the balancing algorithm for different
packet sizes. Figure 6 shows throughput and packet delay for various packet
sizes. It seems that the performance of standard DSR increases up to a point

 6

 7

 8

 9

 10

 11

 5 10 20 40 80 160

T
hr

ou
gh

pu
t

Iterations

ε = 0.05
ε = 0.20
ε = 0.01
ε = 0.80
Random

Std. DSR

Fig. 5: Average throughput in KB/s over both source-destination pairs and 1000 s as a
function of I and ε for CBR packet size 2048: The plot also contains values for standard
DSR and random route selections of varying size. These are formed by selecting I
routes on the basis of a random walk from the sources to the destinations. All values
are averages over at least 15 repetitions, standard deviations are shown with error bars.
The legend ordering corresponds to the throughput value at I = 160.

where the packet size has reached a critical value. Please note that the CBR rate
is 160Kbit/s for all runs. Increasing the packet size even further has a negative
effect on DSR’s performance. We assume that this response is caused by the
interdependence of the two main reasons of packet loss: collisions of CBR packets
due to interference and IFQ overflows.

The balancing algorithm aims at decreasing link congestion, which success-
fully reduces the number of IFQ overflows, as indicated in Fig. 3. We further
assume that increasing the packet size reduces the negative effect of collisions
on throughput for the balancing algorithm: Increasing packet size for a con-
stant CBR rate reduces the number of packets and therefore also the total MAC

layer overhead. However, the time frame required for the transmission of a single
packet increases correspondingly and retransmissions become more costly. Still,
the effect of losing larger packets due to IFQ overflows seems to outweigh the
impact of collisions.

CBR packet delay rises almost linearly when increasing the packet size. Note
that Fig. 6 uses a logarithmic scale for the packet size. The balancing algorithm
shows a significantly lower delay than standard DSR, which even decreases for
2048 bytes. We studied the effect of disregarding all route errors on CBR packet
delay by letting the algorithm always choose the same of all possible shortest
routes for both source-destination pairs. The results supported our assumption

 5

 10

 15

 20

 25

 30

 35

 40

 256 512 1024 2048

D
el

ay
 (

s)

Packet size

Std. DSR
Balanced

 5

 6

 7

 8

 9

 10

 11

 256 512 1024 2048

T
hr

ou
gh

pu
t (

K
B

/s
)

Packet size

Balanced
Std. DSR

Fig. 6: On the left, delay in seconds versus packet size, and on the right, throughput in
KB/s versus packet size. In both plots, the balanced algorithm had parameter values
I = 160 and ε = 0.05. All values are averages over at least 15 repetitions.

that the decrease in packet delay mainly results from this property of the bal-
ancing algorithm.

5 Conclusions and Future Work

In this paper, we have studied the application of a linear programming approx-
imation algorithm to distributively optimise network bandwidth in a wireless
multi-hop network. The algorithm aims at minimising the maximum flow over
any edge in the graph given as problem instance. Even though the original al-
gorithm does not necessarily provide for a distributed implementation, we have
integrated it into the DSR route-discovery process and obtain a significant in-
crease in network throughput for the studied topology.

So far we have applied the algorithm to a rather static and regular network
topology, i.e. ignoring mobility and a non-uniform spatial distribution of nodes
within the network. As future work we are interested in considering more general
network topologies. We believe that optimising link congestion proves successful
also for other topologies with a uniform distribution of nodes and a relatively
regular graph structure. For non-uniform topologies we expect the optimisation
for node-based metrics to be more applicable. Therefore, we are especially inter-
ested in studying the effect of node-based metrics on the balancing algorithm,
such as optimising for node instead of link congestion.

One example are networks with scale-free topologies [22] in terms of their
underlying graph model. The corresponding network topology would contain
some nodes having far more links than most other nodes. We would expect edge
congestion to serve well in uniform topologies, but a node-based approach to
give better results in scale-free topologies, where the load on single hubs easily
becomes very heavy due to a high number of neighbouring nodes.

The static-network and the uniform-node-distribution assumptions are essen-
tial in the current formulation of the algorithm. Besides considering node-based

optimisation metrics, we want to consider a steady-state formulation of the algo-
rithm, i.e. by enabling a calculation of the edge weights depending on the present
edge flow. Further applications of the balancing algorithm, such as energy effi-
cient routing, are to be considered as well.

The results presented in this paper show the potential of using mathemati-
cally justified distributed optimisation techniques for ad hoc networks. By util-
ising shortest-path computations integrated into the DSR route discovery, we
obtain an improvement in throughput of 14% to 69% compared to DSR for a
network with high load. The assumption of a static network with a uniform spa-
tial distribution of nodes does not seem too restrictive. We are convinced that it
can serve as a starting point for further investigating the potential of distributed
optimisation for ad hoc networks.

Acknowledgements

This research was supported by the Academy of Finland under grants 209300
(ACSENT) and 206235 (ANNE).

References

1. Perkins, C.E., ed.: Ad Hoc Networking. Addison Wesley, Reading, MA, USA
(2001)

2. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage
problems in wireless ad-hoc sensor networks. In: Proc. of 20th Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM). (2001)
1380–1387

3. Floréen, P., Kaski, P., Kohonen, J., Orponen, P.: Lifetime maximization for multi-
casting in energy-constrained wireless networks. IEEE Journal on Selected Areas
in Communications 23(1) (2005) 117–126

4. Aggelou, G., Tafazolli, R.: RDMAR: A bandwidth-efficient routing protocol for
mobile ad hoc networks. In: Proc. of 2nd ACM International Workshop on Wireless
Mobile Multimedia. (1999) 26–33

5. Meguerdichian, S., Slijepcevic, S., Karayan, V., Potkonjak, M.: Localized algo-
rithms in wireless ad-hoc networks: Location discovery and sensor exposure. In:
Proc. of 2nd ACM International Symposium on Mobile Ad Hoc Networking &
Computing (MobiHoc), New York, NY, USA, ACM Press (2001) 106–116

6. Senouci, S.M., Naimi, M.: New routing for balanced energy consumption in mobile
ad hoc networks. In: Proc. of 2nd ACM International Workshop on Performance
Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, New York, NY,
USA, ACM Press (2005) 238–241

7. Park, S., Shin, J., Baek, S., Kim, S.C.: AODV-based routing protocol considering
energy and traffic in ad hoc networks. In: Proc. of International Conference on
Wireless Networks. (2003) 356–361

8. Chen, W.T., Pan, M.S.: DSR-based energy efficient routing protocol in mobile ad
hoc networks with transmit power adjustment. In: Proc. of International Confer-
ence on Wireless Networks. (2003) 350–355

9. Kawadia, V., Kumar, P.: Power control and clustering in ad hoc networks. In:
Proc. 22nd Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM). (2003)

10. Basu, A., Lin, A., Ramanathan, S.: Routing using potentials: A dynamic traffic-
aware routing algorithm. In: Proc. of the ACM SIGCOMM 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, New York, NY, USA, ACM Press (2003) 37–48

11. Cho, H.K., Kim, E.S., Kang, D.W.: A load-balancing routing considering power
conservation in wireless ad hoc networks. In: Proc. of 16th International Workshop
on Database and Expert Systems Applications. (2005) 128–132

12. Johnson, D.B., Maltz, D.A., Hu, Y.C.: The dynamic source routing protocol for
mobile ad hoc networks (DSR). Tech. report, IETF (2003) IETF Draft, July 2004,
work in progress.

13. McCanne, S., Floyd, S., Fall, K., Varadhan, K.: The network simulator ns2 (1995)
The VINT project, available for download at http://www.isi.edu/nsnam/ns/.

14. Nasipuri, A., Castañeda, R.C., Das, S.R.: Performance of multipath routing for on-
demand protocols in mobile ad hoc networks. Mobile Networks and Applications
6(4) (2001) 339–349

15. Wu, K., Harms, J.: Performance study of a multipath routing method for wireless
mobile ad hoc networks. In: Proc. of 9th International Symposium in Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, Washing-
ton, DC, USA, IEEE Computer Society (2001) 99–107

16. Mueller, S., Tsang, R.P., Ghosal, D.: Multipath routing in mobile ad hoc networks:
Issues and challenges. In: Performance Tools and Applications to Networked Sys-
tems: Revised Tutorial Lectures, LNCS 2965, Springer-Verlag (2004) 209–234

17. Ganjali, Y., Keshavarzian, A.: Load balancing in ad hoc networks: Single-path
routing vs. multi-path routing. In: Proc. of 23rd Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM). (2004)

18. Vutukury, S., Garcia-Luna-Aceves, J.J.: A simple approximation to minimum-
delay routing. In: Proc. of the Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, New York, NY, USA, ACM
Press (1999) 227–238

19. Su, X., de Veciana, G.: Dynamic multi-path routing: asymptotic approximation
and simulations. In: Proc. of the 2001 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems, New York, NY, USA,
ACM Press (2001) 25–36

20. Bienstock, D.: Potential Function Methods for Approximately Solving Linear Pro-
gramming Problems: Theory and Practice. Volume 53 of International Series in
Operations Research & Management Science. Kluwer Academic Publishers, Nor-
well, MA, USA (2002)

21. Hou, X., Tipper, D.: Impact of failures on routing in mobile ad hoc networks using
DSR. In: Proc. of Communication Networks and Distributed Systems Modeling
and Simulation Conference. (2003)

22. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random
networks. Physica A 272 (1999) 173–187

